Skip to main content

Biodiesel Production, Properties, and Feedstocks

  • Chapter
  • First Online:
Biofuels

Abstract

Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, is an environmentally attractive alternative to conventional petroleum diesel fuel (petrodiesel). Produced by transesterification with a monohydric alcohol, ­usually methanol, biodiesel has many important technical advantages over petrodiesel, such as inherent lubricity, low toxicity, derivation from a renewable and domestic feedstock, superior flash point and biodegradability, negligible sulfur content, and lower exhaust emissions. Important disadvantages of biodiesel include high feedstock cost, inferior storage and oxidative stability, lower volumetric energy content, inferior low-temperature operability, and in some cases, higher NO x exhaust emissions. This chapter covers the process by which biodiesel is prepared, the types of catalysts that may be used for the production of biodiesel, the influence of free fatty acids on biodiesel production, the use of different monohydric alcohols in the preparation of biodiesel, the influence of biodiesel composition on fuel properties, the influence of blending biodiesel with other fuels on fuel properties, alternative uses for biodiesel, and value-added uses of glycerol, a co-product of biodiesel production. A particular emphasis is placed on alternative feedstocks for biodiesel production. Lastly, future challenges and outlook for biodiesel are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajav E. A.; Singh B.; Bhattacharya T. K. Thermal balance of a single cylinder diesel engine operating on alternative fuels. Energ. Convers. Manage. 41: 1533–1541; 2000. doi:10.1016/S0196-8904(99)00175-2.

    Google Scholar 

  • Alamu O. J.; Waheed M. A.; Jekayinfa S. O. Effect of ethanol–palm kernel oil ratio on alkali-catalyzed biodiesel yield. Fuel 87: 1529–1533; 2008. doi:10.1016/j.fuel.2007.08.011.

    CAS  Google Scholar 

  • Albuquerque M. C. G.; Machado Y. L.; Torres A. E. B.; Azevedo D. C. S.; Cavalcante C. L. Jr.; Firmiano L. R.; Parente E. J. S. Jr. Properties of biodiesel oils formulated using different biomass sources and their blends. Renew Energ. 34: 857–859; 2009. doi:10.1016/j.renene.2008.07.006.

    CAS  Google Scholar 

  • Ali Y.; Hanna M. A. Alternative diesel fuels from vegetable oils. Bioresource. Technol. 50: 153–163; 1994. doi:10.1016/0960-8524(94)90068-X.

    CAS  Google Scholar 

  • Alptekin E.; Canakci M. Determination of the density and the viscosities of biodiesel-diesel fuel blends. Renew Energ 33: 2623–2630; 2008. doi:10.1016/j.renene.2008.02.020.

    CAS  Google Scholar 

  • Alptekin E.; Canakci M. Characterization of the key fuel properties of methyl ester-diesel fuel blends. Fuel 88: 75–80; 2009. doi:10.1016/j.fuel.2008.05.023.

    CAS  Google Scholar 

  • Altiparmak D.; Keskin A.; Koca A.; Guru M. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends. Bioresource. Technol. 98: 241–246; 2007. doi:10.1016/j.biortech.2006.01.020.

    CAS  Google Scholar 

  • Anonymous Dictionary Section. In: Gunstone F. D.; Harwood J. L.; Dijkstra A. J. (eds) The lipid handbook. 3rd ed. CRC, Boca Raton, pp 444–445; 2007.

    Google Scholar 

  • Antolin G.; Tinaut F. V.; Briceno Y.; Castano V.; Perez C.; Ramirez A. I. Optimisation of biodiesel production by sunflower oil transesterification. Bioresource. Technol. 83: 111–114; 2002. doi:10.1016/S0960-8524(01)00200-0.

    CAS  Google Scholar 

  • ASTM Standard specification for biodiesel fuel (B100) blend stock for distillate fuels. In: Annual Book of ASTM Standards, ASTM International, West Conshohocken, Method D6751-08; 2008a.

    Google Scholar 

  • ASTM Standard specification for diesel fuel oil, biodiesel blend (B6 to B20). In: Annual Book of ASTM Standards, ASTM International, West Conshohocken, Method D7467-08a; 2008b.

    Google Scholar 

  • ASTM Standard specification for diesel fuel oils. In: Annual Book of ASTM Standards, ASTM International, West Conshohocken, Method D975-08a; 2008c.

    Google Scholar 

  • ASTM Standard specification for fuel oils. In: Annual Book of ASTM Standards, ASTM International, West Conshohocken, Method D396-08b; 2008d.

    Google Scholar 

  • Balan V.; Rogers C. A.; Chundawat S. P. S.; da Costa Sousa L.; Slininger P. J.; Gupta R.; Dale B. E. Conversion of extracted oil cake fibers into bioethanol including DDGS, canola, sunflower, sesame, soy, and peanut for integrated biodiesel processing. J. Am. Oil. Chem. Soc. 86: 157–165; 2009. doi:10.1007/s11746-008-1329-4.

    CAS  Google Scholar 

  • Ban-Weiss G. A.; Chen J. Y.; Buchholz B. A.; Dibble R. W. A numerical investigation into the anomalous slight NO x increase when burning biodiesel; A new (old) theory. Fuel Process Technol. 88: 659–667; 2007. doi:10.1016/j.fuproc.2007.01.007.

    CAS  Google Scholar 

  • Banapurmath N. R.; Tewari P. G.; Hosmath R. S. Performance and emissions characteristics of a DI compression ignition engine operated on Honge, Jatropha, and sesame oil FAME. Renew Eng 33: 1982–1988; 2008. doi:10.1016/j.renene.2007.11.012.

    CAS  Google Scholar 

  • Barbour, R. H.; Rickeard, D. J.; Elliott, N. G. Understanding diesel lubricity. SAE Tech Pap Ser 2000-01-1918; 2000.

    Google Scholar 

  • Behr A.; Eilting J.; Irawadi K.; Leschinski J.; Linder F. Improved utilization of renewable resources: new important derivatives of glycerol. Green Chem. 10: 13–30; 2008. doi:10.1039/b710561d.

    CAS  Google Scholar 

  • Benjumea P.; Agudelo J.; Agudelo A. Basic properties of palm oil biodiesel-diesel blends. Fuel 87: 2069–2075; 2008. doi:10.1016/j.fuel.2007.11.004.

    CAS  Google Scholar 

  • Bhale P. V.; Deshpande N. V.; Thombre S. B. Improving the low temperature properties of biodiesel fuel. Renew Energ. 34: 794–800; 2009. doi:10.1016/j.renene.2008.04.037.

    CAS  Google Scholar 

  • Bhatnagar A. K.; Kaul S.; Chhibber V. K.; Gupta A. K. HFRR studies on FAME of nonedible vegetable oils. Energ. Fuel 20: 1341–1344; 2006. doi:10.1021/ef0503818.

    CAS  Google Scholar 

  • Bhatt Y. C.; Murthy N. S.; Datta R. K. Use of mahua oil (Madhuca indica) as a diesel fuel extender. J. Institutional Eng. (India): Agric. Eng. Div. 85: 10–14; 2004.

    Google Scholar 

  • Bondioli P.; Cortesi N.; Mariani C. Identification and quantification of steryl glucosides in biodiesel. Eur. J. Lipid Sci. Technol. 110: 120–126; 2008. doi:10.1002/ejlt.200700158.

    CAS  Google Scholar 

  • Bondioli P.; Gasparoli A.; Bella L. D.; Tagliabue S.; Toso G. Biodiesel stability under commercial storage conditions over one year. Eur. J. Lipid Sci. Technol. 105: 35–741; 2003. doi:10.1002/ejlt.200300783.

    Google Scholar 

  • Boocock D. G. B.; Konar S. K.; Mao V.; Lee C.; Buligan S. Fast formation of high-purity FAME from vegetable oils. J. Am. Oil. Chem. Soc. 75: 1167–1172; 1998. doi:10.1007/s1746-998-0130-8.

    CAS  Google Scholar 

  • Boocock D. G. B.; Konar S. K.; Mao V.; Sidi H. Fast one-phase oil-rich processes for the preparation of vegetable oil FAME. Biomass. Bioenerg. 11: 43–50; 1996a. doi:10.1016/0961-9534(95)00111-5.

    CAS  Google Scholar 

  • Boocock D. G. B.; Konar S. K.; Sidi H. Phase diagrams for oil/methanol/ether mixtures. J. Am. Oil. Chem. Soc. 73: 1247–1251; 1996b. doi:10.1007/BF02525453.

    CAS  Google Scholar 

  • Bostyn S.; Duval-Onen F.; Porte C.; Coic J. P.; Fauduet H. Kinetic modeling of the degradation of α-tocopherol in biodiesel-rape methyl ester. Bioresource Technol. 99: 6439–6445; 2008. doi:10.1016/j.biortech.2007.11.054.

    CAS  Google Scholar 

  • Bouaid A.; Bajo L.; Martinez M.; Aracil J. Optimization of biodiesel production from jojoba oil. Process Saf. Environ. 85: 378–382; 2007. doi:10.1205/psep07004.

    CAS  Google Scholar 

  • Breccia A.; Esposito B.; Breccia Fratadocchi G.; Fini A. Reaction between methanol and commercial seed oils under microwave irradiation. J. Microwave Power EE 34: 3–8; 1999.

    Google Scholar 

  • Bringi N. V. Non-traditional oilseeds and oils of India. Oxford and IBH, New Delhi; 1987.

    Google Scholar 

  • Can O.; Celikten I.; Usta N. Effects of ethanol addition on performance and emissions of a turbocharged indirect injection Diesel engine running at different injection pressures. Energ. Convers. Manage. 45: 2429–2440; 2004. doi:10.1016/j.enconman.2003.11.024.

    CAS  Google Scholar 

  • Canakci M.; Sanli H. Biodiesel production from various feedstocks and their effects on the fuel properties. J. Ind. Microbiol. Biot. 35: 431–441; 2008. doi:10.1007/s10295-008-0337-6.

    CAS  Google Scholar 

  • Canakci M.; Van Gerpen J. Biodiesel production via acid catalysis. Trans. ASAE 42: 1203–1210; 1999.

    CAS  Google Scholar 

  • Canakci M.; Van Gerpen J. Biodiesel production from oils and fats with high free fatty acids. Trans. ASAE 44: 1429–1436; 2001.

    CAS  Google Scholar 

  • Canakci M.; Van Gerpen J. A pilot plant to produce biodiesel from high free fatty acid feedstocks. Trans. ASAE 46: 945–954; 2003a.

    CAS  Google Scholar 

  • Canakci M.; Van Gerpen J. Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Trans. ASAE 46: 937–944; 2003b.

    CAS  Google Scholar 

  • Canoira L.; Alcantara R.; Garcia-Martinez M. J.; Carrasco J. Biodiesel from jojoba oil-wax: transesterification with methanol and properties as a fuel. Biomass. Bioenerg. 30: 76–81; 2006. doi:10.1016/j.biombioe.2005.07.002.

    CAS  Google Scholar 

  • Cardone M.; Prati M. V.; Rocco V.; Seggiani M.; Senatore A.; Vitolo S. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions. Environ. Sci. Technol. 36: 4656–4662; 2002. doi:10.1021/es011078y.

    CAS  PubMed  Google Scholar 

  • Cetinkaya M.; Karaosmanoglu F. Optimization of base-catalyzed transesterification reaction of used cooking oil. Energ. Fuel 18: 1888–1895; 2004. doi:10.1021/ef049891c.

    CAS  Google Scholar 

  • Chang D. Y. Z.; Van Gerpen J. H.; Lee I.; Johnson L. A.; Hammond E. G.; Marley S. J. Fuel properties and emissions of soybean oil esters as diesel fuel. J. Am. Oil. Chem. Soc. 73: 1549–1555; 1996. doi:10.1007/BF02523523.

    CAS  Google Scholar 

  • Chapagain B. P.; Yehoshua Y.; Wiesman Z. Desert date (Balanites aegyptiaca) as an arid lands sustainable bioresource for biodiesel. Bioresource Technol. 100: 1221–1226; 2009. doi:10.1016/j.biortech.2008.09.005.

    CAS  Google Scholar 

  • Chiou B. S.; El-Mashad H. M.; Avena-Bustillos R. J.; Dunn R. O.; Bechtel P. J.; McHugh T. H.; Imam S. H.; Glenn G. M.; Ortz W. J.; Zhang R. Biodiesel from waste salmon oil. Trans. ASABE 51: 797–802; 2008.

    CAS  Google Scholar 

  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306; 2007. doi:10.1016/j.biotechadv.2007.02.001.

    CAS  PubMed  Google Scholar 

  • Chiu C. W.; Schumacher L. G.; Suppes G. J. Impact of cold flow improvers on soybean biodiesel blend. Biomass. Bionerg. 27: 485–491; 2004. doi:10.1016/j.biombioe.2004.04.006.

    CAS  Google Scholar 

  • Choi C. Y.; Reitz R. D. An experimental study on the effects of oxygenated fuel blends and multiple injection strategies on DI diesel engines. Fuel 78: 1303–1317; 1999. doi:10.1016/S0016-2361(99)00058-7.

    CAS  Google Scholar 

  • Committee for Standardization Automotive fuels—fatty acid FAME (FAME) for diesel engines—requirements and test methods. European Committee for Standardization, Brussels; 2003a. Method EN 14214.

    Google Scholar 

  • Committee for Standardization Heating fuels—fatty acid FAME (FAME)—requirements and test methods. European Committee for Standardization, Brussels; 2003b. Method EN 14213.

    Google Scholar 

  • Committee for Standardization Automotive fuels—diesel—requirements and test methods. European Committee for Standardization, Brussels; 2004. Method EN 590.

    Google Scholar 

  • Dailey O. D.; Prevost N. T.; Strahan G. D. Synthesis and structural analysis of branched-chain derivatives of methyl oleate. J. Am. Oil Chem. Soc. 85: 647–653; 2008. doi:10.1007/s11746-008-1235-9.

    CAS  Google Scholar 

  • Dantas M. B.; Almeida A. A. F.; Conceicao M. M.; Fernandes V. J. Jr.; Santos I. M. G.; Silva F. C.; Soledade L. E. B.; Souza A. G. Characterization and kinetic compensation effect of corn biodiesel. J. Therm. Anal. Calorim. 87: 847–851; 2007. doi:10.1007/s10973-006-7786-9.

    CAS  Google Scholar 

  • Danzer, M. F.; Ely, T. L.; Kingery, S. A.; McCalley, W. W.; McDonald, W. M.; Mostek, J.; Schultes, M. L. Biodiesel cold filtration process. US Pat Appl 20070175091, filed 02/01/2007; 2007.

    Google Scholar 

  • Darnoko D.; Cheryan M. Kinetics of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc. 77: 1263–1267; 2000. doi:10.1007/s11746-000-0198-y.

    CAS  Google Scholar 

  • Dasari M. A.; Kiatsimkul P. P.; Sutterlin W. R.; Suppes G. J. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A-Gen. 281: 225–231; 2005. doi:10.1016/j.apcata.2004.11.033.

    CAS  Google Scholar 

  • Demirbas A. Biodiesel fuels from vegetable oils via catalytic and non catalytic supercritical alcohol transesterifications and other methods: a survey. Energ. Convers. Manage. 44: 2093–2109; 2003. doi:10.1016/S0196-8904(02)00234-0.

    CAS  Google Scholar 

  • Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress Energ. Combust. 31: 466–487; 2005. doi:10.1016/j.pecs.2005.09.001.

    CAS  Google Scholar 

  • Demirbas A. Biodiesel production via non-catalytic SCF method and biodiesel fuel charactertistics. Energ.convers.Manage.47:2271–2282;2006.doi:10.1016j.enconomon.2005:11.019.

    CAS  Google Scholar 

  • Demirbas A. Progress and recent trends in biofuels. Prog. Energ. Combust. 33: 1–18; 2007. doi:10.1016/j.pecs.2006.06.001.

    CAS  Google Scholar 

  • Demirbas A. Production of biodiesel from tall oil. Energ. Source Part A 30: 1896–1902; 2008.

    CAS  Google Scholar 

  • Demirbas A.; Dincer K. Sustainable green diesel: a futuristic view. Energ. Source Part A 30: 1233–1241; 2008.

    CAS  Google Scholar 

  • DeOliveira E.; Quirino R. L.; Suarez P. A. Z.; Prado A. G. S. Heats of combustion of biofuels obtained by pyrolysis and by transesterification and of biofuel/diesel blends. Thermochim. Acta 450: 87–90; 2006. doi:10.1016/j.tca.2006.08.005.

    CAS  Google Scholar 

  • Dias J. M.; Alvim-Ferraz M. C. M.; Almeida M. F. Comparison of the performance of different homogenous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 87: 3572–3578; 2008. doi:10.1016/j.fuel.2008.06.014.

    CAS  Google Scholar 

  • Dimitrakis W. J. The importance of lubricity. Hydrocarb. Eng. 8: 37–39; 2003.

    CAS  Google Scholar 

  • Doell R.; Konar S. K.; Boocock D. G. B. Kinetic parameters of a homogenous transmethylation of soybean oil. J. Am. Oil Chem. Soc. 85: 271–276; 2008. doi:10.1007/s11746-007-1168-8.

    CAS  Google Scholar 

  • Domingos A. K.; Saad E. B.; Wilhelm H. M.; Ramos L. P. Optimization of the ethanolysis of Raphanus sativas (L. var.) crude oil applying the response surface methodology. Bioresource. Technol. 99: 1837–1845; 2008. doi:10.1016/j.biortech.2007.03.063.

    CAS  Google Scholar 

  • Dorado M. P.; Ballesteros E.; Lopez F. J.; Mittelbach M. Optimization of alkali-catalyzed transesterification of Brassica carinata oil for biodiesel production. Energ. Fuel 18: 77–83; 2004. doi:10.1021/ef0340110.

    CAS  Google Scholar 

  • dos Santos I. C. F.; de Carvalho S. H. V.; Solleti J. I.; Ferreira de Le Salles W.; Teixeira de Silva de La Salles K.; Meneghetti S. M. P. Studies of Terminalia catappa L. oil: characterization and biodiesel production. Bioresource. Technol. 99: 6545–6549; 2008. doi:10.1016/j.biortech.2007.11.048.

    CAS  Google Scholar 

  • Drown D. C.; Harper K.; Frame E. Screening vegetable oil alcohol esters as fuel lubricity enhancers. J. Am. Oil Chem. Soc. 78: 679–584; 2001. doi:10.1007/s11746-001-0307-y.

    Google Scholar 

  • Dunn R. O. Alternative jet fuels from vegetable oils. Trans. ASAE 44: 1751–1757; 2001.

    CAS  Google Scholar 

  • Dunn R. O. Oxidative stability of soybean oil fatty acid FAME by oil stability index (OSI). J. Am. Oil Chem. Soc. 82: 381–387; 2005a. doi:10.1007/s11746-005-1081-6.

    CAS  Google Scholar 

  • Dunn R. O. Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Process. Technol. 86: 1071–1085; 2005b. doi:10.1016/j.fuproc.2004.11.003.

    CAS  Google Scholar 

  • Dunn R. O.; Bagby M. O. Low-temperature properties of triglyceride-based diesel fuels: transesterified FAME and petroleum middle distillate/ester blends. J. Am. Oil Chem. Soc. 72: 895–904; 1995. doi:10.1007/BF02542067.

    CAS  Google Scholar 

  • Dunn R. O.; Shockley M. W.; Bagby M. O. Improving the low-temperature properties of alternative diesel fuels: vegetable oil-derived FAME. J. Am. Oil Chem. Soc. 73: 1719–1728; 1996. doi:10.1007/BF02517978.

    CAS  Google Scholar 

  • Dunn, R. O.; Shcokley, M. W.; Bagby, M. O. Winterized FAME from soybean oil: an alternative diesel fuel with improved low-temperature properties. SAE Tech Pap Ser 1997-01-971682; 1997.

    Google Scholar 

  • Eathington S. R.; Crosbie T. M.; Edwards M. D.; Reiter R. S.; Bull J. K. Molecular markers in a commercial breeding program. Crop. Sci. 47S3: S154–S163; 2007. doi:10.2135/cropsci2007.04.0015IPBS.

    Google Scholar 

  • El-Mashad H. M.; Zhang R.; Avena-Bustillos R. J. A two-step process for biodiesel production from salmon oil. Biosyst. Eng. 99: 220–227; 2008. doi:10.1016/j.biosystemseng.2007.09.029.

    Google Scholar 

  • Elleuch M.; Besbes S.; Roiseux O.; Blecker C.; Attia H. Quality characteristics of sesame seeds and by-products. Food Chem. 103: 641–650; 2007. doi:10.1016/j.foodchem.2006.09.008.

    CAS  Google Scholar 

  • Encinar J. M.; Gonzalez J. F.; Rodriguez J. J.; Tejedor A. Biodiesel fuels from vegetable oils: transesterification of Cynara cardunculus L. oils with ethanol. Energ. Fuel 16: 443–450; 2002. doi:10.1021/ef010174h.

    CAS  Google Scholar 

  • Encinar J. M.; Gonzalez J. F.; Rodriguez-Reinares A. Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Process. Technol. 88: 513–522; 2007. doi:10.1016/j.fuproc.2007.01.002.

    CAS  Google Scholar 

  • Environmental Protection Agency (EPA) A comprehensive analysis of biodiesel impacts on exhaust emissions. Draft Technical Report EPA420-P-02-00. National Service Center for Environmental Publications, Cincinnati, OH; 2002.

    Google Scholar 

  • Erhan S. Z. Industrial uses of vegetable oils. AOCS, Champaign; 2005.

    Google Scholar 

  • Feng J.; Fu H.; Wang J.; Li R.; Chen H.; Li X. Hydrogenolysis of glycerol to glycols over ruthenium catalysts: effect of support and catalyst reduction temperature. Catal. Com. 9: 1458–1464; 2008. doi:10.1016/j.catcom.2007.12.011.

    CAS  Google Scholar 

  • Fernandezalvarez P. F.; Vila J.; Garrido-Fernandez J.; Grifoll M.; Lema J. M. Trials of bioremediation on a beach affected by the heavy oil spill of the Prestige. J. Hazard. Mater. B 137: 1523–1531; 2006. doi:10.1016/j.jhazmat.2006.04.035.

    CAS  Google Scholar 

  • Fernando S.; Hall C.; Jha S. NO x reduction from biodiesel fuels. Energy Fuels 20: 376–382; 2006. doi:10.1021/ef050202m.

    CAS  Google Scholar 

  • Fernando S.; Hanna M. Development of a novel biofuel blend using ethanol-biodiesel-diesel microemulsions: EB-diesel. Energ. Fuel 18: 1695–1703; 2004. doi:10.1021/ef049865e.

    CAS  Google Scholar 

  • Foglia T. A.; Nelson L. A.; Dunn R. O.; Marmer W. N. Low-temperature properties of alkyl esters of tallow and grease. J. Am. Oil Chem. Soc. 74: 951–955; 1997. doi:10.1007/s11746-997-0010-7.

    CAS  Google Scholar 

  • Frankel E. N. Lipid oxidation. 2nd ed. The Oily Press, Bridgewater; 2005.

    Google Scholar 

  • Freedman B.; Butterfield R. O.; Pryde E. H. Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc. 63: 1375–1380; 1986. doi:10.1007/BF02679606.

    CAS  Google Scholar 

  • Freedman B.; Pryde E. H.; Mounts T. L. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61: 1638–1643; 1984. doi:10.1007/BF02541649.

    CAS  Google Scholar 

  • Frohlich A.; Rice B. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crop. Prod. 21: 25–31; 2005. doi:10.1016/j.indcrop.2003.12.004.

    CAS  Google Scholar 

  • Frohlich A.; Schober S. The influence of tocopherols on the oxidative stability of FAME. J. Am. Oil Chem. Soc. 84: 579–585; 2007. doi:10.1007/s11746-007-1075-z.

    CAS  Google Scholar 

  • Geller D. P.; Goodrum J. W. Effects of specific fatty acid FAME on diesel fuel lubricity. Fuel 83: 2351–2356; 2004. doi:10.1016/j.fuel.2004.06.004.

    CAS  Google Scholar 

  • Georgogianni K. G.; Kontominas M. G.; Pomonis P. J.; Avlontis D.; Gergis V. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process. Technol. 89: 503–509; 2008. doi:10.1016/j.fuproc.2007.10.004.

    CAS  Google Scholar 

  • Gerpen J. Biodiesel processing and production. Fuel Process. Technol. 86: 1097–1107; 2005. doi:10.1016/j.fuproc.2004.11.005.

    Google Scholar 

  • Ghadge S. V.; Raheman H. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass. Bioenerg. 28: 601–605; 2005. doi:10.1016/j.biombioe.2004.11.009.

    CAS  Google Scholar 

  • Ghadge S. V.; Raheman H. Process optimization for biodiesel production from mahua (Madhuca indica L.) oil using response surface methodology. Bioresource. Technol. 97: 379–384; 2006. doi:10.1016/j.biortech.2005.03.014.

    CAS  Google Scholar 

  • Glória Pereira M. G.; Mudge S. M. Cleaning oiled shores: laboratory experiments testing the potential use of vegetable oil biodiesels. Chemosphere. 54: 297–304; 2004. doi:10.1016/S0045-6535(03)00665-9.

    PubMed  Google Scholar 

  • Goodrum J. W.; Geller D. P. Influence of fatty acid FAME from hydroxylated vegetable oils on diesel fuel lubricity. Bioresource. Technol. 96: 851–855; 2005. doi:10.1016/j.biortech.2004.07.006.

    CAS  Google Scholar 

  • Graboski M. S.; McCormick R. L. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energ. Combust. 24: 125–164; 1998. doi:10.1016/S0360-1285(97)00034-8.

    CAS  Google Scholar 

  • Gunstone F. D. The chemistry of oils and fats. sources, composition, properties and uses. CRC, Boca Raton: 23–33 pp; 2004.

    Google Scholar 

  • Gunstone F. D.; Harwood J. L. Occurrence and characterization of oils and fats. In: Gunstone F. D.; Harwood J. L.; Dijkstra A. J. (eds) The lipid handbook. 3rd ed. CRC, Boca Raton, pp 37–142; 2007.

    Google Scholar 

  • Haas M. J. Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process. Technol. 86: 1087–1096; 2005. doi:10.1016/j.fuproc.2004.11.004.

    CAS  Google Scholar 

  • Haas M. J.; Michalski P. J.; Runyon S.; Nunez A.; Scott K. M. Production of FAME from acid oil, a byproduct of vegetable oil refining. J. Am. Oil Chem. Soc. 80: 97–102; 2003. doi:10.1007/s11746-003-0658-4.

    CAS  Google Scholar 

  • Haas M. J.; Scott K. M.; Alleman T. L.; McCormick R. L. Engine performance of biodiesel fuel prepared from soybean soapstock: a high quality renewable fuel produced from a waste feedstock. Energ. Fuel 15: 1207–1212; 2001. doi:10.1021/ef010051x.

    CAS  Google Scholar 

  • Hamad B.; Lopes de Souza R. O.; Sapaly G.; Carneiro Rocha M. G.; Pries de Oliveira P. G.; Gonzalez W. A.; Andrade Sales E.; Essayem N. Transesterification of rapeseed oil with ethanol over heterogeneous heteropolyacids. Catal. Com. 10: 92–97; 2008. doi:10.1016/j.catcom.2008.07.040.

    CAS  Google Scholar 

  • Hancsok J.; Bubalik M.; Beck A.; Baladincz J. Development of multifunctional additives based on vegetable oils for high quality diesel and biodiesel. Chem. Eng. Res. Des. 86: 793–799; 2008. doi:10.1016/j.cherd.2008.03.011.

    CAS  Google Scholar 

  • Hashimoto N.; Ozawa Y.; Mori N.; Yuri I.; Hisamatsu T. Fundamental combustion characteristics of palm methyl ester (PME) as alternative fuel for gas turbines. Fuel 87: 3373–3378; 2008. doi:10.1016/j.fuel.2008.06.005.

    CAS  Google Scholar 

  • Hess M. A.; Haas M. J.; Foglia T. A. Attempts to reduce NO x exhaust emissions by using reformulated biodiesel. Fuel Process Technol. 88: 693–699; 2007. doi:10.1016/j.fuproc.2007.02.001.

    CAS  Google Scholar 

  • Hess M. A.; Haas M. J.; Foglia T. A.; Marmer W. M. The effect of antioxidant addition on NO x emissions from biodiesel. Energ. Fuel 19: 1749–1754; 2005. doi:10.1021/ef049682s.

    CAS  Google Scholar 

  • Heywood J. Internal combustion engine fundamentals. McGraw-Hill Press, New York: 572–577 pp; 1998.

    Google Scholar 

  • Hoed V.; Zyaykina N.; De Greyt W.; Maes J.; Verhe R.; Demeestere K. Identification and occurrence of steryl glucosides in palm and soy biodiesel. J. Am. Oil Chem. Soc. 85: 701–709; 2008. doi:10.1007/s11746-008-1263-5.

    Google Scholar 

  • Holman R. A.; Elmer O. C. The rates of oxidation of unsaturated fatty acids and esters. J. Am. Oil Chem. Soc. 24: 127–129; 1947. doi:10.1007/BF02643258.

    CAS  Google Scholar 

  • Holser R. A.; Harry-O’Kuru R. Transesterified milkweed (Asclepias) seed oil as a biodiesel fuel. Fuel 85: 2106–2110; 2006. doi:10.1016/j.fuel.2006.04.001.

    CAS  Google Scholar 

  • Hou C. T.; Shaw J. F. Biocatalysts and bioenergy. Wiley, Hoboken; 2008.

    Google Scholar 

  • Hu J.; Du Z.; Li C.; Min E. Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel 84: 1601–1606; 2005.

    CAS  Google Scholar 

  • Hu J.; Du Z.; Tang Z.; Min E. Study on the solvent power of a new green solvent: biodiesel. Ind. Eng. Chem. Res. 43: 7928–7931; 2004. doi:10.1021/ie0493816.

    CAS  Google Scholar 

  • Huber G. W.; Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass. Ang. Chem. Int. Ed. 46: 7184–7201; 2007. doi:10.1002/anie200604504.

    CAS  Google Scholar 

  • Hughes J. M.; Mushrush G. W.; Hardy D. R. Lubricity-enhancing properties of soy oil when used as a blending stock for middle distillate fuels. Ind. Eng. Chem. Res. 41: 1386–1388; 2002. doi:10.1021/ie010624t.

    CAS  Google Scholar 

  • International Grains Council Grain market trends in the stockfeed and biodiesel industries. Australian Grain 17: 30–31; 2008.

    Google Scholar 

  • Issariyakul T.; Kulkarmi M. G.; Dalai A. K.; Bakhshi N. N. Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Process. Technol. 88: 429–436; 2007. doi:10.1016/j.fuproc.2006.04.007.

    CAS  Google Scholar 

  • Jeong G. W.; Yang H. S.; Park D. H. Optimization of transesterification of animal fat ester using response surface methodology. Bioresource. Technol. 100: 25–30; 2009. doi:10.1016/j.biortech.2008.05.011.

    CAS  Google Scholar 

  • Joshi, H. C.; Toler, J.; Moser, B. R.; Walker, T. Biodiesel from canola oil using a 1:1 mixture of methanol and ethanol. Eur J Lipid Sci Technol. 111: 464–473; 2009. doi:10.1002/ejlt.200800071.

    Google Scholar 

  • Joshi H. C.; Toler J.; Walker T. Optimization of cottonseed oil ethanolysis to produce biodiesel high in gossypol content. J. Am. Oil Chem. Soc. 85: 357–363; 2008. doi:10.1007/s11746-008-1200-7.

    CAS  Google Scholar 

  • Kalbande S. R.; More G. R.; Nadre R. G. Biodiesel production from non-edible oils of jatropha and karanj for utilization in electrical generator. Bioenerg. Res. 1: 170–178; 2008. doi:10.1007/s12155-008-9016-8.

    Google Scholar 

  • Karmee S. K.; Chadha A. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource. Technol. 96: 1425–1429; 2005. doi:10.1016/j.biortech.2004.12.011.

    CAS  Google Scholar 

  • Kerschbaum S.; Rinke G.; Schubert K. Winterization of biodiesel by mirco process engineering. Fuel 87: 2590–2597; 2008. doi:10.1016/j.fuel.2008.01.023.

    CAS  Google Scholar 

  • Keskin A.; Guru M.; Altiparmak D. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Bioresource. Technol. 99: 6434–6438; 2008. doi:10.1016/j.biortech.2007.11.051.

    CAS  Google Scholar 

  • Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 86: 1059–1070; 2005. doi:10.1016/j.fuproc.2004.11.002.

    CAS  Google Scholar 

  • Knothe G. Analyzing biodiesel: standards and other methods. J. Am. Oil Chem. Soc. 83: 823–833; 2006. doi:10.1007/s11746-006-5033-y.

    CAS  Google Scholar 

  • Knothe G. Some aspects of biodiesel oxidative stability. Fuel Process. Technol. 88: 669–677; 2007. doi:10.1016/j.fuproc.2007.01.005.

    CAS  Google Scholar 

  • Knothe G. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energ. Fuel 22: 1358–1364; 2008. doi:10.1021/ef700639e.

    CAS  Google Scholar 

  • Knothe G.; Bagby M. O.; Ryan T. A. III Cetane numbers of fatty compounds: influence of compound structure and of various potential cetane improvers. SAE Tech. Pap. Ser. 971681: 127–132; 1997.

    Google Scholar 

  • Knothe G.; Dunn R. O. Dependence of oil stability index of fatty compounds on their structure and concentration in the presence of metals. J. Am. Oil Chem. Soc. 80: 1021–1025; 2003. doi:10.1007/s11746-003-0814-x.

    CAS  Google Scholar 

  • Knothe G.; Matheaus A. C.; Ryan T. W. III Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82: 971–975; 2003. doi:10.1016/S0016-2361(02)00382-4.

    CAS  Google Scholar 

  • Knothe G.; Sharp C. A.; Ryan T. W. III Exhaust emissions of biodiesel, petrodiesel, neat FAME, and alkanes in a new technology engine. Energ. Fuel 20: 403–408; 2006. doi:10.1021/ef0502711.

    CAS  Google Scholar 

  • Knothe G.; Steidley K. R. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84: 1059–1065; 2005a. doi:10.1016/j.fuel.2005.01.016.

    CAS  Google Scholar 

  • Knothe G.; Steidley K. R. Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energ. Fuel 19: 1192–1200; 2005b. doi:10.1021/ef049684c.

    CAS  Google Scholar 

  • Knothe G.; Van Gerpen J.; Krahl J. The Biodiesel Handbook. AOCS, Urbana; 2005.

    Google Scholar 

  • Kocak M. S.; Ileri E.; Utlu Z. Experimental study of emission parameters of biodiesel fuels obtained from canola, hazelnut, and waste cooking oils. Energ. Fuel 21: 3622–3626; 2007. doi:10.1021/ef0600558.

    CAS  Google Scholar 

  • Korres D. M.; Karonis D.; Lois E.; Linck M. B.; Gupta A. K. Aviation fuel JP-5 and biodiesel on a diesel engine. Fuel 87: 70–78; 2008. doi:10.1016/j.fuel.2007.04.004.

    CAS  Google Scholar 

  • Korus, R. A.; Hoffman, D. S.; Bam, H.; Peterson, C. L.; Brown, D. C. Transesterification process to manufacture ethyl ester of rape oil, First Biomass Conference of the Americas. Burlington, VT, vol 2: 815–822; 1993.

    Google Scholar 

  • Kotrba R. Transition period. Biodiesel. Mag. 512: 52–57; 2008.

    Google Scholar 

  • Kram J. W. Gallons of megawatts. Biodiesel. Mag. 55: 76–80; 2008a.

    Google Scholar 

  • Kram J. W. Power without the burn. Biodiesel. Mag. 53: 73–77; 2008b.

    Google Scholar 

  • Kucek K. T.; Aparecida M.; Cesar-Oliveira F.; Wilhelm H. M.; Ramos L. P. Ethanolysis of refined soybean oil assisted by sodium and potassium hydroxides. J. Am. Oil Chem. Soc. 84: 385–392; 2007. doi:10.1007/s11746-007-1048-2.

    CAS  Google Scholar 

  • Kulkarni M. G.; Dalai A. K.; Bakhshi N. N. Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive. Bioresource. Technol. 98: 2027–2033; 2007. doi:10.1016/j.biortech.2006.08.025.

    CAS  Google Scholar 

  • Kumari V.; Shah S.; Gupta M. N. Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energ. Fuel 21: 368–372; 2007. doi:10.1021/ef0602168.

    CAS  Google Scholar 

  • Kumartiwari A. K.; Kumar A.; Raheman H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass. Bioenerg. 31: 569–575; 2007. doi:10.1016/j.biombioe.2007.03.003.

    CAS  Google Scholar 

  • Kusdiana D.; Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technol. 91: 289–295; 2004. doi:10.1016/S0960-8524(03)00201-3.

    CAS  Google Scholar 

  • Lang X.; Dalai A. K.; Bakkshi N. N.; Reaney M. J.; Hertz P. B. Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technol. 80: 53–62; 2001. doi:10.1016/S0960-8524(01)00051-7.

    CAS  Google Scholar 

  • Lapuerta M.; Herreros J. M.; Lyons L. L.; Garcia-Contreras R.; Briceno Y. Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel 87: 3161–3169; 2008. doi:10.1016/j.fuel.2008.05.013.

    CAS  Google Scholar 

  • Lebedevas S.; Vaicekauskas A. Use of waste fats of animal and vegetable origin for the production of biodiesel fuel: quality, motor properties, and emissions of harmful components. Energ. Fuel 20: 2274–2280; 2006. doi:10.1021/ef060145c.

    CAS  Google Scholar 

  • Lee I.; Johnson L. A.; Hammond E. G. Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J. Am. Oil Chem. Soc. 72: 1155–1160; 1995. doi:10.1007/BF02540982.

    CAS  Google Scholar 

  • Lee, I.; Mayfield, J. L.; Pfalzgraf, L. M.; Solheim, L.; Bloomer, S. Processing and producing biodiesel and biodiesel produced there from. US Pat Appl 20070151146, filed 12/21/2006; 2006.

    Google Scholar 

  • Lee I.; Pfalzgraf L. M.; Poppe G. B.; Powers E.; Haines T. The role of sterol glucosides on filter plugging. Biodiesel. Mag. 4: 105–112; 2007.

    Google Scholar 

  • Lee K. T.; Foglia T. A.; Chang K. S. Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. J. Am. Oil Chem. Soc. 79: 191–195; 2002. doi:10.1007/s11746-002-0457-y.

    CAS  Google Scholar 

  • Leung D. Y. C.; Guo Y. Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technol. 87: 883–890; 2006. doi:10.1016/j.fuproc.2006.06.003.

    CAS  Google Scholar 

  • Li D.; Zhen H.; Xingcai L.; Wu-gao Z.; Jiang-guang Y. Physico-chemical properties of ethanol-diesel blend fuel and its effect on performance and emissions of diesel engines. Renew Energ. 30: 967–976; 2005. doi:10.1016/j.renene.2004.07.010.

    CAS  Google Scholar 

  • Li Q.; Du W.; Liu D. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biot. 80: 749–756; 2008. doi:10.1007/s00253-008-1625-9.

    CAS  Google Scholar 

  • Liang Y. C.; May C. Y.; Foon C. S.; Ngan M. A.; Hock C. C.; Basiron Y. The effect of natural and synthetic antioxidants on the oxidative stability of palm biodiesel. Fuel 85: 867–870; 2006. doi:10.1016/j.fuel.2005.09.003.

    CAS  Google Scholar 

  • Lima J. R. O.; Silva R. B.; Moura E. M.; Moura C. V. R. Biodiesel of tucum oil, synthesized by methanolic and ethanolic routes. Fuel 87: 1718–1723; 2008. doi:10.1016/j.fuel.2007.09.007.

    CAS  Google Scholar 

  • Lin Y. C.; Tsai C. H.; Yang C. R.; Jim Wu C. H.; Wu T. Y.; Chang-Chien G. P. Effects on aerosol size distribution of polycyclic aromatic hydrocarbons from the heavy-duty diesel generator fueled with feedstock palm-biodiesel blends. Atmos. Environ. 42: 6679–6688; 2008. doi:10.1016/j.atmosenv.2008.04.018.

    CAS  Google Scholar 

  • Liu X.; Piao X.; Wang Y.; Zhu S. Calcium ethoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel. Energ. Fuel 22: 1313–1317; 2008. doi:10.1021/ef700518h.

    CAS  Google Scholar 

  • Loh S. K.; Chew S. M.; Choo Y. M. Oxidative stability and storage behavior of fatty acid FAME derived from used palm oil. J. Am. Oil Chem. Soc. 83: 947–952; 2006. doi:10.1007/s11746-006-5051-9.

    CAS  Google Scholar 

  • Lotero E.; Liu Y.; Lopez D. E.; Suwannakarn K.; Bruce D. A.; Goodwin J. G. Jr Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 44: 5353–5363; 2005. doi:10.1021/ie049157g.

    CAS  Google Scholar 

  • Mahajan S.; Konar S. K.; Boocock D. G. B. Standard biodiesel from soybean oil by a single chemical reaction. J. Am. Oil Chem. Soc. 83: 641–644; 2006. doi:10.1007/s11746-006-1251-6.

    CAS  Google Scholar 

  • Mahajan S.; Konar S. K.; Boocock D. G. B. Variables affecting the production of standard biodiesel. J. Am. Oil Chem. Soc. 84: 189–195; 2007. doi:10.1007/s11746-006-1023-3.

    CAS  Google Scholar 

  • Mao V.; Konar S. K.; Boocock D. G. B. The pseudo-single-phase, base catalyzed transmethylation of soybean oil. J. Am. Oil Chem. Soc. 81: 803–808; 2004. doi:10.1007/s11746-004-0982-8.

    CAS  Google Scholar 

  • Marchetti J. M.; Miguel V. U.; Errazu A. F. Possible methods for biodiesel production. Renew. Sustain. Energy Rev. 11: 1300–1311; 2007. doi:10.1016/j.rser.2005.08.006.

    CAS  Google Scholar 

  • Mariod A.; Klupsch S.; Hussein H.; Ondruschka B. Synthesis of alkyl esters from three unconventional Sudanese oils for their use as biodiesel. Energ. Fuel 20: 2249–2252; 2006. doi:10.1021/ef060039a.

    CAS  Google Scholar 

  • Mbaraka I. K.; Radu D. R.; Lin V. S. Y.; Shanks B. H. Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. J. Catal. 219: 329–336; 2003. doi:10.1016/S0021-9517(03)00193-3.

    CAS  Google Scholar 

  • McCormick, R. L., Alvarez, J. R., Graboski, M. S. 2003 NREL Final Report. SR-510-31465.

    Google Scholar 

  • McCormick R. L.; Graboski M. S.; Alleman T. L.; Herring A. M. Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ. Sci. Technol. 35: 1742–1747; 2001. doi:10.1021/es001636t.

    CAS  PubMed  Google Scholar 

  • McGeehan, J. A. Diesel engines have a future and that future is clean. SAE Tech Pap Ser 2004-01-1956; 2004.

    Google Scholar 

  • Meher L. C.; Dharmagadda V. S. S.; Naik S. N. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresource. Technol. 97: 1392–1397; 2006b. doi:10.1016/j.biortech.2005.07.003.

    CAS  Google Scholar 

  • Meher L. C.; Sagar D. V.; Naik S. N. Technical aspects of biodiesel production by transesterification—a review. Renew. Sust. Engerg. Rev. 10: 248–268; 2006a. doi:10.1016/j.rser.2004.09.002.

    CAS  Google Scholar 

  • Meneghetti S. M. P.; Meneghetti M. R.; Serra T. M.; Barbosa D. C.; Wolf C. R. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils. Energ. Fuel 21: 3746–3747; 2007. doi:10.1021/ef070039q.

    CAS  Google Scholar 

  • Meneghetti S. M. P.; Meneghetti M. R.; Wolf C. R.; Silva E. C.; Lima G. E. S.; de Lira Silva L.; Serra T. M.; Cauduro F.; de Oliveira L. G. Biodiesel from castor oil: a comparison of ethanolysis versus methanolysis. Energ. Fuel 20: 2262–2265; 2006. doi:10.1021/ef060118m.

    Google Scholar 

  • Meng X.; Chen G.; Wang Y. Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Process Technol. 89: 851–857; 2008. doi:10.1016/j.fuproc.2008.02.006.

    CAS  Google Scholar 

  • Meng X.; Yang Y.; Xu X.; Zhang L.; Nie Q.; Xian M. Biodiesel production from oleaginous microorganisms. Renew. Energ. 34: 1–5; 2009. doi:10.1016/j.renene.2008.04.014.

    Google Scholar 

  • Miao X.; Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresource. Technol. 97: 841–846; 2006. doi:10.1016/j.biortech.2005.04.008.

    CAS  Google Scholar 

  • Miller J. A.; Bowman C. T. Mechanisms and modeling of nitrogen chemistry in combustion. Prog. Energ. Combust. 15: 287–338; 1989. doi:10.1016/0360-1285(89)90017-8.

    CAS  Google Scholar 

  • Miller N. J.; Mudge S. M. The effect of biodiesel on the rate of removal and weathering characteristics of crude oil within artificial sand columns. Spill. Sci. Technol. B 4: 17–33; 1997. doi:10.1016/S1353-2561(97)00030-3.

    CAS  Google Scholar 

  • Mittelbach M.; Gangl S. Long storage stability of biodiesel made from rapeseed and used frying oil. J. Am. Oil Chem. Soc. 78: 573–577; 2001. doi:10.1007/s11746-001-0306-z.

    CAS  Google Scholar 

  • Mittelbach M.; Remschmidt C. Biodiesel - a comprehensive handbook. Martin Mittelbach, Graz; 2004.

    Google Scholar 

  • Mittelbach M.; Schober S. The influence of antioxidants on the oxidation stability of biodiesel. J. Am. Oil Chem. Soc. 80: 817–823; 2003. doi:10.1007/s11746-003-0778-x.

    CAS  Google Scholar 

  • Miyashita K.; Takagi T. Study on the oxidative rate and prooxidant activity of free fatty acids. J. Am. Oil Chem. Soc. 63: 1380–1384; 1986. doi:10.1007/BF02679607.

    CAS  Google Scholar 

  • Mohibbeazam M. M.; Waris A.; Nahar N. M. Prospects and potential of fatty acid FAME of some non-traditional seed oils for use as biodiesel in India. Biomass. Bioenerg. 29: 293–302; 2005. doi:10.1016/j.biombioe.2005.05.001.

    CAS  Google Scholar 

  • Mondala A.; Liang K.; Toghiani H.; Hernandez R.; French T. Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresource. Technol. 100: 1203–1210; 2009. doi:10.1016/j.biortech.2008.08.020.

    CAS  Google Scholar 

  • Monteiro M. R.; Ambrozin A. R. P.; Liao L. M.; Ferreira A. G. Critical review on analytical methods for biodiesel characterization. Talanta 77: 593–605; 2008. doi:10.1016/j.talanta.2008.07.001.

    CAS  Google Scholar 

  • Moreau R. A.; Scott K. M.; Haas M. J. The identification and quantification of steryl glucosides in precipitates from commercial biodiesel. J. Am. Oil Chem. Soc. 85: 761–770; 2008. doi:10.1007/s11746-008-1264-4.

    CAS  Google Scholar 

  • Moreira A. B. R.; Perez V. H.; Zanin G. M.; de Castro H. F. Biodiesel synthesis by enzymatic transesterification of palm oil with ethanol using lipases from several sources immobilized on silica-PVA composite. Energ. Fuel 21: 3689–3694; 2007. doi:10.1021/ef700399b.

    CAS  Google Scholar 

  • Moser B. R. Influence of blending canola, palm, soybean, and sunflower oil FAME on fuel properties of biodiesel. Energ. Fuel 22: 4301–4306; 2008a. doi:10.1021/ef800588x.

    CAS  Google Scholar 

  • Moser B. R. Efficacy of myricetin as an antioxidant additive in FAME of soybean oil. Eur. J. Lipid Sci. Technol. 110: 1167–1174; 2008b. doi:10.1002/ejlt.200800145.

    CAS  Google Scholar 

  • Moser B. R. Comparative oxidative stability of fatty acid alkyl esters by accelerated methods. J. Am. Oil Chem. Soc. 86: 699–706; 2009a. doi:10.1007/s11746-009-1376-5.

    Google Scholar 

  • Moser B. R.; Williams A.; Haas M. J.; McCormick R. L. Exhaust emissions and fuel properties of partially hydrogenerated soybean oil FAME blended with ultra low sulfur diesel fuel. Fuel Process. Technol. 90: 1122–1128; 2009b. doi:10.1016/j.fuproc.2009.05.004.

    Google Scholar 

  • Moser B. R.; Cermak S. C.; Isbell T. A. Evaluation of castor and lesquerella oil derivatives as additives in biodiesel and ultra low sulfur diesel fuel. Energ. Fuel 22: 1349–1352; 2008. doi:10.1021/ef700628r.

    CAS  Google Scholar 

  • Moser B. R.; Erhan S. Z. Synthesis and evaluation of a series of α-hydroxy ethers derived from isopropyl oleate. J. Am. Oil Chem. Soc. 83: 959–963; 2006. doi:10.1007/s11746-006-5053-7.

    CAS  Google Scholar 

  • Moser B. R.; Erhan S. Z. Preparation and evaluation of a series of α-hydroxy ethers from 9,10-epoxystearates. Eur. J. Lipid Sci. Technol. 109: 206–213; 2007. doi:10.1002/ejlt.200600257.

    CAS  Google Scholar 

  • Moser B. R.; Erhan S. Z. Branched chain derivatives of alkyl oleates: tribological, rheological, oxidation, and low temperature properties. Fuel 87: 2253–2257; 2008. doi:10.1016/j.fuel.2008.01.005.

    CAS  Google Scholar 

  • Moser B. R.; Shah S. N.; Winkler-Moser J. K.; Vaughn S. F.; Evangelista R. L. Composition and physical properties of cress (Lepidium sativum L.) and field penncyress (Thlaspi arvense L.) oils. Ind. Crops Prod. 30: 199–205; 2009. doi:10.1016/j.indcrop.2009.03.007.

    CAS  Google Scholar 

  • Moser B. R.; Sharma B. K.; Doll K. M.; Erhan S. Z. Diesters from oleic acid: synthesis, low temperature properties, and oxidation stability. J. Am. Oil Chem. Soc. 84: 675–680; 2007. doi:10.1007/s11746-007-1083-z.

    CAS  Google Scholar 

  • Mudge S. M.; Pereira G. Stimulating the biodegradation of crude oil with biodiesel. Preliminary results. Spill. Sci. Technol. B 5: 353–355; 1999. doi:10.1016/S1353-2561(99)00075-4.

    CAS  Google Scholar 

  • Mushrush G.; Beal E. J.; Spencer G.; Wynne J. H.; Lloyd C. L.; Hughes J. M.; Walls C. L.; Hardy D. R. An environmentally benign soybean derived fuel as a blending stock or replacement for home heating oil. J. Environ. Sci. Heal A 36: 613–622; 2001. doi:10.1081/ESE-100103749.

    CAS  Google Scholar 

  • Mushrush G. W.; Wynne J. H.; Hughes J. M.; Beal E. J.; Lloyd C. T. Soybean-derived fuel liquids from different sources as blending stocks for middle distillate ground transportation fuels. Ind. Eng. Chem. Res. 42: 2387–2389; 2003. doi:10.1021/ie021052v.

    CAS  Google Scholar 

  • Mushrush G. W.; Wynne J. H.; Willauer H. D.; Lloyd C. T.; Hughes J. M.; Beal E. J. Recycled soybean cooking oils as blending stocks for diesel fuels. Ind. Eng. Chem. Res. 43: 4944–4946; 2004. doi:10.1021/ie030883d.

    CAS  Google Scholar 

  • Nag A. Biofuels refining and performance. McGraw Hill, New York; 2008.

    Google Scholar 

  • Naik M.; Meher L. C.; Naik S. N.; Das L. M. Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass. Bioenerg. 32: 354–357; 2008. doi:10.1016/j.biombioe.2007.10.006.

    CAS  Google Scholar 

  • Narasimharao K.; Lee A.; Wilson K. Catalysts in production of biodiesel: a review. J. Biobased. Mat. Bioenerg. 1: 19–30; 2007. doi:10.1166/jbmb.2007.002.

    Google Scholar 

  • Nebel B. A.; Mittelbach M. Biodiesel from extracted fat out of meat and bone meal. Eur. J. Lipid Sci. Technol. 108: 398–403; 2006. doi:10.1002/ejlt.200500329.

    CAS  Google Scholar 

  • Newhall, H. K.; Shahed, S. M. Kinetics of nitric oxide formation in high-pressure flames. Proceedings of the Thirteenth International Symposium on Combustion:381–390, The Combustion Institute; 1971.

    Google Scholar 

  • Ngo H. L.; Zafiropoulos N. A.; Foglia T. A.; Samulski E. T.; Lin W. Efficient two-step synthesis of biodiesel from greases. Energ. Fuel 22: 626–634; 2008. doi:10.1021/ef700343b.

    CAS  Google Scholar 

  • Nimcevic D.; Puntigam R.; Worgetter M.; Gapes R. Preparation of rapeseed oil esters of lower aliphatic alcohols. J. Am. Oil Chem. Soc. 77: 275–280; 2000. doi:10.1007/s11746-000-0045-1.

    CAS  Google Scholar 

  • Nine R. D.; Clark N. N.; Mace B. E.; Morrison R. W.; Lowe P. C.; Remcho V. T.; McLaughlin L. W. Use of soy-derived fuel for environmental impact reduction in marine engine applications. Trans. ASAE 43: 1383–1391; 2000.

    CAS  Google Scholar 

  • Noureddini H.; Bandlamudi S. R. P.; Guthrie E. A. A novel method for the production of biodiesel from the whole stillage-extracted corn oil. J. Am. Oil Chem. Soc. 86: 83–91; 2009. doi:10.1007/s11746-008-1318-7.

    CAS  Google Scholar 

  • Ozsezen A. N.; Canakci M.; Sayin C. Effects of biodiesel from using frying palm oil on the exhaust emissions of an indirect injection (IDI) diesel engine. Energ. Fuel 22: 2796–2804; 2008. doi:10.1021/ef800174p.

    CAS  Google Scholar 

  • Padua M. V. Modifying vegetable oils for industrial lubricant applications. Fuel Lube Int. 14: 34–35; 2008.

    Google Scholar 

  • Palada, M. C.; Changl, L. C. Suggested cultural practices for Moringa. International Cooperators‐ Guide AVRDC. AVRDC pub # 03-545:1-5; 2003.

    Google Scholar 

  • Park J. Y.; Kim D. K.; Lee J. P.; Park S. C.; Kim Y. J.; Lee J. S. Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresource. Technol. 99: 1196–1203; 2008b. doi:10.1016/j.biortech.2007.02.017.

    CAS  Google Scholar 

  • Park J. Y.; Kim D. K.; Wang Z. M.; Lu P.; Park S. C.; Lee J. S. Production and characterization of biodiesel from tung oil. Appl. Biochem. Biotech. 148: 109–117; 2008a. doi:10.1007/s12010-007-8082-2.

    CAS  Google Scholar 

  • Paulson, N. D.; Ginder, R. G. The growth and direction of the biodiesel industry. Working Paper 07-WP 448, Center for Agricultural and Rural Development, Iowa State University; 2007.

    Google Scholar 

  • Peters R. A. Alcohol production and use. Inform 7: 502–504; 1996.

    Google Scholar 

  • Peterson C. L.; Reece D. L.; Thompson J. C.; Beck S. M.; Chase C. Ethyl ester of rapeseed used as a biodiesel fuel - a case study. Biomass. Bioenerg. 10: 331–336; 1996. doi:10.1016/0961-9534(95)00073-9.

    CAS  Google Scholar 

  • Pfalzgraf L.; Lee I.; Foster J.; Poppe G. Effect of minor components in soy biodiesel on cloud point and filterability. Inform 18Suppl 4: 17–21; 2007.

    Google Scholar 

  • Phan A. N.; Phan T. M. Biodiesel production from waste cooking oils. Fuel 87: 3490–3496; 2008. doi:10.1016/j.fuel.2008.07.008.

    CAS  Google Scholar 

  • Plessis L. M.; de Villiers J. B. M.; van der Walt W. H. Stability studies on methyl and ethyl fatty acid esters of sunflower oil. J. Am. Oil Chem. Soc. 62: 748–752; 1985. doi:10.1007/BF03028746.

    Google Scholar 

  • Poirier M. A.; Steere D. E.; Krogh J. A. Cetane improver compositions comprising nitrated fatty acid derivatives. US Patent 5: 454, 842; 1995.

    Google Scholar 

  • Predojevic Z. J. The production of biodiesel from waste frying oils: a comparison of different purification steps. Fuel 87: 3522–3528; 2008. doi:10.1016/j.fuel.2008.07.003.

    CAS  Google Scholar 

  • Qureshi N.; Saha B. C.; Cotta M. A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II—Fed-batch fermentation. Biomass. Bioenerg. 32: 176–183; 2008b. doi:10.1016/j.biombioe.2007.07.005.

    CAS  Google Scholar 

  • Qureshi N.; Saha B. C.; Hector R. E.; Hughes S. R.; Cotta M. A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—Batch fermentation. Biomass. Bioenerg. 32: 168–175; 2008a. doi:10.1016/j.biombioe.2007.07.004.

    CAS  Google Scholar 

  • Raccuia S. A.; Melilli M. G. Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment. Field Crop. Res. 101: 187–197; 2007. doi:10.1016/j.fcr.2006.11.006.

    Google Scholar 

  • Raheman H.; Phadatare A. G. Diesel engine emission and performance from blends of karanja methyl ester and diesel. Biomass. Bioenerg. 27: 393–397; 2004. doi:10.1016/j.biombioe.2004.03.002.

    CAS  Google Scholar 

  • Rahimi H.; Ghobadian B.; Yusaf T.; Najafi G.; Khatamifar M. Diesterol: an environmental-friendly IC engine fuel. Renew Energ. 34: 335–342; 2009. doi:10.1016/j.renene.2008.04.031.

    CAS  Google Scholar 

  • Ramadhas A. S.; Jayaraj S.; Muraleedharan C. Biodiesel production from high FFA rubber seed oil. Fuel 84: 335–340; 2005. doi:10.1016/j.fuel.2004.09.016.

    CAS  Google Scholar 

  • Ranganathan S. V.; Narasimhan L.; Muthukumar K. An overview of enzymatic production of biodiesel. Bioresource. Technol. 99: 3975–3981; 2008. doi:10.1016/j.biortech.2007.04.060.

    CAS  Google Scholar 

  • Rashid U.; Anwar F. Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87: 265–273; 2008a. doi:10.1016/j.fuel.2007.05.003.

    CAS  Google Scholar 

  • Rashid U.; Anwar F. Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energ. Fuel 22: 1306–1312; 2008b. doi:10.1021/ef700548s.

    CAS  Google Scholar 

  • Rashid U.; Anwar F.; Moser B. R.; Ashraf S. Production of sunflower oil FAME by optimized alkali-catalyzed methanolysis. Biomass. Bioenerg. 32: 1202–1205; 2008b. doi:10.1016/j.biombioe.2008.03.001.

    CAS  Google Scholar 

  • Rashid U.; Anwar F.; Moser B. R.; Knothe G. Moringa oleifera oil: A possible source of biodiesel. Bioresource Technol. 99: 8175–8179; 2008a. doi:10.1016/j.biortech.2008.03.066.

    CAS  Google Scholar 

  • Reid E. E. Studies in esterification. IV. The interdependence of limits as exemplified in the transformation of esters. Am. Chem. J. 45: 479–516; 1911.

    CAS  Google Scholar 

  • Retka-Schill S. Walking a tightrope. Biodiesel. Mag. 53: 64–70; 2008.

    Google Scholar 

  • Ribeiro N. M.; Pinto A. C.; Quintella C. M.; de Rocha G. O.; Teixeira L. S. G.; Guarieiro L. L. N.; Rangel M. C.; Veloso M. C. C.; Rezende M. J. C.; da Cruz R. S.; de Oliveira A. M.; Torres E. A.; de Andrade J. B. The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: a review. Energ. Fuel 21: 2433–2445; 2007. doi:10.1021/ef070060r.

    CAS  Google Scholar 

  • Rodrigues R. C.; Volpato G.; Wada K.; Ayub M. A. Z. Enzymatic synthesis of biodiesel from transesterification of vegetable oils and short chain alcohols. J. Am. Oil. Chem. Soc. 85: 925–930; 2008. doi:10.1007/s11746-008-1284-0.

    CAS  Google Scholar 

  • Rosa C.; Morandim M. B.; Ninow J. L.; Oliveira D.; Treichel H.; Vladimir Oliveira J. Lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed propane. J. Supercrit. Fluid 47: 49–53; 2008. doi:10.1016/j.supflu.2008.06.004.

    Google Scholar 

  • Sahoo P. K.; Das L. M.; Babu M. K. G.; Naik S. N. Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel 86: 448–454; 2007. doi:10.1016/j.fuel.2006.07.025.

    CAS  Google Scholar 

  • Saka S.; Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80: 225–231; 2001. doi:10.1016/S0016-2361(00)00083-1.

    CAS  Google Scholar 

  • Salehpour S.; Dube M. A. Biodiesel: a green polymerization solvent. Green Chem. 10: 321–326; 2008. doi:10.1039/b715047d.

    CAS  Google Scholar 

  • Sarin R.; Sharma M.; Sinharay S.; Malhotra R. K. Jatropha-palm biodiesel blends: an optimum mix for Asia. Fuel 86: 1365–1371; 2007. doi:10.1016/j.fuel.2006.11.040.

    CAS  Google Scholar 

  • Sarma A. K.; Konwer D.; Bordoloi P. K. A Comprehensive analysis of fuel properties of biodiesel from Koroch seed oil. Energ. Fuel 19: 656–657; 2005. doi:10.1021/ef049754f.

    CAS  Google Scholar 

  • Satge de Caro P.; Mouloungui Z.; Vaitilingom G.; Berge J. C. Interest of combining an additive with diesel-ethanol blends for use in diesel engines. Fuel 80: 565–574; 2001. doi:10.1016/S0016-2361(00)00117-4.

    CAS  Google Scholar 

  • Saydut A.; Duz M. Z.; Kaya C.; Kafadar A. B.; Hamamci C. Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresource Technol. 99: 6656–6660; 2008. doi:10.1016/j.biortech.2007.11.063.

    CAS  Google Scholar 

  • Schinas P.; Karavalakis G.; Davaris C.; Anastopoulos G.; Karonis D.; Zannikos F.; Stournas S.; Lois F. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass. Bioenerg. 33: 44–49; 2009. doi:10.1016/j.biombioe.2008.04.008.

    CAS  Google Scholar 

  • Scholz V.; da Silva J. N. Prospects and risks of the use of castor oil as a fuel. Biomass. Bioenerg. 32: 95–100; 2008. doi:10.1016/j.biombioe.2007.08.004.

    CAS  Google Scholar 

  • Schwab A. W.; Bagby M. O.; Freedman B. Preparation and properties of diesel fuels from vegetable oils. Fuel 66: 1372–1378; 1987. doi:10.1016/0016-2361(87)90184-0.

    CAS  Google Scholar 

  • Sern C. H.; May C. Y.; Zakaria Z.; Daik R.; Foon C. S. The effect of polymers and surfactants on the pour point of palm oil FAME. Eur. J. Lipid Sci. Technol. 109: 440–444; 2007. doi:10.1002/ejlt.200600242.

    CAS  Google Scholar 

  • Sharma B. K.; Doll K. M.; Erhan S. Z. Oxidation, friction reducing, and low temperature properties of epoxy fatty acid FAME. Green Chem. 9: 469–474; 2007. doi:10.1039/b614100e.

    CAS  Google Scholar 

  • Sharma Y. C.; Singh B.; Upadhyay S. N. Advancements in development and characterization of biodiesel: a review. Fuel 87: 2355–2373; 2008. doi:10.1016/j.fuel.2008.01.014.

    CAS  Google Scholar 

  • Singh A.; Singh I. S. Chemical evaluation of mahua (Madhuca indica [M longifolia] seeds. Food Chem. 40: 221–228; 1991. doi:10.1016/0308-8146(91)90106-X.

    CAS  Google Scholar 

  • Sinha S.; Agarwal A. K.; Garg S. Biodiesel production from rice bran oil: transesterification process optimization and fuel characterization. Energ. Convers. Manage. 49: 1248–1257; 2008. doi:10.1016/j.enconman.2007.08.010.

    CAS  Google Scholar 

  • Song J.; Cheenkachorn K.; Want J.; Perez J.; Boehman A. L.; Young P. J.; Walker F. J. Effect of oxygenated fuel on combustion and emissions in a light-duty turbo diesel engine. Energ. Fuel 16: 294–301; 2002. doi:10.1021/ef010167t.

    CAS  Google Scholar 

  • Soriano N. U.; Migo V. P.; Sato K.; Matsumura M. Crystallization behavior of neat biodiesel and biodiesel treated with ozonized vegetable oil. Eur. J. Lipid Sci. Technol. 107: 689–696; 2005. doi:10.1002/ejlt.200501162.

    CAS  Google Scholar 

  • Soriano N. U. Jr.; Migo V. P.; Sato K.; Matsumura M. Ozonized vegetable oil as pour point depressant for neat biodiesel. Fuel 85: 25–31; 2006. doi:10.1016/j.fuel.2005.06.006.

    CAS  Google Scholar 

  • Spear S. K.; Griffin S. T.; Granger K. S.; Huddleston J. G.; Rogers R. D. Renewable plant-based soybean oil FAME as alternatives to organic solvents. Green Chem. 9: 1008–1015; 2007. doi:10.1039/b702329d.

    CAS  Google Scholar 

  • Sridharan R.; Mathai I. M. Transesterification reactions. J. Sci. Ind. Res. 22: 178–187; 1974.

    Google Scholar 

  • Srivastava A.; Prasad R. Triglycerides-based diesel fuels. Renew. Sust. Energ. Rev. 4: 111–133; 2000. doi:10.1016/S1364-0321(99)00013-1.

    CAS  Google Scholar 

  • Srivastava P. K.; Verma M. Methyl ester of karanja oil as an alternative renewable source energy. Fuel 87: 1673–1677; 2008. doi:10.1016/j.fuel.2007.08.018.

    CAS  Google Scholar 

  • Stavarache C. E.; Morris J.; Maeda Y.; Oyane I.; Vinatoru M. Syringa (Melia azedarach L.) berries oil: a potential source for biodiesel fuel. Revista de Chimie 59: 672–677; 2008.

    CAS  Google Scholar 

  • Stavarache C. E.; Vinatoru M.; Nishimura R.; Maeda Y. Conversion of vegetable oil to biodiesel using ultrasonic irradiation. Chem. Lett. 32: 716–717; 2003. doi:10.1246/cl.2003.716.

    CAS  Google Scholar 

  • Sun H.; Hu K.; Lou H.; Zheng X. Biodiesel production from transesterification of rapeseed oil using KF/Eu2O3 as a catalyst. Energ. Fuel 22: 2756–2760; 2008. doi:10.1021/ef700778r.

    CAS  Google Scholar 

  • Suppes G. J. Propylene glycol from glycerol. Ind. Bioprocess. 28: 3; 2006.

    Google Scholar 

  • Suppes G. J.; Dasari M. A. Synthesis and evaluation of alkyl nitrates from triglycerides as cetane improvers. Ind. Eng. Chem. 42: 5042–5053; 2003. doi:10.1021/ie030015g.

    Google Scholar 

  • Suppes G. J.; Goff M.; Burkhart M. L.; Bockwinkel K.; Mason M. H.; Botts J. B.; Heppert J. A. Multifunctional diesel fuel additives from triglycerides. Energ. Fuel 15: 151–157; 2001. doi:10.1021/ef000122c.

    CAS  Google Scholar 

  • Szybist J. P.; Boehman A. L.; Taylor J. D.; McCormick R. L. Evaluation of formulation strategies to eliminate the biodiesel NO x effect. Fuel Process Technol. 86: 1109–1126; 2005. doi:10.1016/j.fuproc.2004.11.006.

    CAS  Google Scholar 

  • Tang H.; Wang A.; Salley S. O.; Ng K. Y. S. The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J. Am. Oil Chem. Soc. 85: 373–382; 2008. doi:10.1007/s11746-008-1208-z.

    CAS  Google Scholar 

  • Thomson L. A. J.; Evans B. Species profiles for pacific island. Agroforestry. Terminalia Catappa 2.2: 1–20; 2006.

    Google Scholar 

  • United States Department of Agriculture, Foreign Agricultural Service, Office of Global Analysis. Oilseeds: World Markets and Trade, Circular Series FOP 12-08, Table 03, pg. 5; 2008.

    Google Scholar 

  • Usta N. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass. Bioenerg. 28: 77–86; 2005. doi:10.1016/j.biombioe.2004.06.004.

    CAS  Google Scholar 

  • Vasudevan P. T.; Briggs M. Biodiesel production - current state of the art and challenges. J. Ind. Microbiol. Biot. 35: 421–430; 2008. doi:10.1007/s10295-008-0312-2.

    CAS  Google Scholar 

  • Vaughn S. F.; Holser R. A. Evaluation of biodiesels from several oilseed sources as environmentally friendly contact herbicides. Ind. Crop. Prod. 26: 63–68; 2007. doi:10.1016/j.indcrop.2007.01.005.

    CAS  Google Scholar 

  • Veljkovic V. B.; Lakicevic S. H.; Stamenkovic O. S. Todorovic, ZB.; Lazic, ML Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel 85: 2671–2675; 2006. doi:10.1016/j.fuel.2006.04.015.

    CAS  Google Scholar 

  • Vicente G.; Martinez M.; Aracil J. Optimization of Brassica carinata oil methanolysis for biodiesel production. J. Am. Oil Chem. Soc. 82: 899–904; 2005. doi:10.1007/s11746-005-1162-6.

    CAS  Google Scholar 

  • Wang P. S.; Tat M. E.; Van Gerpen J. The production of fatty acid isopropyl esters and their use as a diesel engine fuel. J. Am. Oil Chem. Soc. 82: 845–849; 2005. doi:10.1007/s11746-005-1153-7.

    CAS  Google Scholar 

  • Wang Y.; Wu H.; Zong M. H. Improvement of biodiesel production by lipase TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresource Technol. 99: 7232–7237; 2008. doi:10.1016/j.biortech.2007.12.062.

    CAS  Google Scholar 

  • Wehlmann J. Use of esterified rapeseed oil as plasticizer in plastics processing. Fett-Lipid 101: 249–256; 1999. doi:10.1002/(SICI)1521-4133(199907)101:7<249::AID-LIPI249>3.0.CO;2-I.

    CAS  Google Scholar 

  • Wildes S. Clean machines from beans. Chem. Innov. 5: 23; 2001.

    Google Scholar 

  • Wildes S. Methyl soyate: a new green alternative solvent. Chem. Heal. Saf. 9: 24–26; 2002. doi:10.1016/S1074-9098(02)00292-7.

    CAS  Google Scholar 

  • Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L. Effect of biodiesel blends on diesel particulate filter performance. SAE Tech Pap Ser 2006-01-3280; 2006.

    Google Scholar 

  • Willing A. Oleochemical esters—environmentally compatible raw materials for oils and lubricants from renewable resources. Fett-Lipid 101: 192–198; 1999. doi:10.1002/(SICI)1521-4133(199906)101:6<192::AID-LIPI192>3.0.CO;2-W.

    CAS  Google Scholar 

  • Wright I. Salmon by-products. Aqua Feeds. Formulation & Beyond 11: 10–12; 2004.

    Google Scholar 

  • Wu W. H.; Foglia T. A.; Marmer W. N.; Dunn R. O.; Goering C. E.; Briggs T. E. Low-temperature property and engine performance evaluation of ethyl and isopropyl esters of tallow and grease. J. Am. Oil Chem. Soc. 75: 1173–1177; 1998. doi:10.1007/s11746-998-0131-7.

    CAS  Google Scholar 

  • Wyatt V. T.; Hess M. A.; Dunn R. O.; Foglia T. A.; Haas M. J.; Marmer W. M. Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats. J. Am. Oil Chem. Soc. 82: 585–591; 2005. doi:10.1007/s11746-005-1113-2.

    CAS  Google Scholar 

  • Yang F-X.; Su Y-Q.; Li X-H.; Zhang Q.; Sun S-C. Studies on the preparation of biodiesel from Zanthoxylum bungeanum maxim seed oil. J. Agric. Food Chem. 56: 7891–7896; 2008. doi:10.1021/jf801364f.

    CAS  PubMed  Google Scholar 

  • Yao L.; Hammond E. G. Isolation and melting properties of branched-chain esters from lanolin. J. Am. Oil Chem. Soc. 83: 547–552; 2006. doi:10.1007/s11746-006-1238-3.

    CAS  Google Scholar 

  • Yu L.; Lee L.; Hammond E. G.; Johnson L. A.; Van Gerpen J. H. The influence of trace components on the melting point of methyl soyate. J. Am. Oil Chem. Soc. 75: 1821–1824; 1998. doi:10.1007/s11746-998-0337-8.

    CAS  Google Scholar 

  • Yuan X.; Liu J.; Zeng G.; Shi J.; Tong J.; Huang G. Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renew. Energ. 33: 1678–1684; 2008. doi:10.1016/j.renene.2007.09.007.

    CAS  Google Scholar 

  • Zappi M.; Hernandez R.; Sparks D.; Horne J.; Brough M.; Arora S. M.; Motsenbocker W. D. A review of the engineering aspects of the biodiesel industry. Mississippi Biomass Council, Jackson, MS: 71 pp; 2003.

    Google Scholar 

  • Zhang J.; Jiang L. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production. Bioresource. Technol. 99: 8995–8998; 2008. doi:10.1016/j.biortech.2008.05.004.

    CAS  Google Scholar 

  • Zhang Y.; Dube M. A.; McLean D. D.; Kates M. Biodiesel production from waste cooking oil via two-step catalyzed process. Energ. Convers. Manage. 48: 184–188; 2003. doi:10.1016/j.enconman.2006.04.016.

    Google Scholar 

  • Zhou W.; Boocock D. B. G. Phase behavior of the base-catalyzed transesterification of soybean oil. J. Am. Oil Chem. Soc. 83: 1041–1045; 2006a. doi:10.1007/s11746-006-5160-5.

    CAS  Google Scholar 

  • Zhou W.; Boocock D. B. G. Phase distribution of alcohol, glycerol, and catalyst in the transesterification of soybean oil. J. Am. Oil Chem. Soc. 83: 1047–1052; 2006b. doi:10.1007/s11746-006-5161-4.

    CAS  Google Scholar 

  • Zhou W.; Konar S. K.; Boocock D. G. B. Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils. J. Am. Oil Chem. Soc. 80: 367–371; 2003. doi:10.1007/s11746-003-0705-1.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan R. Moser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moser, B.R. (2011). Biodiesel Production, Properties, and Feedstocks. In: Tomes, D., Lakshmanan, P., Songstad, D. (eds) Biofuels. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7145-6_15

Download citation

Publish with us

Policies and ethics