Skip to main content

SiC Materials and Processing Technology

  • Chapter
  • First Online:
Silicon Carbide Microsystems for Harsh Environments

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 22))

Abstract

This chapter contains a broad review of SiC materials and processing technology necessary to create SiC electronics, micromechanical transducers, and packaging. Details on deposition and etching methods are covered. The material properties of various forms of SiC (single crystalline, polycrystalline, and amorphous) along with their use for creating the various components of harsh environment microsystems will also be discussed. Current status and future research are highlighted with regards to both materials and processing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neudeck PG (2006). Silicon Carbide Technology. The VLSI Handbook, Chapter 5 (Editor Wai-Kai Chen, CRC Press, Second Edition).

    Google Scholar 

  2. Rao MV, Tucker JB, Ridgway MC, Holland OW, Capano OW, Papanicolaou N, and Mittereder J (1999). Ion-implantation in bulk semi-insulating 4H-SiC. Journal of Applied Physics 86(2):752–758.

    Article  Google Scholar 

  3. Pirouz P, Chorey CM, Powell JA (1987). Antiphase Boundaries in Epitaxially Grown Beta-SiC. Applied Physics Letters 50(4):221–223

    Article  Google Scholar 

  4. Acheson AG (1892) British Patent 17:91

    Google Scholar 

  5. Tsvetkov VF, Allen ST, Kong HS, Carter Jr CH (1996). Institute of Physics Conference Series 142: 17–22

    Google Scholar 

  6. Tairov YM, Tsvetkov VF (1983). Progress in controlling the growth of polytypic crystals.Progress In Crystal Growth And Characterization 7(1-4):111–162

    Google Scholar 

  7. Sudarshan TS, Maximenko SI (2006). Bulk growth of single crystal silicon carbide. Microelectronic Engineering 83:155159

    Article  Google Scholar 

  8. Lely JA (1955). Darstellung von Einkristallen von Siliziumcarbid und Beherrschung von Art und Menge der eingbauten Verunreinigungen. Berichte Deutche Keramik Geselshaft (32):229–231

    Google Scholar 

  9. Tairov YM, Tsvetkov VF (1978). Investigations and growth processes of ingots of silicon carbide single crystals. Journal of Crystal Growth 43 (2):209–212

    Article  Google Scholar 

  10. Davis RF, Carter Jr CH, Hunter CE (1995). US Patent No. Re 34861

    Google Scholar 

  11. Stein RA, Lanig P (1992). Influence of surface-energy on the growth of 6H-SiC and 4H-SiC polytypes by sublimation. Materials Science and Engineering B 11(1-4): 69–71.

    Article  Google Scholar 

  12. Barrett DL, McHugh JP, Hobgood HM, Hopkins RH, McMullin PG, Clarke RC (1993). Growth of large SiC single crystals. Journal of Crystal Growth 128(1):358

    Article  Google Scholar 

  13. Cree Inc. USA. http://www.cree.com

  14. Glass RC, Henshall G, Tsvetkov VF, Carter Jr CH (1997). SiC Seeded Crystal Growth. Physica Status Solidi B 202:149-162

    Article  Google Scholar 

  15. Chaussende D, Wellmann PJ, Pons M (2007). Status of SiC bulk growth processes. JOURNAL OF PHYSICS D: APPLIED PHYSICS 40(20):61506158

    Google Scholar 

  16. Norstel AB, Sweden. www.norstel.com

  17. Chaussende D, Baillet F, Charpentier L, Pernot E, Pons M, Madara R (2003). Continuous Feed Physical Vapor Transport Toward High Purity and Long Boule Growth of SiC. Journal of The Electrochemical Society 150(10):G653-G657

    Article  Google Scholar 

  18. Fanton M, Skowronski M, Snyder D, Chung H.J, Nigam S, Weiland B, Huh SW (2004). Growth of Bulk SiC by Halide Chemical Vapor Deposition. Materials Science Forum 457-460:87–90

    Article  Google Scholar 

  19. Wellmann P, Desperrier P, Muller R, Straubinger T, Winnacker A, Baillet F, Blanquet E, Dedulleb JM, Pons M (2005).SiC single crystal growth by a modified physical vapor transport technique. Journal of Crystal Growth 275(1-2):e555e560

    Google Scholar 

  20. ltoh A, Matsunami H (1997). Single crystal growth of SiC and electronic devices. Critical Reviews in Solid State and Materials Sciences, 22(2):111–197

    Google Scholar 

  21. Takahashi J, Ohtani N, Kanaya M (1995). Influence of the Seed Face Polarity on the Sublimation Growth of alpha-SiC. Japanese Journal of Applied Physics 34(9A):4694–4698

    Google Scholar 

  22. Ito A, Kimoto T, Matsunami H (1994). High-quality 4H-SiC homoepitaxial layers grown by step-controlled epitaxy. Applied Physics Letters 65(11):1400–1402

    Article  Google Scholar 

  23. Kordina O, Hallin C, Ellison A, Bakin AS, Ivanov IG, Henry A, Yakimova R, Tuominen M, Vehanen A, Janzen E (1996): Applied Physice Letters 69(10):1456–1458

    Article  Google Scholar 

  24. Ellison A, Magnusson B,Sundqvist B, Pozina G, Bergman JP, Janzen E, Vehanen A (2004). SiC crystal growth by HTCVD. Materials Science Forum 457-460:9–14

    Article  Google Scholar 

  25. Ellison A, Magnusson B, Son NT, Storasta L, Janzen E (2003). HTCVD grown semi-insulating SiC substrates. Materials Science Forum 433-436:33-38

    Article  Google Scholar 

  26. Sundqvist B, Ellison A, Jonsson A,Henry A,Magnusson B, Janzen E (2003). Growth of High Quality p-type 4H-SiC Substrates by HTCVD. Materials Science Forum 433-436:21–24

    Article  Google Scholar 

  27. Schmid F and Pensl G (2004). Comparison of the electrical activation of P+ and N+ ions co-implanted along with Si+ or C+ ions into 4H-SiC. Applied Physics Letters 84(16):3064–3066

    Article  Google Scholar 

  28. Chaussende D, Ucar M, Auvray L, Baillet F, Pons M, Madar R (2005). Control of the Supersaturation in the CF-PVT Process for the Growth of Silicon Carbide Crystals: Research and Applications. Crystal Growth & Design 5(4):15391544.

    Google Scholar 

  29. Chaussende D, Eid J, Mercier F, Madar R, Pons M (2009). Nucleation and Growth of 3C-SiC Single Crystals from the Vapor Phase. Materials Science Forum 615-617:31–36

    Article  Google Scholar 

  30. Polyakov AY, Fanton MA, Skowronski M, Chung HJ, Nigam1 S, Huh SW (2006). Halide-CVD Growth of Bulk SiC Crystals. Materials Science Forum 527-529:21–26

    Google Scholar 

  31. Hofmann D, Schmitt E, Bickermann M, Kolbl M, Wellmann PJ, Winnacker A (1999). Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals. Materials Science and Engineering B6162:2939

    Google Scholar 

  32. Halden F, Meuli WP, Fredericks WJ (1961), Growth of SiC Single Crystals. Final Technical Report. contract. no. NObsr-72772, Bureau of Ships.

    Google Scholar 

  33. Ujihara T, Munetoh S, Kusunoki K, Kamei K, Usami N, Fujiwara K, Sazakia G, Nakajima K (2005). Crystal quality of a 6H-SiC layer grown over macrodefects byliquid-phase epitaxy: a Raman spectroscopic study. Thin Solid Films 476(1):206209

    Google Scholar 

  34. Kusunoki K, Kamei K, Ueda Y, Naga S, Ito Y, Hasebe M, Ujihar T Nakajima K (2005). Crystalline Quality Evaluation of 6H-SiC Bulk Crystals Grown from Si-Ti-C Ternary Solution. Materials Science Forum 483-485:13-16

    Article  Google Scholar 

  35. Eid J, Santailler JL, Ferrand B, Basset A, Passero A, Lewandowska R, Balloud C, Camassel J (2006). Improvement of cubic silicon carbide crystals grown from solution. Superlattices and Microstructures 40:201204

    Article  Google Scholar 

  36. Kamei K, Kusunoki K,Yashiro N, Okada N, Tanaka T,Yauchi A (2009). Solution growthofsinglecrystalline6H,4H-SiCusingSiTiCmelt. Journal of Crystal Growth 311(3):855858

    Google Scholar 

  37. Ujihara T, Maekawa R, Tanaka R, Sasaki K, Kuroda K, Y. Takeda (2008). Solution growth of high-quality 3C-SiC crystals. Journal of Crystal Growth 310 (7-9):14381442

    Google Scholar 

  38. Ohtani N, Katsuno M, Tsuge H, Fujimoto T, Nakabayashi M, Yashiro H, Sawamura M, Aigo T, Hoshino T (2006). Dislocation processes during SiC bulk crystal growth. Microelectronic Engineering 83(1):142145

    Google Scholar 

  39. Rost HJ, Doerschel J, Schulz D, Siche D, Wollweber J (2002). Microdefect Generation in Single Crystal SiC Caused by Polytype Changes. Materials Science Forum 389-393:67-70

    Article  Google Scholar 

  40. Hofmann D, Schmitt E, Bickermann M, Kolbl M, Wellmann PJ, Winnacker A (1999). Analysis on defect generation during the SiC bulk growth process. Materials Science and Engineering B6162:48–53

    Google Scholar 

  41. Yakimova R, Iakimov T, Syvajarvi M, Jacobsson H, Raback P, Vehanen A, Janzen E (1999). Polytype stability and defect reduction in 4H-SiC crystals grown via sublimation technique. MRS Symposium Proceedings 572:265-267

    Article  Google Scholar 

  42. Sanchez E, Kopec A, Poplawski S, Ware R, Holmes S, Wang S, Timmerman A (2002). The Nucleation of Polytype Inclusions during the Sublimation Growth of 6H and 4H Silicon Carbide. Materials Science Forum 389393:71-74

    Article  Google Scholar 

  43. Kanaya M, Takahashi J, Fujiwara Y, Moritani A (1991). Controlled sublimation growth of single crystalline 4H-SIC and GH-SiC and identification of polytypes by x-ray diffraction. Applied Physics Letter 58(1):56-58

    Article  Google Scholar 

  44. Yakimova R, Syvajarvi M, Iakimov T, Jacobsson H, Raback P, Vehanen A, Janzen E (2000). Polytype stability in seeded sublimation growth of 4H-SiC boules.Journal of Crystal Growth 217:255-262

    Google Scholar 

  45. Tupitsyn EY, Arulchakkaravarthi A, Drachev RV, Sudarshan TS (2007). Controllable 6H-SiC to 4H-SiC polytype transformation during PVT growth. Journal of Crystal Growth 299(1):7076.

    Google Scholar 

  46. Rost HJ, Doerschel J, Irmscher K, Rossberg M, Shulz D, Siche D (2005). Polytype stability in nitrogen-doped PVT grown 2 inch 4HSiC crystals. Journal of Crystal Growth 275(1-2):e451-e454

    Article  Google Scholar 

  47. Vodakov YA, Mokhov EN, Roenkov AD, Anikin MM (1979). Effect of impurities on the polymorphism of silicon carbide. Soviet Technical Physics Letters 5(3):147-148

    Google Scholar 

  48. Rost HJ, Schmidbauer M, Siche D, Fornari R (2006). Polarity- and orientation-related defect distribution in 4H-SiC single crystals. Journal of Crystal Growth 290(1):137-143

    Article  Google Scholar 

  49. Siche D, Albrecht M, Doerschel J, Irmscher K, Rost HJ, Roxberg M, Schulz D (2004). Effect of Nitrogen Doping on the Formation of Planar Defects in 4H-SiC. Materials Science Forum 483485:39-42

    Google Scholar 

  50. Ohtani N, Takahashi J, Katsuno M, Yashiro H, Kanaya M (1998). Development of Large Single-Crystal SiC Substrates. Electronics and Communications in Japan Part 2 81(6):8-19

    Google Scholar 

  51. Fissel A (2000). Thermodynamic considerations of the epitaxial growth of SiC polytypes. Journal of Crystal Growth 212 (3-4):438-450

    Article  Google Scholar 

  52. Schulze N, Barrett D, Weidner M, Pensl G (2000). Controlled Growth of Bulk 15R-SiC Single Crystals by the Modified Lely Method. Materials Science Forum 338-342:111-114

    Article  Google Scholar 

  53. Neudeck PG, Powell JA (1994). Performance limiting micropipe defects in silicon carbide wafers. IEEE Electron Device Letters 15(2):63-65

    Article  Google Scholar 

  54. Frank FC (1951). Capillary equilibria of dislocated crystals. Acta Crystallographica 4(6):497-501

    Article  Google Scholar 

  55. Dudley M, Huang XR, Huang W, Powell JA, Wang S, Neudeck P, Skowronski M (1999). The mechanism of micropipe nucleation at inclusions in silicon carbide. Applied Physics Letters 75(6):784-86

    Article  Google Scholar 

  56. Tsvetkov VF, Allen ST, Kong HS, Carter Jr CH (1996). Recent progress in SiC crystal growth. Institute of Physics Conference Series (142):17-22

    Google Scholar 

  57. Schulze N, Barrett DL, Pensl G (1998). Near-equilibrium growth of micropipe-free 6H-SiC single crystals by physical vapor transport. Applied Physics Letters 72(13):1632-1634

    Article  Google Scholar 

  58. Takahashi J, Ohtani N, Kanaya M (1996). Structural defects in alpha-SiC single crystals grown by the modified-Lely method. Journal of Crystal Growth 167(3-2):596-606

    Article  Google Scholar 

  59. Takahashi J, Kanaya M, Hoshino T (1994). Sublimation growth and characterization of SiC single crystalline ingots on faces perpendicular to the (0001) basal plane. Institute of Physics Conference Series 137:13-16

    Google Scholar 

  60. Takahashi J, Ohtani N (1997). Modified-Lely SiC Crystals Grown in [1100] and [1120] Directions. Physica Status Solidi B 202(1):163-175

    Article  Google Scholar 

  61. Takahashi J, Ohtani N, Katsuno M, Shinoyama S (1997). Sublimation growth of 6H- and 4H-SiC single crystals in the [1100] and [1120] directions. Journal of Crystal Growth 18(3):229-240

    Article  Google Scholar 

  62. Nakamura D, Gunjishima I, Yamaguchi S, Ito T, Okamoto A, Kondo H, Onda S, Takatori K (2004). Ultrahigh-quality silicon carbide single crystals. Nature 430:1009-1012

    Article  Google Scholar 

  63. Carter, Jr CH, Tsvetkov VF, Glass RC, Henshall D, Brady M, Muller StG, Kordina O, Irvine K, Edmond JA, Kong HS, Singh R, Allen ST, Palmour JW (1999). Progress in SiC: from material growth to commercial device development. Materials Science and Engineering B6162:18

    Google Scholar 

  64. Leonard RT, Khlebnikov Y, Powell AR, Basceri C, Brady MF, Khlebnikov I, Jenny JR, Malta DP, Paisley MJ, Tsvetkov VF, Zilli R, Deyneka E, Hobgood HMcD, Balakrishna V, Carter Jr CH (2009). 100 mm 4HN-SiC Wafers with Zero Micropipe Density. Materials Science Forum 600-603:7-10

    Google Scholar 

  65. Kong HS, Glass JT, Davis RF (1989). Growth rate, surface morphology, and defect microstructures of SiC films chemically vapor deposited on 6HSiC substrates. Journal of Materials Research 4(1):204214

    Google Scholar 

  66. Zorman CA, Fleischman AJ, Dewa AS, Mehregany M, Jacob C, Nishino S and Pirouz P (1995). Epitaxial growth of 3C-Sic films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition. Journal of Applied Physics 78(8):5136-5138

    Google Scholar 

  67. Pazik JC, Kelner G, Bottka N (1991). Epitaxial growth of SiC on silicon-on-sapphire substrates by chemical vapor deposition. Applied Physics Letters 58(13):14191422

    Google Scholar 

  68. Givargizov EI (1975). Fundamental Aspects of VLS Growth. Journal of Crystal Growth 31:20-30

    Article  Google Scholar 

  69. Milewski JV, Gac FD, Petrovic SR, Skaggs SR(1985). Growth of beta-SiC Whiskers by the VLS process. Journal of materials Science 20:1160-1166

    Article  Google Scholar 

  70. Kong HS, Glass JT, Davis RF (1991). US Patent No. 5011549

    Google Scholar 

  71. Rupp R, Wiedenhofer A, Stephani D (1999). Epitaxial growth of SiC in a single and a multi wafer vertical CVD system: a comparison. Materials Science and Engineering B61-62:125-129

    Google Scholar 

  72. Karlsson S, Nordell N, Spadafora F, Linnarsson M (1999). Epitaxial growth of SiC in a new multi-wafer VPE reactor. Materials Science and Engineering B61-62:143146

    Google Scholar 

  73. Thomas B, Bartsch W, Stein R, Schrner R, and Stephani D (2004). Properties and Suitability of 4H-SiC Epitaxial Layers Grown at Different CVD Systems for High Voltage Applications. Materials Science Forum 457-460:181-184

    Article  Google Scholar 

  74. Powell JA, Larkin DJ (1997). Process-Induced Morphological Defects in Epitaxial CVD Silicon Carbide. Physica Status Solidi B 202 (1):529-548

    Article  Google Scholar 

  75. Via F L, Izzo G, Abbondanza G, Crippa D (2009). Thick Epitaxial Layers Growth by Chlorine Addition. Materials Science Forum 615-617:55-60

    Article  Google Scholar 

  76. Ellison A, Zhang J, Henry A, Janzen E (2002). Epitaxial growth of SiC in a chimney CVD reactor. Journal of Crystal Growth 236(1-3):225238

    Google Scholar 

  77. Rupp R, Makarov YN, Behner H, Wiedenhofer A (1997). Silicon Carbide Epitaxy in a Vertical CVD Reactor: Experimental Results and Numerical Process Simulation. Physica Status Solidi B 202 (1):281-304

    Article  Google Scholar 

  78. Burk AA (2006). Development of Multiwafer Warm-Wall Planetary VPE Reactors for SiC Device Production. Chemical Vapour Deposition 12:465473

    Google Scholar 

  79. Powell JA, Rowland LB (2002). SiC Materials-Progress, Status, and Potential Roadblocks Proceedings of the IEEE 90(6):942-955

    Google Scholar 

  80. O. Kordina, Hallin C, Glass RC, Janzen E (1994). Proceedings of the International Conference on SiC, Inst. Phys. Conf. Ser.137: 41

    Google Scholar 

  81. Kordina O, Hallin C, Henry A, Bergman JP, Ivanov IG, A, Ellison A, Son NT, Janzen E (1997). Growth of SiC by Hot-Wall CVD and HTCVD. Physica Status Solidi B 202(1): 321-334

    Google Scholar 

  82. Frijlink PM (1988). A new versatile, large size MOVPE reactor. Journal of Crystal Growth 93(1-4):207-215

    Article  Google Scholar 

  83. Burk AA, OĹoughlin MJ, Nordby Jr HD (1999). SiC epitaxial layer growth in a novel multi-wafer vapor-phase epitaxial (VPE) reactor Journal of Crystal Growth 200:458-466

    Google Scholar 

  84. Burk AA, OĹoughlin MJ, Sumakeris JJ, Hallin C, Berkman E, Balakrishna V, Young J, Garrett L, Irvine KG, Powell AR, Khlebnikov Y, Leonard RT, Basceri C, Hull BA, Agarwal AK (2009). SiC Epitaxial Growth on Multiple 100-mm Wafers and its Application to Power-Switching Devices. Materials Science Forum Vols. 600-603:77-82

    Google Scholar 

  85. Ito M, Storasta L, Tsuchida H (2008). Development of 4H-SiC Epitaxial Growth Technique Acheiving High Growth Rate and Large-Area Uniformity. Applied Physics Express 1:015001-1

    Article  Google Scholar 

  86. Shibahara K, Nishino S, Matsunami H (1987). Antiphase domain free growth of cubic SiC on Si (100). Applied Physics Letters 50 (26):1888–1890

    Article  Google Scholar 

  87. Kong HS, Glass JT, Davis RF (1988). Chemical vapor deposition and characterization of 6HSiC thin films on off-axis 6HSiC substrates. Journal of applied physics 64(5): 2672–2679

    Article  Google Scholar 

  88. Powell J A, Larkin DJ, Matus, LG, Choyke WJ, Bradshaw, JL, Henderson L, Yoganathan M, Yang J, Pirouz P (1990). Growth of high-quality 6HSiC epitaxial films on vicinal (0001) 6HSiC wafers. Applied Physics Letters 56(15):14421444

    Google Scholar 

  89. Kimoto T, Matsunami H (1994). Surface kinetics of adatoms in vapor phase epitaxial growth of SiC on 6H-SiC(0001) vicinal surfaces. Journal of Applied Physics 75 (2):850–859

    Article  Google Scholar 

  90. Kimoto T, Nishino H, Yoo WS, Matsunami H, Nishino H (1993). Growth mechanism of 6H-SiC in step-controlled epitaxy. Journal of Applied Physics 73(2):726–732

    Article  Google Scholar 

  91. Larkin DJ, Neudeck PG, Powell AJ, Matus LG (1994). Site-competition epitaxy for superior silicon carbide electronics. Applied Physics Letters 65(13):1659–1661

    Article  Google Scholar 

  92. Choyke WJ (1990). The Physics and Chemistry of Carbides, Nitrides, and Borides, NATO AS1 Series E: Applied Sciences, edited by R. Freer (Khrwer.Dordrecht. 1990). 185:853

    Google Scholar 

  93. Davis RF, Glass JT (1991). Advances in Solid State Chemistry, edited by Catlow CRA (JAI, Greenwich, CT). 2:l–111

    Google Scholar 

  94. Larkin DJ (1997). SiC Dopant Incorporation Control Using Site-Competition CVD. Physica Status Solidi B (b) 202 (1):305–329

    Article  MathSciNet  Google Scholar 

  95. Syvajarvi M, Yakimova R, Tuominen M, Kakanakova-Georgieva A, MacMillan MF, Henry A, Wahab Q, Janzen E (1999). Growth of 6H and 4H-SiC by sublimation epitaxy. Journal of Crystal Growth 197 (1): 155–162

    Article  Google Scholar 

  96. Dmitriev V (1995), LPE of SiC and SiC-AlN, in Properties of Silicon Carbide. ser. 13, G. L. Harris, Ed. London, U.K.: INSPEC

    Google Scholar 

  97. Syvajarvi M, Yakimova R, Radamson HH, Son NT, Wahab Q, Ivanov IG, Janzen E (1999). Liquid phase epitaxial growth of SiC. Journal of Crystal Growth 197 (1):147–154

    Article  Google Scholar 

  98. Nishitani SR, Kaneko T (2008). Metastable solvent epitaxy of SiC. Journal of Crystal Growth 310(7-9):1815–1818

    Article  Google Scholar 

  99. Ferro G, Jacquier C (2004). Groth by a vapour-liquid-solid mechanism: a new approach for silicon carbide epitaxy. New Journal of Chemistry 28:889–896

    Article  Google Scholar 

  100. Dowcorning.com

    Google Scholar 

  101. Nipponsteel.com

    Google Scholar 

  102. Wu CH, Zorman CA, Mehregany M (2000). Characterization of polycrystalline SiC grown on SiO2 and Si3N4 by APCVD for MEMS applications. Materials Science Forum 338-342:541–544

    Article  Google Scholar 

  103. Cheng L, Pan M, Scofield J, Steckl AJ (2002). Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si3N4/Si Substrates for Robust Microelectromechanical Systems Applications. Journal of Electronic Materials 31(5):361-365

    Article  Google Scholar 

  104. Stoldt CR, Carraro C, Ashurst WR, Gao D, Howe RT, Maboudian R (2002). Low temperature CVD process for SiC MEMS. Sensors and Actuators A 97-98:410-415

    Article  Google Scholar 

  105. Ashurst WR, Wijesundara MBJ, Carraro C, Maboudian R (2004). Tribological Impact of SiC Encapsulation of Released Polycrystalline Silicon Microstructures. Tribology Letters 17:195-198

    Article  Google Scholar 

  106. Song X, Rajgopal S, Melzak J, Zorman CA, M. Mehregany M (2002). Development of a multilayer SiC surface micromachining process with capabilities and design rules comparable to conventional polysilicon surface micromachining. Materials Science Forum 389-393:755-758

    Google Scholar 

  107. Zorman CA, Fleischman AJ, Dewa AS, Mehregany M, Jacob C, Nishino S, Pirouz P (1995). Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition. Journal of Applied Physics 78 (8):5136-5138

    Google Scholar 

  108. Fleischman AJ, Roy S, Zorman CA, Mehregrany (1996). Polycrystalline silicon carbide for surface micromachining. Proceedings of 9th Annual. International Workshop on Microelectromechanical Systems, San Diego, CA, Feb. 1115 1996 :473478

    Google Scholar 

  109. Chung GS, Kim KS, Han KB (2008). Characteristics of polycrystalline 3C-SiC thin films grown on Si wafers for harsh environment microdevices. Ceramics International 34:841844

    Google Scholar 

  110. Kim KS, Chung GS (2009). Growth and characteristics of polycrystalline 3CSiC films for extreme environment micro/nano-electromechanical systems. Sensors and Actuators A 155:125130

    Google Scholar 

  111. Zhang J, Howe RT, Maboudian R (2006). Control of strain gradient in doped polycrystalline silicon carbide films through tailored doping. J. Micromech. Microeng. 16:L1-L5

    Article  Google Scholar 

  112. Lee KW, YU KS, Kim Y (1997). Heretoepitaxial growth of 3C-SiC on Si(001) without carbonization. Journal of Crystal Growth 179(1-2):153-160

    Google Scholar 

  113. Hurtos E, Rodriguez-Viejo J (2000). Residual stress and texture in poly-SiC films grown by low-pressure organometallic chemical-vapor deposition. Journal of Applied Physics 87(4):1748-1758

    Article  Google Scholar 

  114. Wang CF, Tsai DS (2000). Low pressure chemical vapor deposition of silicon carbide from dichlorosilane and acetylene. Materials Chemistry and Physics 63:196-201

    Article  Google Scholar 

  115. Stoldt CR, Fritz MC, Carraro C, Maboudian R (2001). Micromechanical properties of silicon-carbide thin films deposited using single-source chemical-vapor deposition. Applied Physics Letters 79(3):437-349

    Google Scholar 

  116. Wijesundara MBJ, Valente G, Ashurst WR, Howe RT, Pisano AP, Carraro C, Maboudian R (2004). Single-Source Chemical Vapor Deposition of 3C-SiC Films in a LPCVD Reactor Part I: Growth, Structure, and Chemical Characterization. Journal of the Electrochemical Society 151:C210-C214

    Article  Google Scholar 

  117. Valente G, Wijesundara MBJ, Carraro C, Maboudian R (2004). Single-Source Chemical Vapor Deposition of 3C-SiC Films in a LPCVD Reactor Part II: Reactor Modeling and Chemical Kinetics. Journal of the Electrochemical Society 151:C 215-C219

    Google Scholar 

  118. Zorman CA, Rajgopal S, Fu XA, Jezeski R, Melzak J, Mehregany M (2002). Deposition of Polycrystalline 3C-SiC Films on 100 mm Diameter Si.100. Wafers in a Large-Volume LPCVD Furnace. Electrochemical and Solid-State Letters 5(10):G99-G101

    Google Scholar 

  119. Wijesundara MBJ, Stoldt CR, Carraro C. Howe RT, Maboudian R (2002). Nitrogen Doping of Polycrystalline 3C-SiC Films Grown by Single-Source Chemical Vapor Deposition. Thin Solid Films 419:69-75

    Google Scholar 

  120. Wijesundara MBJ, Gao D, Carraro C. Howe RT, Maboudian R (2003). Nitrogen Doping of Polycrystalline SiC Films Grown using 1,3Disilabutane in conventional LPCVD Reactor. Journal of Crystal Growth 259:18-25

    Google Scholar 

  121. Gao D, Wijesundara MBJ, Howe RT, Maboudian R (2003). Characterization of residual strain in SiC films deposited using 1,3-disilabutane for MEMS Application. Journal of Microlithography Microfabrication and Microsystems 2:259-264

    Article  Google Scholar 

  122. Roper CS, Carraro C. Howe RT, Maboudian R (2006). Silicon carbide thin films using 1,3-disilabutanesingle precursor for MEMS ApplicationsReview. ESC Transctions 3(10):267-280

    Google Scholar 

  123. Zhang J, Howe RT, Maboudian R (2006). Electrical Characterization of n-Type Polycrystalline 3C-Silicon Carbide Thin Films Deposited by 1,3-Disilabutane. Journal of The Electrochemical Society, 153(6):G548-G551

    Article  Google Scholar 

  124. Wijesundara MBJ, Walther DC, Stoldt CR, Fu K, Gao D, Carraro C, Pisano AP, Maboudian R (2003). Low Temperature CVD SiC Coated Si Microcomponents for Reduced Scale Engines, ASME International Mechanical Engineering Congress 2003 2:41696

    Google Scholar 

  125. Azevedo RG, Zhang J, Jones DG, Myers DR, Jog AV, Jamshidi B, Wijesundara MBJ, Maboudian R, Pisano AP(2007). Silicon Carbide Coated MEMS Strain Sensor for Harsh Environment Applications, MEMS 2007, 20th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest 2007:643-646

    Google Scholar 

  126. Jamshidi B, Azevedo RG, Wijesundara MBJ, Pisano AP (2007). Corrosion Enhanced Capacitive Strain Gauge at 370C. MEMS 2007, 20th IEEE SENSORS 2007 Conference on Micro and Nano sensors Technical Digest 2007:804-807

    Google Scholar 

  127. Bhave SA, Gao D, Maboudian R, Howe RT (2005). Fully-differentical poly-SiC lame-mode resonator and checkerboard filter. MEMS 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest (2005):223-226

    Google Scholar 

  128. Liu F, Carraro C, Chu J, Maboudian R (2009). Residual stress characterization of polycrystalline 3C-SiC films on (Si 100) deposited from methylsilane. Journal of Applied Physics 106:013505

    Article  Google Scholar 

  129. Liu F, Carraro C, Chu J, Pisano AP, Maboudian R (2010). Growth and characterization of nitrogen-doped polycrystalline 3C-SiC thin films for harsh environment MEMS applications. Journal of Micromechanics Microengineering 20:035011

    Article  Google Scholar 

  130. Fu XA, Trevino J, Mehregany M (2006). Nitrogen-doping of polycrystalline 3C-SiC films deposited by low pressure chemical vapor deposition. Materials Science Forum 527-529:311-314

    Article  Google Scholar 

  131. Myers DR, Cheng KB, Jamshidi B, Azevedo RG, Senesky DG, Wijesundara MBJ Pisano AP (2009). A Silicon Carbide Resonant Tuning Fork for Micro-Sensing Applications in High Temperature and High G-Shock Environment. Journal of Micro/Nanolithography, MEMS, and MOEMS 8:021116

    Google Scholar 

  132. Rajgopal S, Zula D, Garverick S, Mehregany M (2009). A Silicon Carbide Accelerometer for Extreme Environment Applications. Materials Science Forum 600-603:859–862

    Article  Google Scholar 

  133. Chen L, Mehregany M (2008). A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement. Sensors and Actuators A 145146:2-8

    Article  Google Scholar 

  134. Chen J, Steckel AJ, Loboda MJ (2000). In situ N-2-doping of SiC films grown on Si(111) by chemical vapor deposition from organosilanes. Journal of Electrochemical Society 147:2324–2327

    Article  Google Scholar 

  135. Kern RS, Davis RF (1997). Deposition and doping of silicon carbide by gas-source molecular beam epitaxy Appl. Phys. Lett. 71(10):1356-1358

    Google Scholar 

  136. Chang WT. Zorman C (2009). Grain size control of (111) polycrystalline 3C-SiC films by doping used as folded-beam MEMS resonators for energy dissipation. Microsystem Technology 15:875–880

    Article  Google Scholar 

  137. Murooka KI, Higashikawa I, Gomei Y (1996). Improvement of the Youngs modulus of SiC film by low-pressure chemical vapor deposition with B2H6 gas. Applied Physics Letters 69(1):37–39

    Article  Google Scholar 

  138. Fu XA, Dunning J, Zorman CA, Mehregany M (2004). Development of a High-Throughput LPCVD Process for Depositing Low Stress Poly-SiC. Materials Science Forum 457-460:305–308

    Article  Google Scholar 

  139. Roper CS, Radmilovic V, Howe RT, Maboudian R (2008). Characterization of polycrystalline 3C-SiC films deposited from the precursors 1,3-disilabutane and dichlorosilane. Journal of Applied Physics 103:084907

    Article  Google Scholar 

  140. Fu XA, Dunning J, Zorman CA, Mehregany M (2005). Polycrystalline 3C-SiC thin films deposited by dual precursor LPCVD for MEMS applications. Sensors and Actuators A 119:169-176

    Article  Google Scholar 

  141. Zhang J, Ph.D. Thesis (UC Berkeley)

    Google Scholar 

  142. Azevedo RG, Jones DG, Jog AV, Jamshidi B, Myers DR, Chen L, Fu, XA, Mehregany, M, Wijesundara, MBJ, Pisano, AP (2007). A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications, IEEE Sensors, 7(4):568–576

    Article  Google Scholar 

  143. Sarro PM (2000). Silicon carbide as a new MEMS technology. Sensors and Actuators 82:210218

    Google Scholar 

  144. Sarro PM, deBoer CF, Korkmaz E, Laros JMW (1998). Low-stress PECVD SiC thin films for IC-compatible microstructures. Sensors and Actuators A 67:175–180

    Article  Google Scholar 

  145. Pelegrini MV, Rehder GP, Pereyra L (2010). a-SiC:H films deposited by PECVD for MEMS applications. Physica Status Solidi C 7:786–789

    Google Scholar 

  146. Shimizu H, Kato A (2009). Low temperature growth of 3C-SiC Films on (111) by Plasma Assisted CVD. Materials Science Forum 615-617:161–164

    Article  Google Scholar 

  147. Rajaraman V, Pakula LS, Pham HTM, Sarro PM, French PJ (2009). RobustWafer-Level Thin-Film Encapsulation of Microstructures Using Low Stress PECVD Silicon Carbide. MEMS 2009, Sorrento, Italy, Jan. 25-29 2009:140-143

    Google Scholar 

  148. Gonzalez-Elipe AR, Yubero F, Sanz JM (2003). Low Energy Ion Assisted Film Growth. Imperial College Press, London, UK

    Book  Google Scholar 

  149. Valentini A, Convertino A, Alvisi AM, Cingolani R, Ligonzo T, Lamendola R, Tapfer L (1998). Synthesis of silicon carbide thin films by ion beam sputtering. Thin Solid Films 335:80–84

    Article  Google Scholar 

  150. Pezoldt J, Stottko B, Kupris G, Ecke G (1995). Sputtering effects in hexagonal silicon carbide. Materials Science and Engineering B29:94–98

    Google Scholar 

  151. Zaytouni M, Riviere JP, Denanot MF, Allain J (1996). Structural characterization of SiC films prepared by dynamic ion mixing. Thin Solid Films 287:1–7

    Article  Google Scholar 

  152. Jones DG, Azevedo RG, Chan MW, Pisano AP, Wijesundara MBJ (2007). Low-Temprature Ion Beam Sputter Deposition of Amorphous Silicon Carbide for Wafer Level Vacuum Sealing, MEMS 2007, 20th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest 2007: 275–278

    Google Scholar 

  153. Argyrakis P, McNabb P, Snell AJ, Cheung R (2006). Relaxation of process induced surface stress in amorphous silicon carbide thin films using low energy ion bombardment. Applied Physics Letters 89:034101

    Article  Google Scholar 

  154. Park WT, Candler R, Kronmueller S, Lutz M, Partridge A, Yama G, Kenny T(2003). Wafer-scale film encapsulation of micromachined accelerometers. Proc. of International Conference on Solid State Sensors, Actuators and Microsystems (Transducers 03). IEEE, 2003:

    Google Scholar 

  155. Rusu M, Jansen H, Gunn R, Witvrouw A (2004). Self-aligned 0-level sealing of MEMS devices by a two layer thin film reflow process. Microsystem Technologies 10:364371

    Article  Google Scholar 

  156. Roper CS, Candler R,Yoneoka S, Kenny T Howe RT, Maboudian R (2009). Simultaneous Wafer-Scale Vacuum Encapsulation and Microstrcture Cladding with LPCVD 3C-SiC. Transducers 2009, Denver, CO, USA, June 21-25 2009:1031–1034

    Google Scholar 

  157. Fraga MA, Massi M, Oliveira IC, Maciel HS, Filho SGDS, Mansano RD (2008). Nitrogen doping of SiC thin films deposited by RF magnetron sputtering. Journal of Materials Science: Materials Electronics 19:83-5840

    Article  Google Scholar 

  158. Serre C, Perez-Rodriguez A, Morante JR, Esteve J, Acero MC, Kogler R, Skorupa W (2000). Ion beam synthesis of polycrystalline SiC on SiO2 structures for MEMS applications. Journal of Micromechanics Microengineering 10:152-156

    Article  Google Scholar 

  159. Yih PH, Saxena V, Steckl AJ (1997). A Review of SiC Reactive Ion Etching in Fluorinated Plasmas. Physica Status Solidi B 202(1):605–642

    Article  Google Scholar 

  160. Pan WS, Steckl AJ (1990). Ion Etching of SiC Thin Films by Mixtures of Fluorinated Gases and Oxygen. Journal of the Electrochemical Society 137(1):212–220

    Article  Google Scholar 

  161. Gao D, Wijesundara MBJ, Carraro C, Howe RT, Maboudian R (2004). Transformer coupled plasma etching of 3C-SiC films using fluorinatedchemistry for microelectromechanical systems applications. Journal of Vacuum Science Technology B 22(2):513–518

    Article  Google Scholar 

  162. Mayer TM, Barker RA (1982). Simulation of plasma-assisted etching processes by ion-beam techniques. Journal of Vacuum Science and Technology 21(3):757–763

    Article  Google Scholar 

  163. Lee HY, Kim DW, Sung YJ, Yeom GY (2005). Fabrication of SiC micro-lens by plasma etching. Thin Solid Films 475(1-2):318322

    Google Scholar 

  164. Gao D, Howe RT, Maboudian R (2003). High-selectivity etching of polycrystalline 3C-SiC films using HBr-based transformer coupled plasma. Applied Physics Letter 82(11):1742–1744

    Article  Google Scholar 

  165. Chabert P (2001). Deep etching of silicon carbide for micromachining applications:Etch rates and etch mechanisms. Journal of Vacuum Science Technology B 19(4):1339–1345

    Article  MathSciNet  Google Scholar 

  166. Plank NOV, Blauw MA, van der Drift EWJM, Cheung R (2003). The etching of silicon carbide in inductively coupled SF6/O2 plasma. Journal of Applied Physics D: Applied Physics 36:482–487

    Article  Google Scholar 

  167. SPP Process Technology Systems (SPTS), UK. http://www.spp-pts.com

  168. Fleischman AJ, Zorman CA, Mehregany M (1998). Etching of 3C-SiC using CHF3/O2 and CHF3/O2/He plasmas at 1.75 Torr. Journal of Vacuum Science Technology B 16(2):536-539

    Google Scholar 

  169. Oxford Instruments, UK. http://www.oxford-instruments.com

  170. Zhuang D, Edgar JH (2005). Wet etching of GaN, AlN, and SiC: a review. Materials Science and Engineering R 48(1):1-46

    Article  Google Scholar 

  171. Alok D, Baliga BJ (1995). A Novel Method for Etching Trenches in Silicon Carbide. Journal of Electronic Materials 24:311

    Article  Google Scholar 

  172. Roper SR, Howe RT, Maboudian R (2009). Room-Temperature Wet Etching of Polycrystalline and Nanocrystalline Silicon Carbide Thin Films with HF and HNO3. Journal of The Electrochemical Society 156 (3):D104-D107

    Article  Google Scholar 

  173. R. Okojie, A. Ned, A. Kurtz, and W. Carr (1996). 6H-SiC pressure sensors for high temperature applications. Proceeding of 9th Annual International Workshop Microelectromechanical Systems, M. Allen and M. Reed, Eds., San Diego, CA, Feb. 1115 1996:146-149

    Google Scholar 

  174. Mehregany M, Zorman CA (1999). SiC MEMS: opportunities and challenges for application in harsh environments. Thin Solid Films 355-356:518–524

    Article  Google Scholar 

  175. Yasseen A, Zorman CA, Mehregany M (1999). Surface Micromachining of Polycrystalline SiC Films Using Microfabricated Molds of SiO and Polysilicon. Journal of Microelectromechanical system 8 (3):237–242

    Article  Google Scholar 

  176. Lohner KA, Chen KS, Ayon AA, Spearing SM (1998). Microfabricated Silicon Carbide Microengine Strucutres. Materials Research Society Symposium Proceedings Series 546:1–6

    Google Scholar 

  177. Farsari M, Filippidis G, Zoppe S,Reider GA, Fotakis C (2005). Efficient femtosecond lasermicromachining of bulk 3C-SiC Journal Micromechanics and Microengineering 15:1786-1789

    Google Scholar 

  178. Jiang M, Komanduri R (1998). On the finishing of Si3N4 balls for bearing applications. Wear 215(1-2):267–278

    Article  Google Scholar 

  179. Chen X, Li J, Ma, Hu X, Xu X, Jiang M (2006). Fine Machining of Large-Diameter 6H-SiC Wafers. Journal of Materials Science and Technology 22(5):681–684

    Google Scholar 

  180. Kikuchi M, Takahashi Y, Suga T, Suzuki S, Bando Y(1992). Mechanochemical Polishing of Silicon Carbide Single Crystal with Chromium(III) Oxide Abrasive. Journal of American Ceramic Society 75 (1):189–194

    Article  Google Scholar 

  181. Zhou L, Audurier, Pirouz P, Powell J A (1997). Chemomechanical Polishing of Silicon Carbide. Journal of the Electrochemical. Society 144(6):L161–163

    Article  Google Scholar 

  182. Li C, Bhat IB, Wang R, Seiler J (2004). Electro-Chemical Mechanical Polishing of Silicon Carbide. Journal of Electronic Materials 33(5):481–486

    Article  Google Scholar 

  183. NOVASiC, France. http://www.novasic.com

  184. Anderson TA, Barrett DL, Chen J, Elkington WT, Emorhokpor E, Gupta A, Johnson CJ, Hopkins RH, Martin C, Kerr T, Semenas E, Souzis AE, Tanner CD, Yoganathan M, Zwieback I (2004). Advanced PVT Growth of 2 & 3-Inch Diameter 6H SiC Crystals. Materials Science Forum 457-460:75–78

    Article  Google Scholar 

  185. Fu XA, Zorman CA, Mehregany M (2002). Chemical Mechanical Polishing of Cubic Silicon Carbide Films Grown on Si(100) Wafers. Journal of the Electrochemical Society 149(12):G643–G647

    Article  Google Scholar 

  186. Burk AA, Rowland LB (1996). Novel in situ optical monitoring method for selective area metalorganic vapor phase epitaxy. Journal of Crystal Growth 167(3-4):586–595

    Article  Google Scholar 

  187. Horita M, Kimoto T, Suda (2008). Surface Morphologies of 4H-SiC (1120) and (1100) Treated by High-Temperature Gas Etching. Japanese Journal of Applied Physics 47(11):8388–8390

    Google Scholar 

  188. Saddow SE, Schattner TE, Brown J, Grazulis L, Mahalingam K, Landis G, R. Bertke, Mitchel WC (2001). Effects of Substrate Surface Preparation on Chemical Vapor Deposition Growth of 4H-SiC Epitaxial Layers. Journal of Electronic Materials 30(3):228–234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu B. J. Wijesundara .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wijesundara, M.B.J., Azevedo, R.G. (2011). SiC Materials and Processing Technology. In: Silicon Carbide Microsystems for Harsh Environments. MEMS Reference Shelf, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7121-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7121-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7120-3

  • Online ISBN: 978-1-4419-7121-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics