Skip to main content

Vitamin D and Prostate Cancer

  • Chapter
  • First Online:
Vitamin D and Cancer

Abstract

Following epidemiological observations that suggested links between low vitamin D exposure and increased risk of prostate cancer, interest in clarifying a potential role of this steroid hormone in prostate cancer has grown. While the results have been mixed, epidemiologic studies have suggested that severe vitamin D deficiency may increase the risk of clinically important prostate cancer. Laboratory investigation provides clear evidence of the potential of vitamin D receptor (VDR) ligands to induce growth arrest and promote apoptosis in a variety of cancer models. Because there are hundreds of vitamin D responsive genes, multiple mechanisms for these observations have been proposed.

Prompted by clear evidence of dose-dependent antitumor effects, efforts to harness this knowledge to improve patient outcomes has focused primarily on the development of high dose calcitriol, often in combination with other anti-neoplastic agents. After encouraging phase II results, the phase III effort failed when excess deaths were reported in the experimental arm of a trial that compared calcitriol with docetaxel to prednisone with docetaxel. In addition to targeting the vitamin D receptor, the two arms of this study differed with respect to the dose, schedule, and dose intensity of the chemotherapy agent and steroids, making definitive conclusions about the potential of vitamin D receptor targeted therapy difficult. No prospective randomized studies aimed at prostate cancer prevention have been reported.

Continued efforts to target vitamin D signaling for prostate cancer prevention and treatment are needed in light of the strong preclinical evidence supporting the importance of this signaling pathway. Better understanding of the human prostate cancer’s biologic heterogeneity in vitamin D sensitivity may allow for more robust identification of ways in which vitamin D can be harnessed to help men who suffer from this disease.

Disclosure

OHSU and Dr. Beer have a significant financial interest in Novacea a company that may have a commercial interest in the results of this research and technology. This potential conflict of interest has been reviewed and managed by OHSU and the Integrity Program Oversight Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIPC:

Androgen independent prostate cancer

ASCENT:

AIPC Study of Calcitriol Enhancing Taxotere

AUC:

Area under the concentration curve

C max :

Peak blood calcitriol concentrations

EGFR:

Epidermal growth factor receptors

NMU:

N-nitroso-N-methylurea

NSAIDS:

Non-steroidal anti-inflammatory agents

RXR:

Retinoid-X receptor

VDR:

Vitamin D receptors

VDRE:

Vitamin D response element

References

  1. Garland CF, Garland FC (1980) Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol 9:227–231

    CAS  PubMed  Google Scholar 

  2. Schwartz GG, Hulka BS (1990) Is vitamin D deficiency a risk factor for prostate cancer? (Hypothesis). Anticancer Res 10:1307–1311

    CAS  PubMed  Google Scholar 

  3. Chen TC, Wang L, Whitlatch LW et al (2003) Prostatic 25-hydroxyvitamin D-1alpha-hydroxylase and its implication in prostate cancer. J Cell Biochem 88:315–322

    CAS  PubMed  Google Scholar 

  4. Cross HS, Bareis P, Hofer H et al (2001) 25-Hydroxyvitamin D(3)-1alpha-hydroxylase and vitamin D receptor gene expression in human colonic mucosa is elevated during early cancerogenesis. Steroids 66:287–292

    CAS  PubMed  Google Scholar 

  5. Schwartz GG, Whitlatch LW, Chen TC et al (1998) Human prostate cells synthesize 1, 25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. Cancer Epidemiol Biomarkers Prev 7:391–395

    CAS  PubMed  Google Scholar 

  6. Tangpricha V, Flanagan JN, Whitlatch LW et al (2001) 25-hydroxyvitamin D-1alpha-hydroxylase in normal and malignant colon tissue. Lancet 357:1673–1674

    CAS  PubMed  Google Scholar 

  7. Zehnder D, Bland R, Williams MC et al (2001) Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 86:888–894

    CAS  PubMed  Google Scholar 

  8. Brenza HL, DeLuca HF (2000) Regulation of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression by parathyroid hormone and 1, 25-dihydroxyvitamin D3. Arch Biochem Biophys 381:143–152

    CAS  PubMed  Google Scholar 

  9. Haussler MR, Whitfield GK, Haussler CA et al (1998) The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 13:325–349

    CAS  PubMed  Google Scholar 

  10. Takeyama K, Kitanaka S, Sato T et al (1997) 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis. Science 277:1827–1830

    CAS  PubMed  Google Scholar 

  11. Deeb KK, Trump DL, Johnson CS (2007) Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 7:684–700

    CAS  PubMed  Google Scholar 

  12. Hewison M, Zehnder D, Bland R et al (2000) 1alpha-Hydroxylase and the action of vitamin D. J Mol Endocrinol 25:141–148

    CAS  PubMed  Google Scholar 

  13. Holick CN, Stanford JL, Kwon EM et al (2007) Comprehensive association analysis of the vitamin D pathway genes, VDR, CYP27B1, and CYP24A1, in prostate cancer. Cancer Epidemiol Biomarkers Prev 16:1990–1999

    CAS  PubMed  Google Scholar 

  14. Cross HS, Bises G, Lechner D et al (2005) The vitamin D endocrine system of the gut – its possible role in colorectal cancer prevention. J Steroid Biochem Mol Biol 97:121–128

    CAS  PubMed  Google Scholar 

  15. Hedlund TE, Moffatt KA, Miller GJ (1996) Vitamin D receptor expression is required for growth modulation by 1 alpha, 25-dihydroxyvitamin D3 in the human prostatic carcinoma cell line ALVA-31. J Steroid Biochem Mol Biol 58:277–288

    CAS  PubMed  Google Scholar 

  16. Miller GJ, Stapleton GE, Ferrara JA et al (1992) The human prostatic carcinoma cell line LNCaP expresses biologically active, specific receptors for 1 alpha, 25-dihydroxyvitamin D3. Cancer Res 52:515–520

    CAS  PubMed  Google Scholar 

  17. Skowronski RJ, Peehl DM, Feldman D (1993) Vitamin D and prostate cancer: 1, 25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology 132:1952–1960

    CAS  PubMed  Google Scholar 

  18. Beer TM, Myrthue A, Garzotto M et al (2004) Randomized study of high-dose pulse ­calcitriol or placebo prior to radical prostatectomy. Cancer Epidemiol Biomarkers Prev 13:2225–2232

    CAS  PubMed  Google Scholar 

  19. Hsu JY, Feldman D, McNeal JE et al (2001) Reduced 1alpha-hydroxylase activity in human prostate cancer cells correlates with decreased susceptibility to 25-hydroxyvitamin D3-induced growth inhibition. Cancer Res 61:2852–2856

    CAS  PubMed  Google Scholar 

  20. Chen TC (2008) 25-Hydroxyvitamin D-1 alpha-hydroxylase (CYP27B1) is a new class of tumor suppressor in the prostate. Anticancer Res 28:2015–2017

    CAS  PubMed  Google Scholar 

  21. Giovannucci E (2005) The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control 16:83–95

    PubMed  Google Scholar 

  22. Hidalgo AA, Paredes R, Garcia VM et al (2007) Altered VDR-mediated transcriptional activity in prostate cancer stroma. J Steroid Biochem Mol Biol 103:731–736

    CAS  PubMed  Google Scholar 

  23. Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nanes MS, Kuno H, Demay MB et al (1994) A single up-stream element confers responsiveness to 1, 25-dihydroxyvitamin D3 and tumor necrosis factor-alpha in the rat osteocalcin gene. Endocrinology 134:1113–1120

    CAS  PubMed  Google Scholar 

  25. Koszewski NJ, Reinhardt TA, Horst RL (1996) Vitamin D receptor interactions with the murine osteopontin response element. J Steroid Biochem Mol Biol 59:377–388

    CAS  PubMed  Google Scholar 

  26. Liu M, Lee MH, Cohen M et al (1996) Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev 10:142–153

    CAS  PubMed  Google Scholar 

  27. Jiang F, Li P, Fornace AJ Jr et al (2003) G2/M arrest by 1, 25-dihydroxyvitamin D3 in ovarian cancer cells mediated through the induction of GADD45 via an exonic enhancer. J Biol Chem 278:48030–48040

    CAS  PubMed  Google Scholar 

  28. Murayama A, Kim MS, Yanagisawa J et al (2004) Transrepression by a liganded nuclear receptor via a bHLH activator through co-regulator switching. EMBO J 23:1598–1608

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hawa NS, O’Riordan JL, Farrow SM (1996) Functional analysis of vitamin D response elements in the parathyroid hormone gene and a comparison with the osteocalcin gene. Biochem Biophys Res Commun 228:352–357

    CAS  PubMed  Google Scholar 

  30. Maestro B, Davila N, Carranza MC et al (2003) Identification of a Vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol 84:223–230

    CAS  PubMed  Google Scholar 

  31. Guzey M, Kitada S, Reed JC (2002) Apoptosis induction by 1alpha, 25-dihydroxyvitamin D3 in prostate cancer. Mol Cancer Ther 1:667–677

    CAS  PubMed  Google Scholar 

  32. Nemere I, Yoshimoto Y, Norman AW (1984) Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1, 25-dihydroxyvitamin D3. Endocrinology 115:1476–1483

    CAS  PubMed  Google Scholar 

  33. Beno DW, Brady LM, Bissonnette M et al (1995) Protein kinase C and mitogen-activated protein kinase are required for 1, 25-dihydroxyvitamin D3-stimulated Egr induction. J Biol Chem 270:3642–3647

    CAS  PubMed  Google Scholar 

  34. Morelli S, Buitrago C, Boland R et al (2001) The stimulation of MAP kinase by 1, 25(OH)(2)-vitamin D(3) in skeletal muscle cells is mediated by protein kinase C and calcium. Mol Cell Endocrinol 173:41–52

    CAS  PubMed  Google Scholar 

  35. Rossi AM, Capiati DA, Picotto G et al (2004) MAPK inhibition by 1alpha, 25(OH)2-Vitamin D3 in breast cancer cells. Evidence on the participation of the VDR and Src. J Steroid Biochem Mol Biol 89–90:287–290

    PubMed  Google Scholar 

  36. Wali RK, Baum CL, Sitrin MD et al (1990) 1, 25(OH)2 vitamin D3 stimulates membrane phosphoinositide turnover, activates protein kinase C, and increases cytosolic calcium in rat colonic epithelium. J Clin Invest 85:1296–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Larsson D, Hagberg M, Malek N et al (2008) Membrane initiated signaling by 1, 25alpha-dihydroxyvitamin D3 in LNCaP prostate cancer cells. Adv Exp Med Biol 617:573–579

    CAS  PubMed  Google Scholar 

  38. Berndt SI, Dodson JL, Huang WY et al (2006) A systematic review of vitamin D receptor gene polymorphisms and prostate cancer risk. J Urol 175:1613–1623

    CAS  PubMed  Google Scholar 

  39. Cicek MS, Liu X, Schumacher FR et al (2006) Vitamin D receptor genotypes/haplotypes and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 15:2549–2552

    CAS  PubMed  Google Scholar 

  40. Ma J, Stampfer MJ, Gann PH et al (1998) Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians. Cancer Epidemiol Biomarkers Prev 7:385–390

    CAS  PubMed  Google Scholar 

  41. Mikhak B, Hunter DJ, Spiegelman D et al (2007) Vitamin D receptor (VDR) gene polymorphisms and haplotypes, interactions with plasma 25-hydroxyvitamin D and 1, 25-dihydroxyvitamin D, and prostate cancer risk. Prostate 67:911–923

    CAS  PubMed  Google Scholar 

  42. Whitfield GK, Remus LS, Jurutka PW et al (2001) Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol 177:145–159

    CAS  PubMed  Google Scholar 

  43. Campbell MJ, Elstner E, Holden S et al (1997) Inhibition of proliferation of prostate cancer cells by a 19-nor-hexafluoride vitamin D3 analogue involves the induction of p21waf1, p27kip1 and E-cadherin. J Mol Endocrinol 19:15–27

    CAS  PubMed  Google Scholar 

  44. Sheikh MS, Rochefort H, Garcia M (1995) Overexpression of p21WAF1/CIP1 induces growth arrest, giant cell formation and apoptosis in human breast carcinoma cell lines. Oncogene 11:1899–1905

    CAS  PubMed  Google Scholar 

  45. Wang QM, Jones JB, Studzinski GP (1996) Cyclin-dependent kinase inhibitor p27 as a mediator of the G1-S phase block induced by 1, 25-dihydroxyvitamin D3 in HL60 cells. Cancer Res 56:264–267

    CAS  PubMed  Google Scholar 

  46. Zhuang SH, Burnstein KL (1998) Antiproliferative effect of 1alpha, 25-dihydroxyvitamin D3 in human prostate cancer cell line LNCaP involves reduction of cyclin-dependent kinase 2 activity and persistent G1 accumulation. Endocrinology 139:1197–1207

    CAS  PubMed  Google Scholar 

  47. Tong WM, Kallay E, Hofer H et al (1998) Growth regulation of human colon cancer cells by epidermal growth factor and 1, 25-dihydroxyvitamin D3 is mediated by mutual modulation of receptor expression. Eur J Cancer 34:2119–2125

    CAS  PubMed  Google Scholar 

  48. Matsumoto K, Hashimoto K, Nishida Y et al (1990) Growth-inhibitory effects of 1, 25-dihydroxyvitamin D3 on normal human keratinocytes cultured in serum-free medium. Biochem Biophys Res Commun 166:916–923

    CAS  PubMed  Google Scholar 

  49. Reitsma PH, Rothberg PG, Astrin SM et al (1983) Regulation of myc gene expression in HL-60 leukaemia cells by a vitamin D metabolite. Nature 306:492–494

    CAS  PubMed  Google Scholar 

  50. Capiati DA, Rossi AM, Picotto G et al (2004) Inhibition of serum-stimulated mitogen activated protein kinase by 1alpha, 25(OH)2-vitamin D3 in MCF-7 breast cancer cells. J Cell Biochem 93:384–397

    CAS  PubMed  Google Scholar 

  51. Park WH, Seol JG, Kim ES et al (2000) Induction of apoptosis by vitamin D3 analogue EB1089 in NCI-H929 myeloma cells via activation of caspase 3 and p38 MAP kinase. Br J Haematol 109:576–583

    CAS  PubMed  Google Scholar 

  52. Peehl DM, Skowronski RJ, Leung GK et al (1994) Antiproliferative effects of 1, 25-­dihydroxyvitamin D3 on primary cultures of human prostatic cells. Cancer Res 54:805–810

    CAS  PubMed  Google Scholar 

  53. Oades GM, Dredge K, Kirby RS et al (2002) Vitamin D receptor-dependent antitumour effects of 1, 25-dihydroxyvitamin D3 and two synthetic analogues in three in vivo models of prostate cancer. BJU Int 90:607–616

    CAS  PubMed  Google Scholar 

  54. Whitlatch LW, Young MV, Schwartz GG et al (2002) 25-Hydroxyvitamin D-1alpha-hydroxylase activity is diminished in human prostate cancer cells and is enhanced by gene transfer. J Steroid Biochem Mol Biol 81:135–140

    CAS  PubMed  Google Scholar 

  55. Getzenberg RH, Light BW, Lapco PE et al (1997) Vitamin D inhibition of prostate adenocarcinoma growth and metastasis in the Dunning rat prostate model system. Urology 50:999–1006

    CAS  PubMed  Google Scholar 

  56. Lokeshwar BL, Schwartz GG, Selzer MG et al (1999) Inhibition of prostate cancer metastasis in vivo: a comparison of 1, 23-dihydroxyvitamin D (calcitriol) and EB1089. Cancer Epidemiol Biomarkers Prev 8:241–248

    CAS  PubMed  Google Scholar 

  57. Yudoh K, Matsuno H, Kimura T (1999) 1alpha, 25-dihydroxyvitamin D3 inhibits in vitro invasiveness through the extracellular matrix and in vivo pulmonary metastasis of B16 mouse melanoma. J Lab Clin Med 133:120–128

    CAS  PubMed  Google Scholar 

  58. Schwartz GG, Hill CC, Oeler TA et al (1995) 1, 25-Dihydroxy-16-ene-23-yne-vitamin D3 and prostate cancer cell proliferation in vivo. Urology 46:365–369

    CAS  PubMed  Google Scholar 

  59. Schwartz GG, Oeler TA, Uskokovic MR et al (1994) Human prostate cancer cells: inhibition of proliferation by vitamin D analogs. Anticancer Res 14:1077–1081

    CAS  PubMed  Google Scholar 

  60. Bao BY, Yeh SD, Lee YF (2006) 1alpha, 25-dihydroxyvitamin D3 inhibits prostate cancer cell invasion via modulation of selective proteases. Carcinogenesis 27:32–42

    CAS  PubMed  Google Scholar 

  61. Schwartz GG, Wang MH, Zang M et al (1997) 1 alpha, 25-Dihydroxyvitamin D (calcitriol) inhibits the invasiveness of human prostate cancer cells. Cancer Epidemiol Biomarkers Prev 6:727–732

    CAS  PubMed  Google Scholar 

  62. Sung V, Feldman D (2000) 1, 25-Dihydroxyvitamin D3 decreases human prostate cancer cell adhesion and migration. Mol Cell Endocrinol 164:133–143

    CAS  PubMed  Google Scholar 

  63. Bao BY, Yao J, Lee YF (2006) 1alpha, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis 27:1883–1893

    CAS  PubMed  Google Scholar 

  64. Ylikomi T, Laaksi I, Lou YR et al (2002) Antiproliferative action of vitamin D. Vitam Horm 64:357–406

    CAS  PubMed  Google Scholar 

  65. Hakim I, Bar-Shavit Z (2003) Modulation of TNF-alpha expression in bone marrow macrophages: involvement of vitamin D response element. J Cell Biochem 88:986–998

    CAS  PubMed  Google Scholar 

  66. Hanchette CL, Schwartz GG (1992) Geographic patterns of prostate cancer mortality. Evidence for a protective effect of ultraviolet radiation. Cancer 70:2861–2869

    CAS  PubMed  Google Scholar 

  67. Schwartz GG, Hanchette CL (2006) UV, latitude, and spatial trends in prostate cancer mortality: all sunlight is not the same (United States). Cancer Causes Control 17:1091–1101

    PubMed  Google Scholar 

  68. Grant WB (2002) An estimate of premature cancer mortality in the U.S. due to inadequate doses of solar ultraviolet-B radiation. Cancer 94:1867–1875

    PubMed  Google Scholar 

  69. Luscombe CJ, Fryer AA, French ME et al (2001) Exposure to ultraviolet radiation: association with susceptibility and age at presentation with prostate cancer. Lancet 358:641–642

    CAS  PubMed  Google Scholar 

  70. John EM, Schwartz GG, Koo J et al (2005) Sun exposure, vitamin D receptor gene polymorphisms, and risk of advanced prostate cancer. Cancer Res 65:5470–5479

    CAS  PubMed  Google Scholar 

  71. Bodiwala D, Luscombe CJ, French ME et al (2003) Susceptibility to prostate cancer: studies on interactions between UVR exposure and skin type. Carcinogenesis 24:711–717

    CAS  PubMed  Google Scholar 

  72. Lagunova Z, Porojnicu AC, Dahlback A et al (2007) Prostate cancer survival is dependent on season of diagnosis. Prostate 67:1362–1370

    PubMed  Google Scholar 

  73. Robsahm TE, Tretli S, Dahlback A et al (2004) Vitamin D3 from sunlight may improve the prognosis of breast-, colon- and prostate cancer (Norway). Cancer Causes Control 15:149–158

    PubMed  Google Scholar 

  74. Zhou W, Suk R, Liu G et al (2005) Vitamin D is associated with improved survival in early-stage non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev 14:2303–2309

    CAS  PubMed  Google Scholar 

  75. Zhou W, Heist RS, Liu G et al (2007) Circulating 25-hydroxyvitamin D levels predict survival in early-stage non-small-cell lung cancer patients. J Clin Oncol 25:479–485

    CAS  PubMed  Google Scholar 

  76. Giovannucci E, Rimm EB, Wolk A et al (1998) Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res 58:442–447

    CAS  PubMed  Google Scholar 

  77. Rodriguez C, McCullough ML, Mondul AM et al (2003) Calcium, dairy products, and risk of prostate cancer in a prospective cohort of United States men. Cancer Epidemiol Biomarkers Prev 12:597–603

    CAS  PubMed  Google Scholar 

  78. Skinner HG, Schwartz GG (2008) Serum calcium and incident and fatal prostate cancer in the National Health and Nutrition Examination Survey. Cancer Epidemiol Biomarkers Prev 17:2302–2305

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Qin LQ, Xu JY, Wang PY et al (2004) Milk consumption is a risk factor for prostate cancer: meta-analysis of case-control studies. Nutr Cancer 48:22–27

    PubMed  Google Scholar 

  80. Chan JM, Giovannucci E, Andersson SO et al (1998) Dairy products, calcium, phosphorous, vitamin D, and risk of prostate cancer (Sweden). Cancer Causes Control 9:559–566

    CAS  PubMed  Google Scholar 

  81. Grant WB (1999) An ecologic study of dietary links to prostate cancer. Altern Med Rev 4:162–169

    CAS  PubMed  Google Scholar 

  82. Baron JA, Beach M, Wallace K et al (2005) Risk of prostate cancer in a randomized clinical trial of calcium supplementation. Cancer Epidemiol Biomarkers Prev 14:586–589

    CAS  PubMed  Google Scholar 

  83. Berndt SI, Carter HB, Landis PK et al (2002) Calcium intake and prostate cancer risk in a long-term aging study: the Baltimore Longitudinal Study of Aging. Urology 60:1118–1123

    PubMed  Google Scholar 

  84. Chan JM, Pietinen P, Virtanen M et al (2000) Diet and prostate cancer risk in a cohort of smokers, with a specific focus on calcium and phosphorus (Finland). Cancer Causes Control 11:859–867

    CAS  PubMed  Google Scholar 

  85. Park Y, Mitrou PN, Kipnis V et al (2007) Calcium, dairy foods, and risk of incident and fatal prostate cancer: the NIH-AARP Diet and Health Study. Am J Epidemiol 166:1270–1279

    PubMed  Google Scholar 

  86. Tavani A, Gallus S, Franceschi S et al (2001) Calcium, dairy products, and the risk of prostate cancer. Prostate 48:118–121

    CAS  PubMed  Google Scholar 

  87. Ahn J, Albanes D, Peters U et al (2007) Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 16:2623–2630

    CAS  PubMed  Google Scholar 

  88. Kristal AR, Cohen JH, Qu P et al (2002) Associations of energy, fat, calcium, and vitamin D with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 11:719–725

    CAS  PubMed  Google Scholar 

  89. Ahonen MH, Tenkanen L, Teppo L et al (2000) Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control 11:847–852

    CAS  PubMed  Google Scholar 

  90. Corder EH, Guess HA, Hulka BS et al (1993) Vitamin D and prostate cancer: a prediagnostic study with stored sera. Cancer Epidemiol Biomarkers Prev 2:467–472

    CAS  PubMed  Google Scholar 

  91. Li H, Stampfer MJ, Hollis JB et al (2007) A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med 4:e103

    PubMed  PubMed Central  Google Scholar 

  92. Tuohimaa P, Tenkanen L, Ahonen M et al (2004) Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the Nordic countries. Int J Cancer 108:104–108

    CAS  PubMed  Google Scholar 

  93. Ahn J, Peters U, Albanes D et al (2008) Serum vitamin D concentration and prostate cancer risk: a nested case-control study. J Natl Cancer Inst 100:796–804

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Braun MM, Helzlsouer KJ, Hollis BW et al (1995) Prostate cancer and prediagnostic levels of serum vitamin D metabolites (Maryland, United States). Cancer Causes Control 6:235–239

    CAS  PubMed  Google Scholar 

  95. Faupel-Badger JM, Diaw L, Albanes D et al (2007) Lack of association between serum levels of 25-hydroxyvitamin D and the subsequent risk of prostate cancer in Finnish men. Cancer Epidemiol Biomarkers Prev 16:2784–2786

    CAS  PubMed  Google Scholar 

  96. Gann PH, Ma J, Hennekens CH et al (1996) Circulating vitamin D metabolites in relation to subsequent development of prostate cancer. Cancer Epidemiol Biomarkers Prev 5:121–126

    CAS  PubMed  Google Scholar 

  97. Jacobs ET, Giuliano AR, Martinez ME et al (2004) Plasma levels of 25-hydroxyvitamin D, 1, 25-dihydroxyvitamin D and the risk of prostate cancer. J Steroid Biochem Mol Biol 89–90:533–537

    PubMed  Google Scholar 

  98. Platz EA, Leitzmann MF, Hollis BW et al (2004) Plasma 1, 25-dihydroxy- and 25-hydroxy­vitamin D and subsequent risk of prostate cancer. Cancer Causes Control 15:255–265

    PubMed  Google Scholar 

  99. Nomura AM, Stemmermann GN, Lee J et al (1998) Serum vitamin D metabolite levels and the subsequent development of prostate cancer (Hawaii, United States). Cancer Causes Control 9:425–432

    CAS  PubMed  Google Scholar 

  100. Giovannucci E, Liu Y, Rimm EB et al (2006) Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst 98:451–459

    CAS  PubMed  Google Scholar 

  101. Bernardi RJ, Trump DL, Yu WD et al (2001) Combination of 1alpha, 25-dihydroxyvitamin D(3) with dexamethasone enhances cell cycle arrest and apoptosis: role of nuclear receptor cross-talk and Erk/Akt signaling. Clin Cancer Res 7:4164–4173

    CAS  PubMed  Google Scholar 

  102. Yu WD, McElwain MC, Modzelewski RA et al (1998) Enhancement of 1, 25-dihydroxyvitamin D3-mediated antitumor activity with dexamethasone. J Natl Cancer Inst 90:134–141

    CAS  PubMed  Google Scholar 

  103. Hershberger PA, Modzelewski RA, Shurin ZR et al (1999) 1, 25-Dihydroxycholecalciferol (1, 25–D3) inhibits the growth of squamous cell carcinoma and down-modulates p21(Waf1/Cip1) in vitro and in vivo. Cancer Res 59:2644–2649

    CAS  PubMed  Google Scholar 

  104. Bernardi RJ, Johnson CS, Modzelewski RA et al (2002) Antiproliferative effects of 1alpha, 25-dihydroxyvitamin D(3) and vitamin D analogs on tumor-derived endothelial cells. Endocrinology 143:2508–2514

    CAS  PubMed  Google Scholar 

  105. Beer TM, Hough KM, Garzotto M et al (2001) Weekly high-dose calcitriol and docetaxel in advanced prostate cancer. Semin Oncol 28:49–55

    CAS  PubMed  Google Scholar 

  106. Hershberger PA, Yu WD, Modzelewski RA et al (2001) Calcitriol (1, 25-dihydroxycholecalciferol) enhances paclitaxel antitumor activity in vitro and in vivo and accelerates paclitaxel-induced apoptosis. Clin Cancer Res 7:1043–1051

    CAS  PubMed  Google Scholar 

  107. Moffatt KA, Johannes WU, Miller GJ (1999) 1Alpha, 25dihydroxyvitamin D3 and platinum drugs act synergistically to inhibit the growth of prostate cancer cell lines. Clin Cancer Res 5:695–703

    CAS  PubMed  Google Scholar 

  108. Ahmed S, Johnson CS, Rueger RM et al (2002) Calcitriol (1, 25-dihydroxycholecalciferol) potentiates activity of mitoxantrone/dexamethasone in an androgen independent prostate cancer model. J Urol 168:756–761

    CAS  PubMed  Google Scholar 

  109. Light BW, Yu WD, McElwain MC et al (1997) Potentiation of cisplatin antitumor activity using a vitamin D analogue in a murine squamous cell carcinoma model system. Cancer Res 57:3759–3764

    CAS  PubMed  Google Scholar 

  110. Wieder R, Wang Q, Uytingco M et al (1998) 1, 25-dihydroxyvitamin D3 and all-trans retinoic acid promote apoptosis and sensitize breast cancer cells to the effects of chemotherapeutic agents. Proc Am Soc Clin Oncol 17:107a

    Google Scholar 

  111. Sundaram S, Chaudhry M, Reardon D et al (2000) The vitamin D3 analog EB 1089 enhances the antiproliferative and apoptotic effects of adriamycin in MCF-7 breast tumor cells. Breast Cancer Res Treat 63:1–10

    CAS  PubMed  Google Scholar 

  112. Torres R, Calle C, Aller P et al (2000) Etoposide stimulates 1, 25-dihydroxyvitamin D3 differentiation activity, hormone binding and hormone receptor expression in HL-60 human promyelocytic cells. Mol Cell Biochem 208:157–162

    CAS  PubMed  Google Scholar 

  113. Koga M, Sutherland RL (1991) Retinoic acid acts synergistically with 1, 25-dihydroxyvitamin D3 or antioestrogen to inhibit T-47D human breast cancer cell proliferation. J Steroid Biochem Mol Biol 39:455–460

    CAS  PubMed  Google Scholar 

  114. Guzey M, Sattler C, DeLuca HF (1998) Combinational effects of vitamin D3 and retinoic acid (all trans and 9 cis) on proliferation, differentiation, and programmed cell death in two small cell lung carcinoma cell lines. Biochem Biophys Res Commun 249:735–744

    CAS  PubMed  Google Scholar 

  115. Peehl DM, Feldman D (2004) Interaction of nuclear receptor ligands with the Vitamin D signaling pathway in prostate cancer. J Steroid Biochem Mol Biol 92:307–315

    CAS  PubMed  Google Scholar 

  116. Ikeda N, Uemura H, Ishiguro H et al (2003) Combination treatment with 1alpha, 25-­dihydroxyvitamin D3 and 9-cis-retinoic acid directly inhibits human telomerase reverse transcriptase transcription in prostate cancer cells. Mol Cancer Ther 2:739–746

    CAS  PubMed  Google Scholar 

  117. Anzano MA, Smith JM, Uskokovic MR et al (1994) 1 alpha, 25-Dihydroxy-16-ene-23-yne-26, 27-hexafluorocholecalciferol (Ro24–5531), a new deltanoid (vitamin D analogue) for prevention of breast cancer in the rat. Cancer Res 54:1653–1656

    CAS  PubMed  Google Scholar 

  118. Welsh J (1994) Induction of apoptosis in breast cancer cells in response to vitamin D and antiestrogens. Biochem Cell Biol 72:537–545

    CAS  PubMed  Google Scholar 

  119. Abe-Hashimoto J, Kikuchi T, Matsumoto T et al (1993) Antitumor effect of 22-oxa-calcitriol, a noncalcemic analogue of calcitriol, in athymic mice implanted with human breast carcinoma and its synergism with tamoxifen. Cancer Res 53:2534–2537

    CAS  PubMed  Google Scholar 

  120. Christensen GL, Jepsen JS, Fog CK et al (2004) Sequential versus combined treatment of human breast cancer cells with antiestrogens and the vitamin D analogue EB1089 and evaluation of predictive markers for vitamin D treatment. Breast Cancer Res Treat 85:53–63

    CAS  PubMed  Google Scholar 

  121. Moreno J, Krishnan AV, Swami S et al (2005) Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Res 65:7917–7925

    CAS  PubMed  Google Scholar 

  122. Gavrilov V, Steiner M, Shany S (2005) The combined treatment of 1, 25-dihydroxyvitamin D3 and a non-steroid anti-inflammatory drug is highly effective in suppressing prostate cancer cell line (LNCaP) growth. Anticancer Res 25:3425–3429

    CAS  PubMed  Google Scholar 

  123. Hsiao M, Tse V, Carmel J et al (1997) Functional expression of human p21(WAF1/CIP1) gene in rat glioma cells suppresses tumor growth in vivo and induces radiosensitivity. Biochem Biophys Res Commun 233:329–335

    CAS  PubMed  Google Scholar 

  124. Dunlap N, Schwartz GG, Eads D et al (2003) 1alpha, 25-dihydroxyvitamin D(3) (calcitriol) and its analogue, 19-nor-1alpha, 25(OH)(2)D(2), potentiate the effects of ionising radiation on human prostate cancer cells. Br J Cancer 89:746–753

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Polar MK, Gennings C, Park M et al (2003) Effect of the vitamin D3 analog ILX 23–7553 on apoptosis and sensitivity to fractionated radiation in breast tumor cells and normal human fibroblasts. Cancer Chemother Pharmacol 51:415–421

    CAS  PubMed  Google Scholar 

  126. DeMasters GA, Gupta MS, Jones KR et al (2004) Potentiation of cell killing by fractionated radiation and suppression of proliferative recovery in MCF-7 breast tumor cells by the vitamin D3 analog EB 1089. J Steroid Biochem Mol Biol 92:365–374

    CAS  PubMed  Google Scholar 

  127. Osborn JL, Schwartz GG, Smith DC et al (1995) Phase II trial of oral 1, 25-dihydroxyvitamin D (calcitriol) in hormone refractory prostate cancer. Urol Onc 1:195–198

    CAS  Google Scholar 

  128. Gross C, Stamey T, Hancock S et al (2039) Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (calcitriol). J Urol 159:2035, discussion 2039–2040

    Google Scholar 

  129. Smith DC, Johnson CS, Freeman CC et al (1999) A Phase I trial of calcitriol (1, 25-dihydroxycholecalciferol) in patients with advanced malignancy. Clin Cancer Res 5:1339–1345

    CAS  PubMed  Google Scholar 

  130. Beer TM, Munar M, Henner WD (2001) A Phase I trial of pulse calcitriol in patients with refractory malignancies: pulse dosing permits substantial dose escalation. Cancer 91:2431–2439

    CAS  PubMed  Google Scholar 

  131. Muindi JR, Peng Y, Potter DM et al (2002) Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther 72:648–659

    CAS  PubMed  Google Scholar 

  132. Muindi JR, Potter DM, Peng Y et al (2005) Pharmacokinetics of liquid calcitriol formulation in advanced solid tumor patients: comparison with caplet formulation. Cancer Chemother Pharmacol 56:492–496

    CAS  PubMed  Google Scholar 

  133. Beer TM, Javle M, Lam GN et al (2005) Pharmacokinetics and tolerability of a single dose of DN-101, a new formulation of calcitriol, in patients with cancer. Clin Cancer Res 11:7794–7799

    CAS  PubMed  Google Scholar 

  134. Beer TM, Javle M, Henner WD et al (2004) Pharmacokinetics (PK) and tolerability of DN-101, a new formulation of calcitriol, in patients with cancer. Proc Am Assn Cancer Res 45:91

    Google Scholar 

  135. Flaig TW, Barqawi A, Miller G et al (2006) A phase II trial of dexamethasone, vitamin D, and carboplatin in patients with hormone-refractory prostate cancer. Cancer 107:266–274

    CAS  PubMed  Google Scholar 

  136. Morris MJ, Smaletz O, Solit D et al (2004) High-dose calcitriol, zoledronate, and dexamethasone for the treatment of progressive prostate carcinoma. Cancer 100:1868–1875

    CAS  PubMed  Google Scholar 

  137. Fakih MG, Trump DL, Muindi JR et al (2007) A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral gefitinib in patients with advanced solid tumors. Clin Cancer Res 13:1216–1223

    CAS  PubMed  Google Scholar 

  138. Beer TM, Lemmon D, Lowe BA et al (2003) High-dose weekly oral calcitriol in patients with a rising PSA after prostatectomy or radiation for prostate carcinoma. Cancer 97:1217–1224

    CAS  PubMed  Google Scholar 

  139. Beer TM, Eilers KM, Garzotto M et al (2003) Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J Clin Oncol 21:123–128

    CAS  PubMed  Google Scholar 

  140. Beer TM, Ryan CW, Venner PM et al (2007) Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT Investigators. J Clin Oncol 25:669–674

    CAS  PubMed  Google Scholar 

  141. Trump DL, Potter DM, Muindi J et al (2006) Phase II trial of high-dose, intermittent calcitriol (1, 25 dihydroxyvitamin D3) and dexamethasone in androgen-independent prostate cancer. Cancer 106:2136–2142

    CAS  PubMed  Google Scholar 

  142. Tiffany NM, Ryan CW, Garzotto M et al (2005) High dose pulse calcitriol, docetaxel and estramustine for androgen independent prostate cancer: a phase I/II study. J Urol 174:888–892

    CAS  PubMed  Google Scholar 

  143. Beer TM, Garzotto M, Katovic NM (2004) High-dose calcitriol and carboplatin in metastatic androgen-independent prostate cancer. Am J Clin Oncol 27:535–541

    CAS  PubMed  Google Scholar 

  144. Kissmeyer AM, Binderup E, Binderup L et al (1997) Metabolism of the vitamin D analog EB 1089: identification of in vivo and in vitro liver metabolites and their biological activities. Biochem Pharmacol 53:1087–1097

    CAS  PubMed  Google Scholar 

  145. Bouillon R, Verstuyf A, Verlinden L et al (1995) Non-hypercalcemic pharmacological aspects of vitamin D analogs. Biochem Pharmacol 50:577–583

    CAS  PubMed  Google Scholar 

  146. Bouiloon R, Okamura WH, Norman AW (1995) Structure-function relationships in the ­vitamin D endocrine system. Endocr Rev 16:200–257

    Google Scholar 

  147. Gulliford T, English J, Colston KW et al (1998) A phase I study of the vitamin D analogue EB 1089 in patients with advanced breast and colorectal cancer. Br J Cancer 78:6–13

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Dalhoff K, Dancey J, Astrup L et al (2003) A phase II study of the vitamin D analogue Seocalcitol in patients with inoperable hepatocellular carcinoma. Br J Cancer 89:252–257

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Evans TR, Colston KW, Lofts FJ et al (2002) A phase II trial of the vitamin D analogue Seocalcitol (EB1089) in patients with inoperable pancreatic cancer. Br J Cancer 86:680–685

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bower M, Colston KW, Stein RC et al (1991) Topical calcipotriol treatment in advanced breast cancer. Lancet 337:701–702

    CAS  PubMed  Google Scholar 

  151. Liu G, Oettel K, Ripple G et al (2002) Phase I trial of 1alpha-hydroxyvitamin d(2) in patients with hormone refractory prostate cancer. Clin Cancer Res 8:2820–2827

    CAS  PubMed  Google Scholar 

  152. Attia S, Eickhoff J, Wilding G et al (2008) Randomized, double-blinded phase II evaluation of docetaxel with or without doxercalciferol in patients with metastatic, androgen-­sindependent prostate cancer. Clin Cancer Res 14:2437–2443

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wieder R, Novick SC, Hollis BW et al (2003) Pharmacokinetics and safety of ILX23–7553, a non-calcemic-vitamin D3 analogue, in a phase I study of patients with advanced malignancies. Invest New Drugs 21:445–452

    CAS  PubMed  Google Scholar 

  154. Schwartz GG, Hall MC, Stindt D et al (2005) Phase I/II study of 19-nor-1alpha-25-­dihydroxyvitamin D2 (paricalcitol) in advanced, androgen-insensitive prostate cancer. Clin Cancer Res 11:8680–8685

    CAS  PubMed  Google Scholar 

  155. Kim RH, Li JJ, Ogata Y et al (1996) Identification of a vitamin D3-response element that overlaps a unique inverted TATA box in the rat bone sialoprotein gene. Biochem J 318(Pt 1):219–226

    PubMed  PubMed Central  Google Scholar 

  156. Falzon M (1996) DNA sequences in the rat parathyroid hormone-related peptide gene responsible for 1, 25-dihydroxyvitamin D3-mediated transcriptional repression. Mol Endocrinol 10:672–681

    CAS  PubMed  Google Scholar 

  157. Gill RK, Christakos S (1993) Identification of sequence elements in mouse calbindin-D28k gene that confer 1, 25-dihydroxyvitamin D3- and butyrate-inducible responses. Proc Natl Acad Sci USA 90:2984–2988

    CAS  PubMed  Google Scholar 

  158. Kitazawa R, Kitazawa S (2002) Vitamin D(3) augments osteoclastogenesis via vitamin D-responsive element of mouse RANKL gene promoter. Biochem Biophys Res Commun 290:650–655

    CAS  PubMed  Google Scholar 

  159. Matilainen M, Malinen M, Saavalainen K et al (2005) Regulation of multiple insulin-like growth factor binding protein genes by 1alpha, 25-dihydroxyvitamin D3. Nucleic Acids Res 33:5521–5532

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Peng L, Malloy PJ, Feldman D (2004) Identification of a functional vitamin D response element in the human insulin-like growth factor binding protein-3 promoter. Mol Endocrinol 18:1109–1119

    CAS  PubMed  Google Scholar 

  161. Polly P, Carlberg C, Eisman JA et al (1996) Identification of a vitamin D3 response element in the fibronectin gene that is bound by a vitamin D3 receptor homodimer. J Cell Biochem 60:322–333

    CAS  PubMed  Google Scholar 

  162. Cao X, Ross FP, Zhang L et al (1993) Cloning of the promoter for the avian integrin beta 3 subunit gene and its regulation by 1, 25-dihydroxyvitamin D3. J Biol Chem 268:27371–27380

    CAS  PubMed  Google Scholar 

  163. Bikle DD, Ng D, Oda Y et al (2002) The vitamin D response element of the involucrin gene mediates its regulation by 1, 25-dihydroxyvitamin D3. J Invest Dermatol 119:1109–1113

    CAS  PubMed  Google Scholar 

  164. Candeliere GA, Jurutka PW, Haussler MR et al (1996) A composite element binding the vitamin D receptor, retinoid X receptor alpha, and a member of the CTF/NF-1 family of transcription factors mediates the vitamin D responsiveness of the c-fos promoter. Mol Cell Biol 16:584–592

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Xie Z, Bikle DD (1998) Differential regulation of vitamin D responsive elements in normal and transformed keratinocytes. J Invest Dermatol 110:730–733

    CAS  PubMed  Google Scholar 

  166. McGaffin KR, Chrysogelos SA (2005) Identification and characterization of a response element in the EGFR promoter that mediates transcriptional repression by 1, 25-dihydroxyvitamin D3 in breast cancer cells. J Mol Endocrinol 35:117–133

    CAS  PubMed  Google Scholar 

  167. Drissi H, Pouliot A, Koolloos C et al (2002) 1, 25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Exp Cell Res 274:323–333

    CAS  PubMed  Google Scholar 

  168. Quelo I, Machuca I, Jurdic P (1998) Identification of a vitamin D response element in the proximal promoter of the chicken carbonic anhydrase II gene. J Biol Chem 273:10638–10646

    CAS  PubMed  Google Scholar 

  169. Seoane S, Alonso M, Segura C et al (2002) Localization of a negative vitamin D response sequence in the human growth hormone gene. Biochem Biophys Res Commun 292:250–255

    CAS  PubMed  Google Scholar 

  170. Fujisawa K, Umesono K, Kikawa Y et al (2000) Identification of a response element for vitamin D3 and retinoic acid in the promoter region of the human fructose-1, 6-bisphosphatase gene. J Biochem 127:373–382

    CAS  PubMed  Google Scholar 

  171. Murayama A, Takeyama K, Kitanaka S et al (1998) The promoter of the human 25-hydroxyvitamin D3 1 alpha-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1 alpha, 25(OH)2D3. Biochem Biophys Res Commun 249:11–16

    CAS  PubMed  Google Scholar 

  172. Zierold C, Darwish HM, DeLuca HF (1994) Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci U S A 91:900–902

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Vazquez G, Boland R, de Boland AR (1995) Modulation by 1, 25(OH)2-vitamin D3 of the adenylyl cyclase/cyclic AMP pathway in rat and chick myoblasts. Biochim Biophys Acta 1269:91–97

    PubMed  Google Scholar 

  174. Santillan GE, Boland RL (1998) Studies suggesting the participation of protein kinase A in 1, 25(OH)2-vitamin D3-dependent protein phosphorylation in cardiac muscle. J Mol Cell Cardiol 30:225–233

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz M. Beer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barnett, C.M., Beer, T.M. (2011). Vitamin D and Prostate Cancer. In: Trump, D., Johnson, C. (eds) Vitamin D and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7188-3_10

Download citation

Publish with us

Policies and ethics