Skip to main content

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 22))

  • 1665 Accesses

Abstract

Packaging is typically required to provide some level of hermeticity to the sensor and electronics. Without this protection, the sensor or electronics performance would degrade or drift, aliasing the output characteristics and potentially leading to premature failure of the device. These issues are compounded for harsh environment applications. Highly corrosive media require highly corrosion resistant materials be used for packaging, limiting the available material set that can be used. High temperature environments increase the rate of corrosion and diffusion as well as can decrease fatigue life or may simply exceed the melting point or glass transition point of certain common packaging materials. It also can introduce significant internal stresses due to mismatch in thermal expansion rates of the various materials inside the package. High pressure and high shock environments additionally require components be properly sized or a different mechanical topology implemented so that they can survive the high mechanical forces encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tummala RR, Rynaszewski EJ (1997). Microelectronics Packaging Handbook, Part II: Semiconductor Packaging. Springer. ISBN: 0412084317

    Google Scholar 

  2. Hoya Corporation, Optics Division, corporate website: www.hoyaoptics.com

  3. Tong QY, Lee TH, Werner P, Gosele U (1997). Fabrication of Single Crystalline SiC Layer on High Temperature Glass. J. Electrochem. Soc. 144:L111–L113

    Article  Google Scholar 

  4. Tudryn CD (2004). Characterization of Anodic Bonding. Masters Thesis, Department of Mechanical Engineering and Material Science, Massachusetts Institute of Technology.

    Google Scholar 

  5. Di Cioccio L, Tiec YL, Letertre F, Jaussaud C, Bruel M (1996). Silicon Carbide on insulator formation using the Smart Cut Process. Electronics Letters. 32:1144–1145.

    Article  Google Scholar 

  6. Sparks D, Queen G, Weston R, Woodward G, Putty M, Jordan L, Zarabadi S, Jayakar K (2001). Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder. J. Micromechanics and Microengineering 11(6):630–634

    Article  Google Scholar 

  7. Shoaf SE, Feinerman AD (1994). Aligned Au-Si eutectic bonding of silicon structures. J. Vac. Sci. Technol. 12:19–23

    Article  Google Scholar 

  8. Cheng Y, Hsu W, Najafi K, Nguyen C-T, Lin L (2002). Vacuum packaging technology using localized aluminum/silicon-to-glass bonding. JMEMS 11:556–565

    Google Scholar 

  9. Kim S, Seo YH, Cho Y, Kim GH, Bu JU (2003). Fabrication and characterization of a low-temperature hermetic MEMS package bonded by a closed loop AuSn solder-line. Proceedings IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Jan. 19-23, 2003:614–617

    Google Scholar 

  10. Baggerman AFJ, Schwarzbach D (1998). Solder-jetted eutectic PbSn bumps for flip-chip. IEEE Transactions on Components, Packaging, and Manufacturing Technology Part B: Advanced Packaging, 21:371–381

    Article  Google Scholar 

  11. Cheng YT, Lin L, Najafi K (1999). Localized bonding with PSG or indium solder as intermediate layer. Proceedings of the 12th IEEE Int. Conf. MEMS, Jan 17-21, 1999:285–289

    Google Scholar 

  12. Maharbiz MM, Cohn MB, Howe RT, Horowitz R, Pisano AP (1999). Batch micropackaging by compression-bonded wafer-wafer transfer. 12th IEEE Int. Conf. MEMS, Jan 17-21, 1999:482–489

    Google Scholar 

  13. Heck JM (2001). Polycrystalline silicon germanium for fabrication, release, and packaging of microelectromechanical systems. Ph.D Thesis, Applied Science and Technology, University of California, Berkeley.

    Google Scholar 

  14. Lin L, Howe RT, Pisano AP (1998). Microelectromechanical filters for signal processing. JMEMS 7:286–294

    Google Scholar 

  15. Stark BH, Najafi K (2004). A low-temperature thin-film electroplated metal vacuum package. JMEMS 13:147–157

    Google Scholar 

  16. Candler RN, Park WT, Li HM, Yama G, Partridge A, Lutz M, Kenny TM (2003). Single Wafer Encapsulation of MEMS Devices. IEEE Transactions on Advanced Packaging 26(3):227–232

    Article  Google Scholar 

  17. Höchst A, Scheuerer R, Stahl H, Fischer F, Metzger L, Reichenbach R, Lärmer F, Krönmuller S, Watcham S, Rusu C, Witvrouw A, Gunn R (2004). Stable thin film encapsulation of acceleration sensors using polycrystalline silicon as sacrificial and encapsulation layer. Sensors and Actuators A 114(2-3):355-361

    Article  Google Scholar 

  18. Monajemi P, Joseph P, Kohl PA, Ayazi F (2006). Characterization of a Polymer-Based MEMS Packaging Technique. Proc. IEEE Advanced Packaging Materials, Atlanta, GA, Mar. 2006:139–144

    Google Scholar 

  19. Partridge A, Lutz M, Kim B, Hopcroft M, Candler RN, Kenny TW, Petersen K, Esashi M (2010). MEMS Resonators: Getting the Packaging Right. Semicon Japan 2005.

    Google Scholar 

  20. Azevedo RG, Jones DG, Jog AV, Jamshidi B, Myers DR, Chen L, Fu, XA, Mehregany, M, Wijesundara, MBJ, Pisano, AP (2007). A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications, IEEE Sensors, 7(4):568–576

    Article  Google Scholar 

  21. Gao D, Wijesundara MBJ, Carraro C, Howe RT, Maboudian R (2004). Transformer coupled plasma etching of 3C-SiC films using fluorinatedchemistry for microelectromechanical systems applications. Journal of Vacuum Science Technology B 22(2):513–518

    Article  Google Scholar 

  22. Tanaka S, Rajanna K, Abe T, Esashi M (2001). Deep Reactive Ion Etching of Silicon Carbide. J. Vac. Sci. Technol. B 19:2173–2177

    Article  Google Scholar 

  23. Lazar M, Vang H, Brosselard P, Raynaud C, Cremillieu P, Leclercq J-L, Descamps A, Scharnholz S, Planson D (2006). Deep SiC etching with RIE, Superlattices and Microstructures, E-MRS 2006 Symposium S 40(4-6):388–392

    Google Scholar 

  24. Jones DG, Pisano AP (2010). Aluminum nitride as a masking material for the plasma etching of silicon carbide structures. IEEE 23rd International Conference on Micro Electro Mechanical Systems, Hong Kong, Jan. 24-28:352–355

    Google Scholar 

  25. Azevedo RG (2007). Silicon Carbide Micro-extensometers for Harsh Environments. Dissertation, Department of Mechanical Engineering, University of California, Berkeley.

    Google Scholar 

  26. Jones DG, Azevedo RG, Chan M, Pisano AP, Wijesundara MBJ (2007). Low temperature ion beam sputter deposition of amorphous silicon carbide for wafer-level encapsulation. MEMS 2007, 20th IEEE SENSORS 2007 Conference on Micro and Nano sensors Technical Digest 2007:275–278

    Google Scholar 

  27. Rajaraman V, Pakula LS, Pham HTM, Sarro PM, French PJ (2008). Application of PECVD a-SiC Thin-Film Layer for Encapsulation of Microstructures. 11th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors:609–612

    Google Scholar 

  28. Messana MW, Graham AB, Yoneoka S, Howe RT, Kenny TW (2010). Packaging of Large Lateral Deflection MEMS Using a Combination of Fusion Bonding and Epitaxial Reactor Sealing. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:336–339

    Google Scholar 

  29. Rajgopal S, Zula D, Garverick S, Mehregany M (2009). A Silicon Carbide Accelerometer for Extreme Environment Applications. Materials Science Forum 600-603:859–862

    Article  Google Scholar 

  30. Yeh R (2001). Articulated mechanisms and electrostatic actuators for autonomous microrobots. Ph.D dissertation, University of California, Berkeley, Deparment of Electrical Engineering

    Google Scholar 

  31. Yoneoka S, Roper CS, Candler RN, Chandorkar SA, Graham AB, Provine J, Maboudian R, Howe RT, Kenny TW (2010). Characterization of encapsulated micromechanical resonators sealed and coated with polycrystalline SiC. JMEMS 19(2):357–366

    Google Scholar 

  32. Roper CS, Candler R, Yoneoka S, Kenny T, Howe RT, Maboudian R (2009). Simultaneous wafer-scale vacuum encapsulation and microstructure cladding with LPCVD polycrystalline 3C-SiC. Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, June 21-25, 2009:1031-1034

    Google Scholar 

  33. Marek J (2007). MEMS Technology – From Automotive to Consumer. MEMS 2007, 20th IEEE SENSORS 2007 Conference on Micro and Nano sensors Technical Digest 2007:59–60

    Google Scholar 

  34. Dougherty GM, Sands T, Pisano AP (2003). Microfabrication using one-step LPCVD porous polysilicon films. JMEMS 12(4):418–424

    Google Scholar 

  35. He R, Fan L, Wu MC, Kim C-J (2004). Porous Polysilicon Shell Formed by Electrochemical Etching for On-Chip Vacuum Encapsulation. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:332–335

    Google Scholar 

  36. Leibouitz KS, Pisano AP, Howe RT (1995). Permeable polysilicon etch-access windows for microshell fabrication. 8th Int. Conf. on Solid-State Sensors and Actuators, Stockholm, Sweden, June 1995, 1:224–227

    Google Scholar 

  37. Provine J, Ferralis N, Graham AB, Messana MW, Kant R, Maboudian R, Kenny TW, Howe RT (2010). Time Evolution of Released Hole Arrays into Membranes Via Vacuum Silicon Migration. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:344–347

    Google Scholar 

  38. Kant R, Choo H (2010). Numerical Modeling and Experimental Verifications of Single-Step, Deposition-Free, Hermetic Sealing Using Silicon Migration. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:262–263

    Google Scholar 

  39. Zhang H, Guo H, Wang Y, Zhang G, Zhihong L (2007). Study on a PECVD SiC-coated pressure sensor. J. Micromech. Microeng. 17:426–431

    Article  Google Scholar 

  40. Kotzara G, Freasa M, Abelb P, Fleischman A, Roy S, Zorman C, Morane JM, Melzak J (2002). Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 23:2737–2750

    Article  Google Scholar 

  41. Zorman C (2009). Silicon Carbide as a Material for Biomedical Microsystems. DTIP of MEMS & MOEMS, Rome, Italy, Apr. 1-3, 2009:hal-00395712

    Google Scholar 

  42. Azevedo R, Costello B, Frank J, Jensen M, Thompson T, Zdeblick M (2010). Novel Method of Protecting and Connecting CMOS Chips Enables Networked Pacing Leads. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10:260–261

    Google Scholar 

  43. Hsua J-M, Tathireddyb P,Rietha L, Normannc AR, Solzbacher F (2007). Characterization of a-SiCx:H thin films as an encapsulation material for integrated silicon based neural interface devices. Thin Solid Films 516(1):34–41

    Article  Google Scholar 

  44. Savrun E (2002). Packaging Considerations for Very High Temperature Microsystems. Sensors Conference 2002:1139–1143

    Google Scholar 

  45. Saint-Gobain Ceramics sintered SiC product website: www.hexoloy.com

  46. CoorsTek Advanced Ceramics corporate website: www.coorstek.com

  47. Ganesh I, Jana DC, shamshad S, Thiyagarajan N (2006). An Aqueous Gelcasting Process for Sintered Silicon Carbide Ceramics. J. American Ceramics Society 89:3056–3064

    Google Scholar 

  48. Hunter GW, Wrbanek JD, Okojie RS, Neudeck PG, Fralick GC, Chen LY, Xu J, Beheim GM (2006). Development and application of high temperature sensors and electronics for propulsion applications. Proceedings of the SPIE Defense and Security Symposium, Sensors for Propulsion Measurement Applications Workshop, 2006.

    Google Scholar 

  49. Chen L-Y, Lei J-H (2006). Packaging of Harsh Environment MEMS Devices. Chapter 12 of The MEMS Handbook, Gad-el-Hak M editor. CRC Press, Boca Raton.

    Google Scholar 

  50. Mantese JV, Alcini WV (1988). Platinum Wire Wedge Bonding: A New IC and Microsensor Interconnect. Journal of Electronic Materials 17(4):285–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu B. J. Wijesundara .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wijesundara, M.B.J., Azevedo, R.G. (2011). Packaging. In: Silicon Carbide Microsystems for Harsh Environments. MEMS Reference Shelf, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7121-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7121-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7120-3

  • Online ISBN: 978-1-4419-7121-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics