Skip to main content

Advancing Characterization of Materials with Atomic Force Microscopy-Based Electric Techniques

  • Chapter
  • First Online:
Scanning Probe Microscopy of Functional Materials

Abstract

Multifrequency measurements in atomic force microscopy (AFM) are one of the main techniques advancing this method. Detection of the AFM probe response at different frequencies enables simultaneous and independent studies of individual constituents of overall tip–sample force and, therefore, begins to empower the advanced compositional mapping and quantitative examination of local mechanical, electromagnetic, and other properties of materials. This chapter describes the practical implementation of multifrequency measurements with a commercial instrument and, particularly, their use in AFM-based electric techniques (electric force microscopy (EFM), Kelvin force microscopy (KFM), and piezoresponse force microscopy (PFM)). One of the peculiarities of the multifrequency approach is multiple choices for a particular type of measurement. This demands a thorough evaluation of different permutations for finding the most sensitive and reliable experimental procedure. In case of EFM and KFM, the evaluation of amplitude modulation and frequency modulation detection of tip–sample electrostatic force during intermittent contact imaging revealed the more precise nature and higher spatial resolution of the frequency modulation studies. This technique has been applied for EFM and KFM imaging of various samples (metals, semiconductors, and organic self-assemblies) that have heterogeneities related to variations of work functions, strength and orientation of molecular dipoles and to a presence of surface charges. The presented results demonstrate the advanced capabilities of multifrequency measurements that are improving the nanoscale characterization of electric properties of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel “Surface studies by scanning tunneling microscopy” Phys. Rev. Lett. 1982, 49, 57–61.

    Article  Google Scholar 

  2. G. Schmalz, “Uber Glätte und Ebenheit als physikalisches und physiologishes problem” Z. Vereines Deutscher Ingenieure 1929, Oct 12, 1461–1467.

    Google Scholar 

  3. R. Young, J. Ward, and F. Scire “The topographiner:An instrument for measuring surface microtopography” Rev. Sci. Instrum. 1972, 43, 999–1011.

    Article  Google Scholar 

  4. G. Binnig, C. F. Quate, and Ch. Gerber “Atomic force microscope” Phys. Rev. Lett. 1986, 56, 930–933.

    Article  Google Scholar 

  5. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley “An atomic-resolution atomic-force microscope implemented using an optical lever” J. Appl. Phys. 1989, 65, 164.

    Article  CAS  Google Scholar 

  6. G. Meyer, and N. M. Amer, “Novel optical approach to atomic force microscopy” Appl. Phys. Lett. 1988, 53, 1045.

    Article  Google Scholar 

  7. Y. Martin, C. C. Williams, and H. K. Wickramasinghe “Atomic force microscope-force mapping and profiling on a sub 100-Å scale” J. Appl. Phys. 1987, 61, 4723–4729.

    Article  CAS  Google Scholar 

  8. T. Albrecht, P. Gruetter, D. Horne, and D. Rugar “Frequency modulation detection using high-Q cantilevers for enhanced force microscopy sensitivity” J. Appl. Phys. 1991, 61, 668.

    Article  Google Scholar 

  9. Q. Zhong, D. Innis, K. Kjoller, and V. Elings “Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy” Surf. Sci. Lett. 1993, 290, L688–L692.

    Article  CAS  Google Scholar 

  10. T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate “Microfabrication of cantilever styli for atomic force microscope” J. Vac. Sci. Technol. A 1990, 8, 3386–3396.

    Article  CAS  Google Scholar 

  11. O. Wolter, Th. Baer, and J. Greshner “Micromachined silicon sensors for scanning force microscopy” J. Vac. Sci. Technol. B 1991, 9, 1353–1357.

    Article  CAS  Google Scholar 

  12. F. J. Giessibl “Atomic resolution of the silicon (111)-(7×7) surface by atomic force micro­scopy” Science 1995, 267, 68–71.

    Article  CAS  Google Scholar 

  13. Y. Sugawara, M. Ohta, H. Ueyama, and S. Morita “Defect motion on an InP(110) surface observed with noncontact atomic force microscopy” Science 1995, 270, 1646–1648.

    Article  CAS  Google Scholar 

  14. T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada “Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy” Rev. Sci. Instrum. 2005, 76, 1–8.

    Google Scholar 

  15. N. A. Burnham, and R. J. Colton “Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope” J. Vac. Sci. Technol. A 1989, 7, 2906–2913.

    Article  CAS  Google Scholar 

  16. S. Belikov, S. Magonov, N. Erina, L. Huang, C. Prater, V. Ginzburg, G. Meyers, R. McIntyre, and H. Lakrout “Theoretical modelling and implementation of elastic modulus measurement at the nanoscale using atomic force microscope, J. Phys. Conf. Ser., 2007, 61, 1303–1307.

    Article  CAS  Google Scholar 

  17. O. Sahin, S. Magonov, C. Su, C. F. Quate, and O. Solgaard “An atomic force microscopy tip designed to measure time-varying nanomechanical forces” Nat. Nanotechnol. 2007, 2, 507–514.

    Article  Google Scholar 

  18. A. F. Sarioglu, and O. Solgaard “Cantilevers with integrated sensor for time-resolved force measurements in tapping-mode atomic force microscopy” Appl. Phys. Lett. 2008, 93, 023114-3.

    Article  CAS  Google Scholar 

  19. Y. Martin, D. A. Abraham, and H. K. Wickramasinghe “High-resolution capacitance measurement and potentiometry by force microscopy” Appl. Phys. Lett. 1988, 52, 1103–10005.

    Article  Google Scholar 

  20. V. B. Elings, and J. A. Gurley “Scanning probe microscope using stored data for vertical probe positioning” US Patent 5,308,974, 1994.

    Google Scholar 

  21. S. Magonov “AFM in analysis of polymers” in Encyclopedia of Analytical Chemistry, (R. A. Meyers, Ed.), pp. 7432–7491, John Wiley & Sons Ltd, Chichester, 2000.

    Google Scholar 

  22. S. Belikov, and S. Magonov “Classification of dynamic atomic force microscopy control codes based on asymptotic nonlinear mechanics”, 2008, submitted.

    Google Scholar 

  23. S. Belikov, and S. Magonov “Interplay between theory and experiment Frontiers of SPM, 2007 Workshop at Purdue University:http://www.nanohub.org/resources/2030/

  24. N. Krylov, and N. Bogolubov Introduction to Non-linear Mechanics, Princeton University Press, Princeton, 1949.

    Google Scholar 

  25. S. Belikov, and Magonov S. Classification of Dynamic Atomic Force Microscopy Control Modes Based on Asymptotic Nonlinear Mechanics, Proceedings of American Control Society, St. Louis, 979–985, 2009.

    Google Scholar 

  26. T. Fukuma, T. Ichii, K. Kobayashi, H. Yamada, and K. Matsushige “True-molecular resolution imaging by frequency modulation atomic force microscopy in various environments” Appl. Phys. Lett. 1995, 86, 034103–034105.

    Article  CAS  Google Scholar 

  27. D. Klinov, and S. Magonov “True molecular resolution in tapping mode atomic force microscopy” Appl. Phys. Lett. 2004, 84, 2697–2699.

    Article  CAS  Google Scholar 

  28. S. Belikov, and S. Magonov “True molecular-scale imaging in atomic force microscopy:Experiment and modeling” Jpn. J. Appl. Phys. 2006, 45, 2158–2165.

    Article  CAS  Google Scholar 

  29. T. Ohta, Y. Sugawara, and S. Morita “Feasibility study on a novel type of computerized tomography on scanning probe microscope” Jpn. J. Appl. Phys. 1996, 35, L1222–L1224.

    Article  CAS  Google Scholar 

  30. J. M. R. Weaver and D. W. Abraham, “High-resolution atomic force microscopy potentiometry” J. Vac. Sci. Technol. B 1991, 9, 1559–1561.

    Article  CAS  Google Scholar 

  31. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe “Kelvin probe force micro­scopy” Appl. Phys. Lett. 1991, 58, 2921–2923.

    Article  Google Scholar 

  32. J. E. Stern, B. D. Terris, H. J. Mamin, and D. Rugar “Deposition and imaging of localized charge on insulator surfaces using a force microscope” Appl. Phys. Lett. 1988, 53, 2717–2719.

    Article  Google Scholar 

  33. B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin “Localized charge force microscopy” J. Vac. Sci. Technol. A 1990, 8, 374–377.

    Article  CAS  Google Scholar 

  34. C. Schoenenberger, and S. F. Alvarado “Observation of single charge carriers by force microscopy” Phys. Rev. Lett. 1990, 65, 3162–3164.

    Article  CAS  Google Scholar 

  35. A. Kikukawa, S. Hosaka, and R. Imura “Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy” Appl. Phys. Lett. 1995, 66, 3510–3512.

    Article  CAS  Google Scholar 

  36. S. Kitamura, and M. Iwatsuki “High-resolution imaging of contact potential difference with ultrahigh vacuum non-contact atomic force microscopy” Appl. Phys. Lett. 1998, 72, 3154–3156.

    Article  CAS  Google Scholar 

  37. H. Yokoyama, and M. J. Jeffery “Imaging high-frequency dielectric dispersion of surfaces and thin films by heterodyne force-detected scanning Maxwell stress microscopy” Colloids Surf. A 1994, 93, 359–373.

    Article  CAS  Google Scholar 

  38. M. Fujihira “Kelvin probe force microscopy of molecular surfaces” Annu. Rev. Mater. Sci. 1999, 29, 353–380.

    Article  CAS  Google Scholar 

  39. M. Luna, D. F. Ogletree, and M. Salmeron “A study of the topographic and electric properties of self-assembled islands of alkylsilanes on mica using a combination of non-contact force microscopy techniques” Nanotechnology 2006, 17, S178–S184.

    Article  CAS  Google Scholar 

  40. R. Viswanathan, and M. B. Heaney “Direct imaging of the percolation network in a three-dimensional disordered conductor–insulator composite” Phys. Rev. Lett. 1995, 75, 4433–4436.

    Article  CAS  Google Scholar 

  41. H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, and N. Nakagiri “Potential shielding by the surface water layer in Kelvin probe force microscopy” Appl. Phys. Lett. 2002, 80, 1459–1461.

    Article  CAS  Google Scholar 

  42. X. Cui, M. Freitag, R. Martel, L. Brus, and P. Avouris “Controlling energy-level alignments at carbon nanotube/Au contacts” Nano Lett. 2003, 3, 783–787.

    Article  CAS  Google Scholar 

  43. T. Yamanuchi, M. Tabuchi, and A. Nakamura “Size dependence of the work function in InAs quantum dots on GaAs (001) as studies by Kelvin force probe microscopy” Appl. Phys. Lett. 2004, 84, 3834–3836.

    Article  CAS  Google Scholar 

  44. L. Buergi, H. Sirringhaus, and R. H. Friend “Noncontact potentiometry of polymer field-effect transistors” Appl. Phys. Lett. 2002, 80, 2913–2916.

    Article  CAS  Google Scholar 

  45. K. P. Puntambekar, P. V. Pesavento, and C. D. Friesbie “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe microscopy” Appl. Phys. Lett. 2003, 83, 5539–5541.

    Article  CAS  Google Scholar 

  46. M. Chiesa, L. Buergi, J.-S. Kim, R. Shikler, R. H. Friend, and H. Sirringhaus “Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes” Nano Lett. 2005, 5, 559–563.

    Article  CAS  Google Scholar 

  47. T. Glatzel, H. Hoppe, N. S. Sariciftci, M. C. H. Lux-Steiner, and M. Komiyama “Kelvin probe force microscopy study of conjugated polymer/fullerene organic solar cells” Jpn. J. Appl. Phys. 2005, 44, 5370–5373.

    Article  CAS  Google Scholar 

  48. O. A. Semenikhin, L. Jiang, K. Hashimoto, and A. Fujishima “Kelvin probe force microscopic study of anodically and cathodically doped poly-3-methylthiophene” Synth. Met. 2000, 110, 115–222.

    Article  CAS  Google Scholar 

  49. E. Perez-Garcia, J. Abad, A. Urbina, J. Colchero, and E. Palacios-Lidon “Surface potential domains on lamellar P3OT structures” Nanotechnology 2008, 19, 065709.

    Article  CAS  Google Scholar 

  50. M. Fujihira, and H. Kawate “Scanning surface potential microscope for characterization of Langmuir–Blodgett films” Thin Sold Films 1994, 242, 163–169.

    Article  CAS  Google Scholar 

  51. M. Yasutake, D. Aoki, and M. Fujihira “Surface potential measurements using the Kelvin probe force microscope” Thin Solid Films 1996, 273, 279–283.

    Article  CAS  Google Scholar 

  52. M. Fujihira, and H. Kawate “Structural study of Langmuir–Blodgett films by scanning ­surface potential microscopy” J. Vac. Sci. Technol. B 1994, 12, 1604–1608.

    Article  CAS  Google Scholar 

  53. H. Sugimura, K. Hayashi, N. Saito, O. Takai, and N. Nakagiri “Kelvin probe force micro­scopy images of microstructured organosilane self-assembled layers” Jpn. J. Appl. Phys. 2001, 40, 4373–4377.

    Article  CAS  Google Scholar 

  54. T. Inoue, and H. Yokoyama “Imaging of surface electrostatic features in phase-separated phospholipid monolayers by scanning Maxwell stress microscopy” J. Vac. Sci. Technol. B 1994, 12, 1569–1571.

    Article  Google Scholar 

  55. J. Lu, E. Delamarche, L. Eng, R. Bennewitz, E. Meyer, and H.-J. Guentherodt “Kelvin probe force microscopy on surfaces:Investigation of the surface potential of self-assembled monolayers on Gold” Langmuir 1999, 15, 8184–8188. The following values:k=25N/m, B=3Hz, Q=100, f 0=160kHz, U s=0.5V, z=10nm, and R=20nm were used for the estimate of the minimal detectable surface potential.

    Article  CAS  Google Scholar 

  56. T. Ichii, T. Fukuma, K. Kobayashi, H. Yamada, and K. Matsushige “Surface potential ­measurements of phase-separated alkanethiol self-assembled monolayers by non-contact atomic force microscopy” Nanotechnology 2004, 15, S30–S33.

    Article  CAS  Google Scholar 

  57. E. Palacios-Lidon, J. Abellan, J. Colchero, C. Munuera, and C. Ocal “Quantitative electrostatic force microscopy on heterogeneous nanoscale samples” Appl. Phys. Lett. 2005, 87, 154106–154108.

    Article  CAS  Google Scholar 

  58. M. Nakamura, and T. Yamada “Electrostatic force microscopy” in Roadmap 2005 of Scanning Probe Microscopy, (S. Morita, Ed.), Ch. 6, pp. 43–51, Springer, Berlin, 2006.

    Google Scholar 

  59. H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer “Resolution and contrast in Kelvin probe force microscopy” J. Appl. Phys. 1998, 84, 1168–1173.

    Article  CAS  Google Scholar 

  60. S. Kitamura, K. Suzuki, M. Iwatsuki, and C. B. Mooney “Atomic-scale variations in contact potential difference on Au/Si(111) 7×7 surface in ultrahigh vacuum” Appl. Surf. Sci. 2000, 157, 222–227.

    Article  CAS  Google Scholar 

  61. J. Colchero, A. Gil, and A. M. Baro “Resolution enhancement and improved data interpretation in electrostatic force microscopy” Phys. Rev. B 2001, 64, 245403.

    Article  CAS  Google Scholar 

  62. U. Zerweck, CH. Loppacher, T. Otto, S. Grafstroem, and L. M. Eng “Accuracy and resolution limits of Kelvin probe force microscopy” Phys. Rev. B 2005, 71, 125424.

    Article  CAS  Google Scholar 

  63. M. Zhao, V. Sharma, H. Wei, R. R. Birge, J. A. Stuart, F. Papadimitrakopoulos and B. D. Huey “Ultrasharp and high aspect ratio carbon nanotube atomic force microscopy probes for enhanced surface potential imaging” Nanotechnology 2008, 19, 235704.

    Article  CAS  Google Scholar 

  64. F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski, and M. Szymonski “Lateral resolution and potential sensitivity in Kelvin probe force microscopy; Towards understanding of the sub-nanometer resolution” Phys. Rev. B 2008, 77, 235427–235429.

    Article  CAS  Google Scholar 

  65. F. Saurenbach, and B. D. Terris “Imaging of ferroelectric domain walls by force microscopy” Appl. Phys. Lett. 1990, 56, 1703–1705.

    Article  CAS  Google Scholar 

  66. K. Franke, J. Besold, W. Haessler, and C. Seegebarth “Modification and detection of domains on ferroelectric PZT films by scanning force microscopy” Surf. Sci. Lett. 1994, 302, L283–L288.

    Article  CAS  Google Scholar 

  67. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer “Ferroelectric thin films:Review of materials, properties, and applications” J. Appl. Phys. 2006, 100, 051606.

    Article  CAS  Google Scholar 

  68. D. Damjanovic “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics” Rep. Prog. Phys. 1998, 61, 1267–1324.

    Article  CAS  Google Scholar 

  69. J.F. Nye Physical Properties of Crystals, Oxford:Oxford University Press, 1985.

    Google Scholar 

  70. A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, “Review of ferroelectric domain imaging by piezoresponse force microscopy” in Scanning Probe Microscopy, (S. Kalinin, A. Gruverman, Eds.), vol 1, pp. 173–214, Springer, New York, 2007.

    Chapter  Google Scholar 

  71. A. Roelofs, T. Schneller, K. Szot, and R. Waser “Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity” Appl. Phys. Lett. 2002, 81, 5231–5233.

    Article  CAS  Google Scholar 

  72. C. Yasuo, H. Sunao, O. Nozomi, T. Kenkou, and H. Yoshiomi, “Realization of 10 Tbit/in2 memory density and sub-nanosecond domain switching time in ferroelectric data storage” App. Phys. Lett. 2005, 87, 232907–232909.

    Article  CAS  Google Scholar 

  73. A. Gruverman, D. Wu, and J. F. Scott, “Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale” Phys. Rev. Lett. 2008, 100, 097601.

    Article  CAS  Google Scholar 

  74. A. Roelofs, U. Bottger, R. Waser, F. Schlaphof, S. Trogisch, and L. M. Eng, “Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy” Appl. Phys. Lett. 2000, 77, 3444–3446.

    Article  CAS  Google Scholar 

  75. S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams, and A. Gruverman, “Vector piezoresponse force microscopy” Microsc. Microanal. 2006, 12, 206–220.

    Article  CAS  Google Scholar 

  76. B. J. Rodriguez, S. Jesse, M. Alexe, and S. V. Kalinin “Spatially resolved mapping of polarization switching behavior in nanoscale ferroelectrics” Adv. Mater. 2008, 20, 109.

    Article  CAS  Google Scholar 

  77. S. Jesse, H. N. Lee, and S. Kalinin, “Quantitative mapping of switching behavior in piezoresponse microscopy” Rev. Sci. Instrum. 2006, 77, 0737001.

    Article  CAS  Google Scholar 

  78. S. V. Kalinin, and D. A. Bonnell “Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces” Phys. Rev. B 2002, 65, 125408.

    Article  CAS  Google Scholar 

  79. S. V. Kalinin, E. Karapetian, and M. Kachanov “Nanoelectromechanics of piezoresponse force microscopy” Phys. Rev. B 2004, 70, 184101.

    Article  CAS  Google Scholar 

  80. A. L. Kholkin, V. V. Shvartsman, A. Y. Emelyanov, R. Poyato, M. L. Calzada, and L. Pardo “Stress-induced suppression of piezoelectric properties in PbTiO3:La thin films via scanning force microscopy” Appl. Phys. Lett. 2003, 82, 2127–2129.

    Article  CAS  Google Scholar 

  81. T. Jungk, A. Hoffmann, and E. Soergel “Challenges for the determination of piezoelectric with piezoresponse force microscopy” Appl. Phys. Lett. 2007, 91, 253511–253513.

    Article  CAS  Google Scholar 

  82. T. Jungk, A. Hoffmann, and E. Soergel “Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy” Appl. Phys. Lett. 2006, 89, 163507–163509.

    Article  CAS  Google Scholar 

  83. J. Alexander, and S. Magonov Electric Force Microscopy and Kelvin Force Microscopy Support Note, Agilent Technologies, Chandler, AZ, 2008.

    Google Scholar 

  84. B. Mesa, and S. N. Magonov “Novel diamond/sapphire probes for scanning probe microscopy applications” J. Phys. Conf. Ser., 2007, 61, 770–774.

    Article  CAS  Google Scholar 

  85. S. Sadewasser, and M. Ch. Lux-Steiner “Correct height measurements in the noncontact atomic force microscopy” Phys. Rev. Lett. 2003, 91, 266101.

    Article  CAS  Google Scholar 

  86. N. A. Yerina, and S. N. Magonov “Atomic force microscopy in analysis of rubber materials” Rubber Ind. Technol. 2003, 76, 846–859.

    CAS  Google Scholar 

  87. P. Mesquida, and A. Stemmer “Attaching silica nanoparticles from suspension onto surface charge patterns generated by a conductive atomic force microscope tip” Adv. Mater. 2001, 13, 1395–1398.

    Article  CAS  Google Scholar 

  88. A. Groszek “Selective adsorption at graphite/hydrocarbon interfaces” Proc. Roy. Soc. (Lond.) A 1970, 314, 473–498.

    Article  Google Scholar 

  89. S. N. Magonov, and N. Yerina “High temperature atomic force microscopy of normal alkane C60H122 films on graphite” Langmuir 2003, 19, 500–504.

    Article  CAS  Google Scholar 

  90. R. V. Martinez, N. S. Losilla, J. Martinez, Y. Huttel, and R. Garcia “Patterning polymeric structures with 2nm resolution at 3nm half pitch in ambient conditions” Nano Lett. 2007, 7, 1846–1850.

    Article  CAS  Google Scholar 

  91. Z. Tang, N. A. Kotov, and M. Giersig “Spontaneous organization of single CdTe nanoparticles into luminescent nanowires” Science 2002, 297, 237–240.

    Article  CAS  Google Scholar 

  92. S. Magonov, J. Alexander, S.-H. Jeoung, and N. Kotov “High-Resolution Imaging of Molecular and Nanoparticles Assemblies with Kelvin Force Microscopy” J. Nanosci. Nanotechnol. 2010, 10, 1–5.

    Google Scholar 

  93. J. Alexander, and S. Magonov Advanced Atomic Force Microscopy:Probing Electrostatic Force Interactions Application Note, Agilent Technologies, Chandler, AZ, 2008.

    Google Scholar 

  94. J. Alexander, S Magonov, and M. Moeller “Topography and surface potential in Kelvin force microscopy of perfluoroalkyl alkanes self-assemblies” J. Vac. Sci. Technol. B 2009, 27, 903–911.

    Article  CAS  Google Scholar 

  95. H. B. Michaelson “The work function of the elements and its periodicity” J. Appl. Phys. 1977, 48, 4729–4733.

    Article  CAS  Google Scholar 

  96. The SiAuPt test structure was kindly provided by Prof. Monica Cota (University of Campinas, Campinas, Brazil).

    Google Scholar 

  97. Y. Rosenwaks, R. Shikler, Th. Glatzel, and S. Sadewasser “Kelvin probe force microscopy of semiconductor surface defects” Phys. Rev. B 2004, 70, 085320–085327.

    Article  CAS  Google Scholar 

  98. B. Laegel, M. D. Ayala, and R. Schlaf “Kelvin probe force microscopy on corona charged oxidized semiconductor surfaces” Appl. Phys. Lett. 2004, 85, 4801–4803.

    Article  CAS  Google Scholar 

  99. A. K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffmann, Ph. Kaszuba, and C. Daghlian “Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy” J. Appl. Phys. 1995, 77, 1888–1896.

    Article  CAS  Google Scholar 

  100. A. Kikukawa, S. Hosaka, and R. Imura “Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy” Appl. Phys. Lett. 1995, 66, 3510–3512.

    Article  CAS  Google Scholar 

  101. T. Matsukawa, S. Kanemaru, M. Masahara, M. Nagao, H. Tanoue, and J. Itoh “Doping diagnosis by evaluation of the surface Fermi level using scanning Maxwell-stress microscopy” Appl. Phys. Lett. 2003, 82, 2166–2168.

    Article  CAS  Google Scholar 

  102. W. Han Scanning Microwave Microscopy Application Note, Agilent Technologies, Chandler, AZ, 2008.

    Google Scholar 

  103. J. F. Rabolt, T. P. Russell, and R. J. Twieg “Structural studies of semifluorinated n-alkanes. 1. Synthesis and characterization of F(CF2) n (CH2) m H in the solid state” Macromolecules 1984, 17, 2786–2794.

    Article  CAS  Google Scholar 

  104. T. P. Russell, J. PF. Rabolt, R. J. Twieg, R. L. Siemens, and B. L. Farmer “Structural characterization of semifluorinated normal-alkanes. 2. Solid–solid transition behavior” Macromolecules 1986, 19, 1135–1143.

    Article  CAS  Google Scholar 

  105. M. Maaloum, P. Muller, and M. P. Krafft “Monodisperse surface micelles of nonpolar amphiphiles in Langmuir monolayers” Angew. Chem. Int. Ed. 2002, 114, 4531–4534.

    Google Scholar 

  106. A. Mourran, B. Tartsch, M. Gallyamov, S. Magonov, D. Lambreva, B. I. Ostrovskii, I. P. Dolbnya, W. H. de Jeu, and M. Moeller “Self-assembly of the perfluoroalkyl-alkane F14H20 in ultrathin films” Langmuir 2005, 21, 2308–2316.

    Article  CAS  Google Scholar 

  107. T. Kato, M. Kameyama, M. Eahara, and K. Iimura “Monodisperse two-dimensional nanometer size clusters of partially fluorinated long-chain acids” Langmuir 1998, 14, 1786–1798.

    Article  CAS  Google Scholar 

  108. Y. Ren, K. Iimura, A. Ogawa, and T. Kato “Surface micelles of CF3(CF2)7(CH2)10COOH on aqueous La3+ subphase investigated by atomic force microscopy and infrared spectroscopy” J. Phys. Chem. B 2001, 105, 4305–4312.

    Article  CAS  Google Scholar 

  109. A. El Abed, E. Pouzet, M-C. Faure, and M. Saniere “Air–water interface-induced smectic bilayer” Phys. Rev. E 2000, 62, R5895–R5898.

    Article  CAS  Google Scholar 

  110. A. El Abed, M-C. Faure, E. Pouzet, and O. Abilon “Experimental evidence for an original two-dimensional phase structure:An antiparallel semifluorinated monolayer at the air-water interface” Phys. Rev. E 2002, 5, 051603–051604.

    Article  CAS  Google Scholar 

  111. D. R. Lide, Ed. CRC Handbook of Chemistry and Physics, 81st ed., CRC Press, Boca Raton, FL, 2000.

    Google Scholar 

  112. N. Nonnenmacher, and H. K. Wickramasinghe “Optical absorption spectroscopy by scanning force microscopy” Ultramicroscopy 1992, 42–44, 351–354.

    Article  Google Scholar 

  113. R. W. Stark, N. Naujoks, and A. Stemmer “Multifrequency electrostatic force microscopy in the repulsive regime” Nanotechnology 2007, 18, 065502–065507.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The samples examined in the studies, which are described in this Chapter, were kindly provided by our colleagues:Prof. M. Moeller (RWTU Aachen, Germany), Prof. N. Kotov (University of Michigan, Ann Arbor, USA), Prof. A. Gruverman (University of Nebraska, Lincoln, USA), Prof. M. Cota (University of Campinas, Campinas, Brazil) – to whom we are very thankful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Magonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Magonov, S., Alexander, J., Wu, S. (2010). Advancing Characterization of Materials with Atomic Force Microscopy-Based Electric Techniques. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy of Functional Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7167-8_9

Download citation

Publish with us

Policies and ethics