Skip to main content

Microsatellites: A Powerful Genetic Marker for Fern Research

  • Chapter
  • First Online:
Working with Ferns

Abstract

A large number of studies on fern biology have traditionally been carried out by allozyme electrophoresis and, more recently, by dominant nuclear genetic markers. However, the low sensitivity of the former and the inability to reveal heterozygotes of the latter constitute important obstacles for detailed studies on several life traits of ferns. Microsatellites, short tandem repeats of nucleotides present in most eukaryote genomes, can cover those deficiencies thanks to their hypervariability and codominant inheritance. This PCR-based technology has been widely used to study vertebrates and angiosperms with great success, but only a few works applying it to ferns have been published in the last decade. These studies allow us a glimpse of the great promise that microsatellites hold to address multiple biological issues unresolved by less sensitive markers, such as fine-scale genetic diversity and recent evolutionary history. Beyond some hindering factors in results interpretation, the most notable drawback of microsatellites is that they are still expensive to develop, although costs are becoming progressively cheaper as more laboratories and companies provide this service. The peculiarities of fern life and evolutionary histories make microsatellites even more interesting markers, as this technology can be used to explore many traits of fern biology. Microsatellites are, therefore, shaping up as a powerful genetic marker for fern research which is well worth the investment.

Despite their fairly acquired popularity, it is surprising how this technology has been barely applied to study ferns, although the few reported cases show a successful ­implementation. In this chapter, I will provide an overview of microsatellites which will hopefully be useful to researchers not familiarized with the technique but who feel that it could improve their science. First I will place microsatellites in the ­context of genetic molecular markers and explain what are they and how to use them. Then I will focus on the published works which have used microsatellites, explaining in more detail my own experience with the technique, and present the advantages and disadvantages of working with this powerful marker. Finally, I will close the chapter with some future prospects for the role of microsatellites in fern research. My goal is thus to encourage fern scientists, particularly those concerned with fern population genetics, to consider microsatellites as a valuable opportunity for their work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkaya, M. S., Bhagwat, A. A., and Cregan, P. B. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139.

    CAS  PubMed  Google Scholar 

  • Avise, C. 2004. Molecular markers, natural history and evolution. Sunderland: Sinauer Associates.

    Google Scholar 

  • Bachmann, K. 1994. Molecular markers in plant ecology. New Phytol. 126:403–418.

    Article  CAS  Google Scholar 

  • Balloux, F., and Lugon-Moulin, N. 2002. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 11:155–165.

    Article  PubMed  Google Scholar 

  • Barbará, T., Palma-Silva, C., Paggi, G. M., Bered, F., Fay, F. F., and Lexer, C. 2007. Cross-species transfer of nuclear microsatellite markers: Potential and limitations. Mol. Ecol. 16:3757–3767.

    Google Scholar 

  • Boys, J., Cherry, M., and Dayanandan, S. 2005. Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa, Pinaceae). Am. J. Bot. 92:1146–1155.

    Article  Google Scholar 

  • Bouck, A., and Vision, T. 2007. The molecular ecologist’s guide to expressed sequence tags. Mol. Ecol. 16:907–924.

    Article  CAS  PubMed  Google Scholar 

  • Buza, L., Young, A., and Thrall, P. 2000. Genetic erosion, inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta. Biol. Conserv. 93:177–186.

    Article  Google Scholar 

  • Chambers, G. K., and MacAvoy, E. S. 2000. Microsatellites: Consensus and controversy. Comp. Biochem. Physiol. 126:455–476.

    Article  CAS  Google Scholar 

  • Chen, X., Wang, J., Tian, H., Zhang, X., Wen, J., and Zhou, S. 2008. Development of microsatellite markers for the bracken fern, Pteridium aquilinum. Mol. Ecol. Resour. 8:1491–1493.

    Article  CAS  Google Scholar 

  • Csencsics, D., Angelone, S., Paniga, M., Rotach, P., Rudow, A., Sabiote, E., Schwab, P., Wohlhauser, P., and Holderegger, R. 2009. A large scale survey of Populus nigra presence and genetic introgression from non-native poplars in Switzerland based on molecular identification. J. Nat. Conserv. 17:142–149.

    Article  Google Scholar 

  • Degen, B., Streiff, R., and Ziegenhagen, B. 1999. Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci. Heredity 83:597–603.

    Article  PubMed  Google Scholar 

  • Eisen, J. A. 1999. Mechanistic basis for microsatellite instability. In Microsatellites: Evolution and applications, eds. D. B. Goldstein and C. Schlötterer, pp. 34–48. Oxford: Oxford University Press.

    Google Scholar 

  • Ellegren, H. 2004. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 5:435–445.

    Article  CAS  PubMed  Google Scholar 

  • Ellstrand, N. C., and Elam, D. R. 1993. Population genetic consequences of small population size: Implications for plant conservation. Ann. Rev. Ecol. Syst. 24:217–242.

    Article  Google Scholar 

  • Estoup, A., Jarne, P., and Cornuet, J.-M. 2002. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 11:1591–1604.

    Article  CAS  PubMed  Google Scholar 

  • Estoup, A., Rousset, F., Michalakis, Y., Cornuet, J.-M., Adriamanga, M., and Guyomard, R. 1998. Comparative analysis of microsatellite and allozyme markers: A case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol. Ecol. 7:339–353.

    Article  CAS  PubMed  Google Scholar 

  • Field, D., and Wills, C. 1998. Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. P. Natl. Acad. Sci. USA 95:1647–1652.

    Article  CAS  PubMed  Google Scholar 

  • Garner, T. W. J. 2002. Genome size and microsatellites: The effect of nuclear size on amplification potential. Genome 45:212–215.

    Article  CAS  PubMed  Google Scholar 

  • Glenn, T. C., and Schable, N. A. 2005. Isolating microsatellite DNA loci. Method. Enzymol. 395: 202–222.

    Article  CAS  Google Scholar 

  • Grant, V. 1981. Plant speciation. New York: Columbia University Press.

    Google Scholar 

  • Harding, R. M., Boyce, A. J., and Clegg, J. B. 1992. The evolution of tandemly repetitive DNA: Recombination rules. Genetics 132:847–859.

    CAS  PubMed  Google Scholar 

  • Hasebe, M., Iwatsuki, K. 1990. Adiantum capillus-veneris chloroplast DNA clone bank: As useful heterologous probes in the systematics of the leptosporangiate ferns. Am. Fern J. 80:20–25.

    Article  Google Scholar 

  • Jarne, P., and Lagoda, P. J. L. 1996. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11:424–439.

    Article  PubMed  Google Scholar 

  • Jiménez, A., Holderegger, R., Csencsics, D., and Quintanilla, L. G. 2010. Microsatellites reveal substantial among-population genetic differentiation and strong inbreeding in the relict fern Dryopteris aemula. Ann. Bot. 106:249–155.

    Google Scholar 

  • Jiménez, A., Quintanilla, L. G., Pajarón, S., and Pangua, E. 2009. Genetic variation in the allotetraploid Dryopteris corleyi (Dryopteridaceae) and its diploid parental species in the Iberian Peninsula. Am. J. Bot, 96:1880–1886.

    Article  Google Scholar 

  • Kang, M., Huang, H., Jiang, M., and Lowe, A. 2008. Understanding population structure and historical demography in a conservation context: Population genetics of an endangered fern. Divers. Distrib. 14:799–807.

    Article  Google Scholar 

  • Kang, M., Pan, L., Yao, X., and Huang, H. 2006. Development and characterization of polymorphic microsatellite loci in endangered fern Adiantum reniforme var. sinensis. Conserv. Genet. 7:807–810.

    Article  CAS  Google Scholar 

  • Koehn, R. K., Zera, A. J., and Hall, J. G. 1983. Enzyme polymorphism and natural selection. In Evolution of genes and proteins, eds. N. Nei and R. K. Koehn, pp. 115–136. Sunderland: Sinauer Associates.

    Google Scholar 

  • Li, Y.-C., Korol, A. B., Fahima, T., Beilies, A., and Nevo, E. 2002. Microsaellites: Genomic distribution, putative functions and mutational mechanisms: A review. Mol. Ecol. 11:2453–2465.

    Article  CAS  PubMed  Google Scholar 

  • Luikart, G., and England, P. R. 1999. Statistical analysis of microsatellite DNA data. Trends Ecol. Evol. 14:253–256.

    Article  PubMed  Google Scholar 

  • McGrath, J. M., Hickok, L. G., and Pichersky, E. 1994. Assessment of gene copy number in the homosporous ferns Ceratopteris thalictroides and C. richardii (Parkeriaceae) by restriction fragment length polymorphisms. Plant Syst. Evol. 189:203–210.

    Article  CAS  Google Scholar 

  • Metzgar, D., Bytof, J., and Wills, C. 2000. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res. 10:72–80.

    CAS  PubMed  Google Scholar 

  • Nakazato, T., Jung, M.-K., Housworth, E. A., Rieseberg, L. H., and Gastony, G. J. 2006. Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii. Genetics 173:1585–1597.

    Article  CAS  PubMed  Google Scholar 

  • Nakazato, T., Barker, M. S., Rieseberg, L. H., and Gastony, G. J. 2008. Evolution of the nuclear genome of ferns and lycophytes. In Biology and evolution of ferns and lycophytes, eds. R. A. Ranker and C. H. Haufler, pp. 175–198. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pashley, C. H., Ellis, J. R., McCauley, D. E., and Burke, J. M. 2006. EST databases as a source for molecular markers: Lessons from Helianthus. J. Hered. 97:381–388.

    Article  CAS  PubMed  Google Scholar 

  • Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., and Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2:225–238.

    Article  CAS  Google Scholar 

  • Pryor, K. V., Young, J. E., Rumsey, F. J., Edwards, K. J., Bruford, M. W., and Rogers, H. J. 2001. Diversity, genetic structure and evidence of outcrossing in British populations of the rock fern Adiantum capillus-veneris using microsatellites. Mol. Ecol. 10:1881–1889.

    Article  CAS  PubMed  Google Scholar 

  • Quintanilla, L. G., Pajarón, S., Pangua, E., and Amigo, J. 2007. Allozyme variation in the sympatric ferns Culcita macrocarpa and Woodwardia radicans at the northern extreme of their ranges. Plant Syst. Evol. 263:135–144.

    Article  CAS  Google Scholar 

  • Ranker T. A., and Geiger, J. M. O. 2008. Population genetics. In Biology and evolution of ferns and lycophytes, eds. R. A. Ranker, and C. H. Haufler, pp. 107–133. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Reusch, T. B. H., Stam, W. T., and Olsen, J. L. 1999. Microsatellite loci in eelgrass Zostera maritima reveal marked polymorphism within and among populations. Mol. Ecol. 8:317–321.

    Article  CAS  PubMed  Google Scholar 

  • Rozen, S., and Skaletsky, H. J. 2000. Primer3 on the www for general users and for biologist programmers. In Bioinformatics methods and protocols: Methods in molecular biology, eds. S. Krawetz, and S. Misener, pp. 365–386. Totowa: Humana Press.

    Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491.

    Article  CAS  PubMed  Google Scholar 

  • Sainudiin, R., Durrett, R. T., Aquadro, C. F., and Nielsen, R. 2004. Microsatellite mutation models: Insights from a comparison of humans and chimpanzees. Genetics 168:383–395.

    Article  CAS  PubMed  Google Scholar 

  • Schlötterer, C. 2000. Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371.

    Article  PubMed  Google Scholar 

  • Selkoe, K. A., and Toonen, R. J. 2006. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9:615–629.

    Article  PubMed  Google Scholar 

  • Skinner, D. M., Beattie, W. G., and Blattner, F. R. 1974. The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (-T-A-G-G-)n × (-A-T-C-C-)n. Biochemistry 13:3930–3937.

    Article  CAS  PubMed  Google Scholar 

  • Soltis, P. S., and Soltis, D. E. 1990. Genetic variation within and among populations of ferns. Am. Fern J. 80:161–172.

    Article  Google Scholar 

  • Squirrell, J., Hollingsworth, P. M., Woodhead, M., Russell, J., Lowe, A. J., Gibby, M., and Powell, W. 2003. How much effort is required to isolate nuclear microsatellites from plants? Mol. Ecol. 12:1339–1348.

    Article  CAS  PubMed  Google Scholar 

  • Squirrell, J., Woodhead, M., Hollingsworth, P. M., Russell, J., Gibby, M., and Powell, W. 2004. Isolation of polymorphic microsatellite markers for the alpine lady fern, Athyrium distentifolium Tausch ex Opiz, from an enriched genomic library. Conserv. Genet. 5:283–286.

    Article  CAS  Google Scholar 

  • Sunnucks, P. 2000. Efficient genetic markers for population biology. Trends Ecol. Evol. 15:199–203.

    Article  PubMed  Google Scholar 

  • Tachida, H., and Iizuka, M. 1992. Persistence of repeated sequences that evolve by replication slippage. Genetics 131:471–478.

    CAS  PubMed  Google Scholar 

  • Tautz, D., and Renz, M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12:4127–4138.

    Article  CAS  PubMed  Google Scholar 

  • Veytsman, B., and Akhmadeyeva, L. 2007. Simple mathematical model of pathologic microsatellite expansions: when self-reparation does not work. J. Theor. Biol. 21:401–408.

    Google Scholar 

  • Vitalis, R., Dubois, M.-P., and Olivieri, I. 2001. Characterization of microsatellite loci in the endangered species of fern Marsilea strigosa Willd. (Marsileaceae, Pteridophyta). Mol. Ecol. Notes 1:64–66.

    Article  CAS  Google Scholar 

  • Vitalis, R., Riba, M., Colas, B., Grillas, P., and Olivieri, I. 2002. Multilocus genetic structure at contrasted spatial scales of the endangered water fern Marsilea strigosa Willd. (Marsileaceae, Pteridophyta). Am. J. Bot. 89:1142–1155.

    Article  Google Scholar 

  • Vogel, J., Rumsey, F. J., Russell, S. J., Cox, C. J., Holmes, J. S., Bujnoch, W., Stark, C., Barrett, J. A., and Gibby, M. 1999. Genetic structure, reproductive biology and ecology of isolated populations of Asplenium csikii (Aspleniaceae, Pteridophyta). Heredity 83:604–612.

    Article  PubMed  Google Scholar 

  • Volis, S., Shulgina, I., Ward, D., and Mendlinger, S. 2003. Regional subdivision in wild barley allozyme variation: Adaptive or neutral? J. Hered. 94:341–351.

    Article  CAS  PubMed  Google Scholar 

  • Weising, K., Nybom, H., Wolff, K., and Kahl, G. 2005. DNA fingerprinting in plants. Principles, methods and applications. Boca Raton: Taylor & Francis Group.

    Google Scholar 

  • Werth, C. R., Guttman, S. I., and Eshbaugh, W. H. 1985. Recurring origins of allopolyploid species in Asplenium. Science 10:731–733.

    Article  Google Scholar 

  • Woodhead, M., Russell, J., Squirrell, J., Hollingsworth, P. M., Cardle, L., Ramsay, L., Gibby, M., and Powell, W. 2003. Development of EST-SSRs from the alpine lady fern, Athyrium distentifolium. Mol. Ecol. Notes 3:287–290.

    Article  CAS  Google Scholar 

  • Woodhead, M., Russell, J., Squirrell, J., Hollingsworth, P. M., Mackenzie, K., Gibby, M., and Powell, W. 2005. Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol. Ecol. 14:1681–1695.

    Article  CAS  PubMed  Google Scholar 

  • Zane, I., Bargelloni, L., and Patarnello, T. 2002. Strategies for microsatellite isolation: A review. Mol. Ecol. 11:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D.-X., and Hewitt, G. M. 2003. Nuclear DNA analyses in genetic studies of populations: Practice, problems and prospects. Mol. Ecol. 12:563–584.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ares Jiménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jiménez, A. (2011). Microsatellites: A Powerful Genetic Marker for Fern Research. In: Kumar, A., Fernández, H., Revilla, M. (eds) Working with Ferns. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7162-3_15

Download citation

Publish with us

Policies and ethics