Skip to main content

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 22))

Abstract

A microsystem is a collection of integrated devices that contains MEMS (sensors, actuators, and timing devices), electronics (control, sense, and data processing), communication (wired or wireless), and a power source. Figure 6.1 schematically illustrates a complete autonomous microsystem. Realization of all these components into a single system is rather complex. Several integration approaches have been used or proposed for conventional microsystems. Application requirements, performance advantages, manufacturability, and cost advantages drive which integration route is ultimately used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patil A, Fu XA, Neudeck P, Beheim G, Mehregany M, Garverick G (2009). Silicon Carbide Differential Amplifiers for High-Temperature Sensing.Materials Science Forum 600-603:1083–1086

    Article  Google Scholar 

  2. Franke AE, Heck JM, King TJ, Howe RT (2003). Polycrystalline Silicon–Germanium Films for Integrated Microsystems. Journal of Microelectromechanical Systems 12(2):160–171

    Article  Google Scholar 

  3. Kulite Semiconductor Products Inc.USA. http://www.kulite.com

  4. Fedder GK, Howe RT, King Liu T-J, Quévy EP (2007). Technologies for Cofabricating MEMS and Electronics. Proceedings of the IEEE 96(2):306–322

    Article  Google Scholar 

  5. Soloviev SI, Gao Y, Sudarshan TS (2000). Doping of 6H-SiC by Selective Diffusion of Boron. Applied Physics Letters 77(24):4004–4006

    Article  Google Scholar 

  6. Brand O (2006). Microsensor Integration Into Systems-on-Chip. Proceedings of the IEEE 94(6):1160–1176

    Article  Google Scholar 

  7. M. A. Mignardi (1998). BFrom ICś to DMDś,Texas Instruments Technical Jornal 15(3):56–63.

    Google Scholar 

  8. BOSCH GMBH, Germany. http://www.bosch.com

  9. Freescale Semiconductor Inc. USA.http://www.freescale.com

  10. Smith HJ, Montague S, Sniegowski JJ, Murray JR, McWhorter PJ (1995). Embedded Micromechanical Devices for the Monolithic Integration of MEMS with CMOS. Proceedings of 1995 IEDM:609–612

    Google Scholar 

  11. Yasaitis J, Judy M, Brosnihan T, Garone P, Pokrovskiy N, Sniderman N, Limb S, Howe RT, Boser B, Palaniapan M, Jiang X, Bhave S (2003). Amodular process for integrating thick polysilicon MEMS devices with sub-micron CMOS. Proceedings of SPIE 4979:145–154

    Article  Google Scholar 

  12. Lemkin M, Juneau T, Clar W, Roessig T Brosnihan T (1999). A Low-noise Digital Accelerometer Integrated Using SOI-MEMS Technology.Transducers 99, Sendai, Japan, June 7-10:1292–1297

    Google Scholar 

  13. Analog Devices Inc. USA. http://www.analog.com

  14. Candler RN, Woo-Tae Park W-T, Li H, Yama G, Partridge A, Lutz M, Kenny T.W (2003). Single wafer encapsulation of MEMS devices. IEEE Transactions on Advanced Packaging 26(3):227–232

    Article  Google Scholar 

  15. Messana MW, Graham AB, Yoneoka S, Howe RT, Kenny TW (2010). Packaging of Large Lateral Deflection MEMS Using a Combination of Fusion Bonding and Epitaxial Reactor Sealing. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:336–339

    Google Scholar 

  16. Bustillo JM, R. T. Howe RT, Muller RS (1998). Surface micromachining for microelectromechanical systems. Proceedings of the IEEE 86(8):1552–1574

    Google Scholar 

  17. Infineon Technologies AG. Germany. http://www.infineon.com

  18. Fu XA, J. Dunning J, Zorman CA, Mehregany M (2004). Development of a High-Throughput LPCVD Process for Depositing Low Stress Poly-SiC. Materials Science Forum 457-460:305–308

    Google Scholar 

  19. Okojie R, Ned A, Kurtz A, Carr W (1996). 6H-SiC pressure sensors for high temperature applications. Proceeding of 9th Annual International Workshop Microelectromechanical Systems, M. Allen and M. Reed, Eds., San Diego, CA, Feb. 1115 1996:146–149

    Google Scholar 

  20. Okojie RS, Lukco D, Chen YL, Spry DJ (2002). Reliability assessment of Ti/TaSi2/Pt ohmic contacts on SiC after 1000 h at 600  ∘ C. Journal of Applied Physics 91:6553–6559

    Article  Google Scholar 

  21. Kuchuk AV, Guziewicz M, Ratajczak R, Wzorek M, Kladko VP, Piotrowska A ( 2009). Thermal degradation of Au/Ni2Si/n-SiC ohmic contacts under different conditions. Materials Science and Engineering B 165:38–41

    Article  Google Scholar 

  22. Virshup A, Porter LM, Lukco D, Buchholt T K, Hultman L, Spetz AL (2009). Investigation of Thermal Stability and Degradation Mechanisms in Ni-Based Ohmic Contacts to n-Type SiC for High-Temperature Gas Sensors. Journal of Electronic Materials 38 (4):569–573

    Article  Google Scholar 

  23. Cook-Chennault KA, Thambi N, Sastry AM (2008). Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures 17:043001

    Article  Google Scholar 

  24. Dudney N (2008).Thin Film Micro-Batteries. The Electrochemical Society Interface. Fall 2008: 44–48

    Google Scholar 

  25. Excellatron Solid State, LLC. USA. http://www.excellatron.com/high.htm

  26. Front Edge Technology, Inc. USA. http://www.frontedgetechnology.com/tech.htm

  27. NanoMarkets, LC, USA. http://nanomarkets.net

  28. DOE Hydrogen Program. USA. http://www.hydrogen.energy.gov/

  29. Dyer CK (2002). Fuel cells for portable applications. Journal of Power Sources 106:31–34

    Article  Google Scholar 

  30. MTI MicroFuel Cells. USA. http://mtimicrofuelcells.com/

  31. Evans A, Bieberle-Htter A, Rupp JLM, Gauckler LJ (2009). Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources 194:119–129

    Article  Google Scholar 

  32. Bonta PVS, OŃeal CB, Muthusami S (2005). Micro fuel cell technologies, advancements, and challenges. Proceedings of Feulcell 2005:673–682

    Google Scholar 

  33. Morse JD (2007). Micro-fuel cell power sources. International Journal of Energy Research 31:576–602

    Article  Google Scholar 

  34. Fernandez-Pello AC (2002). Micropower Generation Using Combustion:Issues and Approach. Proceedings of the Combustion Institute (29):883–899

    Article  Google Scholar 

  35. Swanger M, Walther DC, Fernandez-Pello AC, Pisano AP (2004). Small-scale rotary engine power system development status. Western States Section / Combustion Institute, Spring 2004, Davis, CA. WSS-04S-9

    Google Scholar 

  36. Epstein AH, Senturia SD, Anathasuresh G, Ayon A, Breuer K, Chen KS, Ehrich FE, Gauba G, Ghodssi R, Groshenry C, Jacobson S, Lang JH, Lin CC, Mehra A, Mur Miranda JO, Nagle S, Orr DJ, Piekos E, Schmidt MA, Shirley G, Spearing SM, Tan CS, Tzeng Y-S, Waitz IA (1997). Power MEMS and Microengines. Proceedings of the IEEE Transducers 97 Conference, Chicago, IL, June 1997:753–756

    Google Scholar 

  37. Li H, Lal A, Blanchard J, Henderson D (2002). Self-reciprocating radioisotope-powered cantilever. Journal of Applied Physics 92 (2): 1122–1127

    Article  Google Scholar 

  38. Guo H Lal A (2003). Nanopower Betavoltaic Microbatteries. Digest of Technical Papers, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Transducers03:36–39

    Google Scholar 

  39. Sims PE, Dinetta LC, Dugancavanagh K, Goetz MA (1995). Gallium Phosphide Energy Converters. Proceedings of the XIV Space Photovoltaic Research and Technology Conference (SPRAT XIV), edited by G. Landis NASA CP-10180:231–236

    Google Scholar 

  40. Pool FS, Stella PM, Anspaugh B (1989), GaP betavoltaic cells as a power source. Space Photovoltaic Research and Technology1989, edited by G. Landis NASA CP 3107:359–370

    Google Scholar 

  41. Andreev VM, Kevetsky AG, Kaiinovsky VS, Khvostikov VP, Larionov VR, Rumyantsev VD, Shvarts MZ, Yakimova EV, Ustinov VA (2001). Tritium-powered betacells based on AlxGa1-xAs. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000:1253–1256

    Google Scholar 

  42. Deus S (2001). Tritium-powered betavoltaic cells based on amorphous silicon. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000:1246–1249

    Google Scholar 

  43. Sun W, Kherani NP, Hirschman KD, Gadeken LL, Fauchet PM (2005). A Three-Dimensional Porous Silicon pn Diode for Betavoltaics and Photovoltaics. Advanced Materials 17(10):1230–1233

    Article  Google Scholar 

  44. Shreter YS, Rebane TT, Bochkareva NI (2002). Polymers, Phosphers, and Voltaics for Radioisotope Microbatteries, edited by K. E. Bower, Y.A. Barbanel, Y. G. Shreter, and G. W. Bohnert CRC Press, Boca Raton, FL:365–388

    Google Scholar 

  45. Olsen LC (1974). Advanced betavoltaic power sources. Proceedings of the 9th Intersociety Energy Conversion Engineering Conference, edited by Liberman AR, Osmeyer WE, American Society of Mechanical Engineers, New York:754–762

    Google Scholar 

  46. Lebedev AA, Kozlovski VV, Strokan NB, Davydov DV, Ivanov AM, Strel’chuk AM, Yakimova R (2002). Radiation Hardness of Wide-Gap Semiconductors (Using the Example of Silicon Carbide). Semiconductors 36(11):1270–1275

    Article  Google Scholar 

  47. Chandrashekhar MVS, Duggirala R, Spencer MG, Lal A (2007). 4H SiC betavoltaic powered temperature transducer. APPLIED PHYSICS LETTERS 91:053511

    Article  Google Scholar 

  48. Eiting CJ, Krishnamoorthy V, Rodgers S, George T, Robertson JD, Brockman J (2006). Demonstration of a radiation resistant, high efficiency SiC betavoltaic APPLIED PHYSICS LETTERS 88:064101

    Google Scholar 

  49. Lee JB, Chen Z, Allen MG, Rohatgi A, Arya R (1995).A miniaturized high-voltage solar cell array as an electrostatic MEMS power supply.Journal of Microelectromechanical Systems 4(3):102–108

    Google Scholar 

  50. Bellew CL, Hollar S, Pister KSJ (2003).An SOI process for fabrication of solar cells, transistors and electrostatic actuators. International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers03, Proceedings of the IEEE Transducers 03 Conference, Chicago, IL, June 2003 (2):1075–1078

    Google Scholar 

  51. Landis GA (2005). High-Temperature Solar Cell Development. NASA/CP—2005-213431:241–247

    Google Scholar 

  52. Ismail BI, Ahmed WH (2009). Thermoelectric Power Generation Using Waste-Heat Energy as an Alternative Green Technology. Recent Patents on Electrical Engineering 2:27–39

    Article  Google Scholar 

  53. Rowe DM (2006). Themoelectric Waste Heat Recovery as a Renewable Energy Source. International Journal of Innovations in Energy Systems and Power 1(1):13–23

    Google Scholar 

  54. Venkatasubramanian R, Siivola E, Colpitts T, OQ́uinn B (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413 (6856):597–602

    Google Scholar 

  55. Lee J, M. I. Lei MI, S. Rajgopal S, Mehregany M (2009). Thermoelectric Characterizations of N-Type Polycrystalline Silicon Carbide and Comparison with Conventional Thermopiles. Transducers 2009:1861–1864

    Google Scholar 

  56. Xie J, Lee C, Wang M-F, Liu Y Feng H (2009). Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators. Journal of Micromechanics and Microengineering 19:125029

    Article  Google Scholar 

  57. Wang XH, Yamamoto A, Eguchi K, Obara H, Yoshida T (2003). Thermoelectric properties of SiC thick films deposited by thermal plasma physical vapor deposition. Science and Technology of Advanced Materials:167–172

    Google Scholar 

  58. Micropelt GmbH, Germany. http://www.micropelt.com

  59. Hi-Z Technology, Inc. USA. http://www.hi-z.com

  60. Beeby SP, Tudor MJ, White NM (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology 17:R175–R195

    Article  Google Scholar 

  61. Nye J F (1957). Physical Properties of Crystals. Oxford University Press, First Edition

    MATH  Google Scholar 

  62. Priya S, Inman DJ (2009). Energy harvesting Technologies, Springer-Verlag, Berlin, Heidelberg, New York

    Book  Google Scholar 

  63. Muralt P, Marzenck M, Belgacem B, Calame F, Basrour S (2009). Vibration Energy Harvesting with PZT Micro Device. Procedia Chemistry 1:1191–1194

    Article  Google Scholar 

  64. Piazza G, Stephanou PJ, Wijesundara MBJ, Pisano AP (2005). Single-chip multiple-frequency filters based on contour-mode aluminum nitride piezoelectric micromechanical resonators. Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers, TRANSDUCERS 05:2065–2068

    Google Scholar 

  65. Stephanou PJ, Piazza G, White CD, Wijesundara MBJ, Pisano AP (2007). Piezoelectric aluminum nitride MEMS annular dual contour mode filter. Sensors and Actuators A-Physical A134(1):151–162

    Google Scholar 

  66. Avago Technologies. USA. http://www.avagotech.com/

  67. Cimalla V, Pezoldt J, Ambacher O (2007). Group III nitride and SiC based MEMS and NEMS: materials properties,technology and applications. Journal of Physsics D: Applied Physics 40:6386–6434

    Article  Google Scholar 

  68. Mide Engineering Technologies. USA. http://www.mide.com

  69. Beeby SP, Tudor MJ, Torah RN, Roberts S, OĎonnell T, Roy S (2007). Experimental comparison of macro and micro scale electromagnetic vibration powered generators. Microsystem Technologies 13:1647–1653

    Google Scholar 

  70. Perpetuum Ltd, UK. http://www.perpetuum.com/

  71. Roundy S, Wright PK, Pister KSJ (2002). Micro-electrostatic Vibration to Electricity Converters. ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana 17-22, 2002. IMECE2002-34309

    Google Scholar 

  72. Miranda JOM (2004). Electrostatic Vibration to Electric Energy Conversion. PhD Thesis, Massachusetts Institute of Technology, Cambridge MA

    Google Scholar 

  73. Roundy S, Wright PK, Rabaey J (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 26:1131–1144

    Article  Google Scholar 

  74. Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Jan M. Rabaey JM, Wright PK, Sundararajan V (2005). Improving Power Output for Vibration-Based Energy Scavengers. PERVASIVE computing 4(1):28–36

    Google Scholar 

  75. MicroStrain, Inc. USA. http://www.microstrain.com/embed-sense.aspx

  76. Von JA, Najafi K (1997). On-Chip Coils With Integrated Cores For Remote Inductive Powering Of Integrated Microsystems. Transducers 97, lnternatimal Coriference on Solid-state Sensors and Actuators Chicago, June 16-19, 1997: 999-1002

    Google Scholar 

  77. Suster M, Chaimanonart N, Guo J, Ko WH, Young DJ (2005). Remote-Powered High-Performance Strain Sensing Microsystem. 18th IEEE International Conference on Micro Electro Mechanical Systems MEMS 2005:255-258

    Google Scholar 

  78. Arms SW, Townsend CP, Churchill DL, Galbreath JH, Mundell SW (2005). Power Management for Energy Harvesting Wireless Sensors. SPIE Intĺ Symposium on Smart Structures & Smart Materials

    Google Scholar 

  79. Smith S, Tang TB, Terry JG, Stevenson JT, Flynn BW, Reekie HM, Murray AF, Gundlach AM, Renshaw D, Dhillon B, Ohtori A, Inoue Y, Walton AJ (2007). Miniaturised Drug Delivery System with Wireless Power Transfer and Communication. IET Nanobiotechnology 1(5):80–86

    Article  Google Scholar 

  80. Wang Y, Jia Y, Chen Q, Wang Y (2008). A Passive Wireless Temperature Sensor for Harsh Environment Applications. Sensors 8:7982-7995

    Article  Google Scholar 

  81. Neudeck PG, Spry DJ, Chen L-Y, Chang CW, Beheim GM, Okojie RSO, Evans LJ, Meredith RD, Ferrier TL, Krasowski MJ, Prokop NF (2009). Prolonged 500 C Operation of 6H-SiC JFET Integrated Circuitry. Materials Science Forum Vols. 615-617 (2009): 929-932

    Article  Google Scholar 

  82. Chen LY, Spry DJ, Neudeck PG, in: Proc. 2006 IMAPS International High Temperature Electronics Conference, Santa Fe, NM, 2006 (International Microelectronics and Packaging Society, Washington, DC, 2006: 240

    Google Scholar 

  83. Neudeck PG, Garverick SL, Spry DJ, Chen L-Y, Beheim GM, Krasowsk MJ, Mehregany M (2009). Extreme temperature 6H-SiC JFET integrated circuit technology. Physica Status Solidi A:1–17

    Google Scholar 

  84. Myers DR, Cheng KB, Jamshidi B, Azevedo RG, Senesky DG, Chen L, Mehregany M, Wijesundara MBJ, A. P. Pisano AP (2009). Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments. Journal of Micro/Nanolithography. MEMS MOEMS 8(2):021116

    Google Scholar 

  85. Brown TG, Davis B, Hepner D, Faust J, Myers C, Muller P, Harkins T (2001). Strap-Down Microelectromechanical (MEMS) Sensors for High-G Munition Applications. IEEE Transactions on Magnetics 37(1):336-342

    Article  Google Scholar 

  86. Azevedo RG, Jones DJ, Jog AV, Jamshidi B, Myers DR, Chen L, Fu X-A, Mehregany M, Wijesundara MBJ, Pisano AP (2007). A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications, IEEE Sensors Journal 7(4):568-576

    Article  Google Scholar 

  87. Atwell AR, Okokie RS, Kornegay KT, Roberson SL, Beliveau A (2003). Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers. Sensors and Acutators A 104:11–18

    Article  Google Scholar 

  88. Neudeck PG (2006). Silicon Carbide Technology. The VLSI Handbook, Chapter 5 (Editor Wai-Kai Chen, CRC Press, Second Edition)

    Google Scholar 

  89. Duboz J-Y (1999). GaN as Seen by the Industry. Physica status solida (a) 176:5–14

    Article  Google Scholar 

  90. Strite S, Morko H (1992). GaN, AIN, and InN: A review. Journal of Vacuum Science and Technology 10(4):1237–1266

    Article  Google Scholar 

  91. Yonenaga I (2001).Thermo-mechanical stability of wide-bandgap semiconductors: high temperature hardness of SiC, AlN, GaN, ZnO and ZnSe. Physica B 308–310:1150–1152

    Article  Google Scholar 

  92. Pearton SJ, Kang BS, Kim S, Ren F, Gila BP, Abernathy CR, Lin J, Chu SNG (2004). GaN-based diodes and transistors for chemical, gas, biological and pressure sensing, Journal of Physics: Condense Matter 16:R961–R994

    Article  Google Scholar 

  93. Lv J, Yang Z, Yan G, Lin W, Cai Y, Zhang B, Chen KJ (2009). Fabrication of Large-Area Suspended MEMS Structures Using GaN-on-Si Platform. IEEE Electron Device Letters 30 (10):1045-1047

    Article  Google Scholar 

  94. Cree Inc. USA. http://www.cree.com

  95. Hamada K (2009). Present Status and Future Prospects for Electronics in EVs/HEVs and Expectations for Wide Bandgap Semiconductor Devices. Material Science Forum 600-603:889-893

    Article  Google Scholar 

  96. Rebello NS, Shoucair FS, Palmou JW (1996). 6H silicon carbide MOSFET- modelling for high temperature analogue integrated circuits (25-500  ∘ C). IEEE Proceedings of Circuits Device Systems 143(2):115–122

    Article  MATH  Google Scholar 

  97. Spry D, Neudeck P, Okojie R, Chen LY, Beheim G, Meredith R, Mueller W, Ferrier T (2004). Electrical Operation of 6H-SiC MESFET at 500  ∘ C for 500 Hours in Air Ambient. IMAPS International High Temperature Electronics Conference, Santa Fe, NM

    Google Scholar 

  98. Zorman CA, Rajgopal S, Fu XA, Jezeski R, Melzak J, Mehregany M (2002). Deposition of Polycrystalline 3C-SiC Films on 100 mm Diameter Si(100) Wafers in a Large-Volume LPCVD Furnace. Electrochemical and Solid-State Letters 5(10):G99–G101

    Article  Google Scholar 

  99. Wijesundara MBJ, Valente G, Ashurst WR, Howe RT, Pisano AP, Carraro C, Maboudian R (2004). Single-Source Chemical Vapor Deposition of 3C-SiC Films in a LPCVD Reactor Part I: Growth, Structure, and Chemical Characterization. Journal of the Electrochemical Socciety 151:C210–C214

    Article  Google Scholar 

  100. Gao D, Wijesundara MBJ, Carraro C, Howe RT, Maboudian R (2004). Recent progress toward a manufacturable polycrystalline SiC surface micromachining technology. IEEE Senssors Journal 4(4):441–448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu B. J. Wijesundara .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wijesundara, M.B.J., Azevedo, R.G. (2011). System Integration. In: Silicon Carbide Microsystems for Harsh Environments. MEMS Reference Shelf, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7121-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7121-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7120-3

  • Online ISBN: 978-1-4419-7121-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics