Skip to main content

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 22))

Abstract

Microsystems, or microelectromechanical systems (MEMS), technology continues to grow rapidly by enabling ever emerging applications that demand diverse, versatile functionality.Microsystems refers to a class of sub-millimeter scale sensors and actuators coupled with signal processing capable of measuring physical and chemical changes or performing desired physical and chemical functions. Microsystem technology based on micro-scale mechanical transducers progressed because silicon (Si) possesses both favorable electrical and mechanical properties to create these micro-sensor elements. Although many types of materials, ranging from ceramics to polymers, have been explored as platforms for microsystem technology, Si is currently the dominant platform. Si microsystems leverage the highly-parallel batch fabrication paradigm that has made microfabricated silicon-based semiconductor electronics commercially viable. Furthermore, they have benefited from a large body of knowledge around Si masking and etching techniques, which make fabrication of complicated geometries possible. This has enabled the current pervasiveness of silicon microsystems and components; they range from accelerometers for automotive airbags and inertial sensing, gyroscopes in video game controllers, micro-mirrors for projection displays, injector nozzles for inkjet printer cartridges, and mechanical timing references and RF filters for communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kroetz GH, Eickhoff MH, Moeller H (1999). Silicon Compatible Materials for Harsh Environment Sensors. Sensors and Actuators 74:182–189

    Article  Google Scholar 

  2. Mehregany M, Zorman CA, Rajan N, Wu CH (1998). Silicon Carbide MEMS for Harsh Environments. Proceedings of the IEEE 86(8):1594–1610

    Article  Google Scholar 

  3. Hunter GW, Neudeck PG, Okojie RS, Beheim GM, Powell JA, Chen L (2003). An Overview of High-Temperature Electronics and Sensor Development at NASA Glenn Research Center. Journal of Turbomachinery 125:658–664

    Article  Google Scholar 

  4. Sarro PM (2000). Silicon Carbide as a New MEMS Technology. Sensors and Actuators 82:210–218

    Article  Google Scholar 

  5. Wright NG, Horsfall AB (2007). SiC Sensors: A Review. Journal of Physics D: Applied Physics 40:6345–6354

    Article  Google Scholar 

  6. Hamada K (2009). Present Status and Future Prospects for Electronics in EVs/HEVs and Expectations for Wide Bandgap Semiconductor Devices. Materials Science Forum 600-603:889–893

    Article  Google Scholar 

  7. Hillion M, Chauvin J, Grondin O, Petit N (2008). Active Combustion Control of Diesel HCCI Engine: Combustion Timing. USA Society of Automotive Engineers, Inc., Warrendale, PA:Report number 2008-01-0984

    Google Scholar 

  8. Yoon M, Lee K, Sunwoo M (2007). A Method for Combustion Phasing Control Using Cylinder Pressure Measurement in a CRDI Diesel Engine. Mechatronics 17:469–479

    Article  Google Scholar 

  9. Toyota Motor Sales, USA Inc. Emissions #1 – Combustion Chemistry. http://www.autoshop101.com/forms/h55.pdf

  10. Jurger RK (1999). Automotive Electronics Hadbook, McGraw-Hill, USA

    Google Scholar 

  11. Turner J (2009). Automotive Sensors. Momentum Press, New York

    Google Scholar 

  12. DeLaat JC, Chang CT (2003). Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines. 16th International Symposium on Airbreathing Engines. Cleveland, Ohio, August 31-September 5, 2003:SABE2003–1054

    Google Scholar 

  13. He B, Shen T, Junichi K, Minggao O (2008). Input Observer-Based Individual Cylinder Air-Fuel Ratio Control: Modelling, Design and Validation. IEEE Transactions on Controls Systems Technology 16 (5):1057–1065

    Article  Google Scholar 

  14. Minor RR, Rowe DW (1998).Utilization of GPS/MEMS-IMU for Measurement of Dynamics for Range Testing of Missiles and Rockets. Position Location and Navigation Symposium, IEEE 1998:602–607

    Google Scholar 

  15. Baum GA (1998). Manufacturing Process Control for Industry of the Future. National Academy Press, Washington, D.C. Publication NMAB-487-2

    Google Scholar 

  16. Kersey D (2000). Optical Fiber Sensors for Permanent Down Well Monitoring Applications in the Oil and Gas Industry. IEICE Transactions Electronics E83-C(3):400–404

    Google Scholar 

  17. Vandelli N (2008). SiC MEMS Pressure Sensors For Harsh Environment Applications. MicroNano News, April, 2008:10–12

    Google Scholar 

  18. Tschulena G (1988). Sensors for Process Control. Physica Scripta T23:293–298

    Article  Google Scholar 

  19. Schadow KC (2004). MEMS Aerospace Applications. NATO Research and Technology Organization. RTO-EN-AVT-105

    Google Scholar 

  20. Brown TG, Davis B, Hepner D, Faust J, Myers C, Muller P, Harkins T, Hollis M, Miller C, Placzankis B (2001) Strap-Down Microelectromechanical (MEMS) Sensors for High-G Munition Applications. IEEE Transactions on Magnetics 37(1):336–342

    Article  Google Scholar 

  21. Habibi S, Cooper SJ, Stauffer J-M, Dutoit B (2008). Gun Hard Inertial Measurement Unit Based on MEMS Capacitive Accelerometer and Rate Sensor. Position, Location and Navigation Symposium, 2008 IEEE/ION:232–237

    Google Scholar 

  22. Farrar CR, Worden K (2007). An Introduction to Structural Health Monitoring. Philosophical Transactions of Royal Society A 365:303–315

    Article  Google Scholar 

  23. Eubank T (2007) Application of Condition Based Maintenance on Aerospace Structures. M.Sc. Thesis, Cranfield University

    Google Scholar 

  24. Romero R, Summers H, Cronkhite J (1996). NASA/CR-198446; ARL-CR-289

    Google Scholar 

  25. Beard SJ, Kumar A, Qing X, Chan HL, Zhang C, Ooi TK (2005) Practical Issues in Real-World Implementation of Structural Health Monitoring Systems. SPIE Smart Structures and Material Systems, San Diego CA, March 6-10, 2005:196–203

    Google Scholar 

  26. Cheng H (2007). Strategy for Assessment of WWER Steam Generator Tube Integrity. International Atomic Energy Agency. Report IAEA-TECDOC-1577

    Google Scholar 

  27. Kim I-S, Hong J-K, Kim H-N, Jang K-S (2003). Wear Behavior of Steam Generator Tubes in Nuclear Power Plant Operating Condition. Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17), Prague, Czech Republic, August 1722, 2003:D04-5.

    Google Scholar 

  28. Wang GW, Pran K, Sagvolden G, Havsgard GB, Jensen AE, Johnson GA, Vohra ST (2001). Ship Hull Structure Monitoring Using Fibreoptic Sensors. Smart Materials and Structures 10:472–478

    Article  Google Scholar 

  29. Chen H, Cardone V, Lacey P (1998). Use of Operation Support Information Technology to Increase Ship Safety and Efficiency. SNAME Transactions 106:105–127

    Google Scholar 

  30. Paik BG, Cho SR, Park B-J, Lee D, Yun J-H, Bae B-D (2007). Employment of Wireless Sensor Networks for Full-Scale Ship Application. IFIP International Federation for Information Processing, EUC 2007, LNCS 4808:113–122

    Google Scholar 

  31. Baldwin C, Kiddy J, Salter T, Chen P, Niemczuk J (2002). Fiber Optic Structural Health Monitoring System: Rough Sea Trials of the RV Triton. Oceans MTS/IEEE 3(3):1806–1813

    Article  Google Scholar 

  32. Boller C (2001). Ways and Options for Aircraft Structural Health Management. Smart Materials and Structures 10:-432440

    Google Scholar 

  33. Gerardi TG (1990). Health Monitoring Aircraft. Journal of Intelligent Material Systems and Structures 1:375–384

    Article  Google Scholar 

  34. Woelcken P, Bockenheimer C, Speckmann H, Entelmann W (2006). Outline of Overall Aircraft Imposed Requirements on Airframe Enhancements by Nanotechnologies and Resulting Opportunities. Proceedings of CANEUS 2006, August-September, Toulouse, France:69–72.

    Google Scholar 

  35. Staszewski WJ, Mahzan S, Traynor R (2009). Health Monitoring of Aerospace Composite Structures – Active and Passive Approach. Composites Science and Technology 69(11-12):1687–1685

    Google Scholar 

  36. Mancini S, Tumino G, Gaudenzi P (2006). Structural Health Monitoring for Future Space Vehicles. Journal of Intelligent Materials Systems and Structures 17:577–585

    Article  Google Scholar 

  37. Derriso MM, Chang FK (2006). Future Roles of Structural Sensing for Aerospace Applications. NATO Research and Technology Organization: RTO-MP-AVT-141

    Google Scholar 

  38. Miller LM (1999). MEMS for Space Applications. SPIE Proceedings 3680:2–11

    Article  Google Scholar 

  39. Tessler, A. (2007). Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles. NASA Report NASA/TM-2007-214871

    Google Scholar 

  40. Tor-Arne Grönland T-A, Pelle Rangsten P, Nese M, Lang M (2007). Miniaturization of Components and Systems for Space Using MEMS-Technology. Acta Astronautica 61:228–233

    Article  Google Scholar 

  41. de Rooij RF, Gautsch S, Briand D, Marxer C, Mileti G, Noell W, Shea H, Staufer U, van der Schoot B (2009). MEMS for Space. Transducers 2009, Denver, CO, USA, June 21-25, 2009

    Google Scholar 

  42. Takahashi K (2004) Micro Thrusters for Miniaturized Space Systems, Need and Perspective. Power MEMS, Kyoto, Japan, Nov. 28-30, 2004:2–3

    Google Scholar 

  43. George T, Son KA, Powers RA, del Castillo LY, Okojie R (2005). Harsh Environment Microtechnologies for NASA and Terrestrial Applications. IEEE Sensors:1253-1258

    Google Scholar 

  44. Hunter GW, Okojie RS, Krasowski M, Beheim, GM, Fralick G, Wrbanek J, Greenberg, P, Neudeck PG, Xu J (2007). Microsystems, Space Qualified Electronics, and Mobile Sensor Platforms for Harsh Environment Applications and Planetary Exploration. 5th International Planetary Probe Workshop, Bordeaux, France, June 25-29, 2007.

    Google Scholar 

  45. Choyke WJ, Matsunami H, Pensl G (2004). Silicon Carbide: Recent Major Advances. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  46. Wijesundara MBJ, Valente G, Ashurst WR, Howe RT, Pisano AP, Carraro C, Maboudian R (2004). Single-Source Chemical Vapor Deposition of 3C-SiC Films in a LPCVD Reactor Part I: Growth, Structure, and Chemical Characterization. Journal of the Electrochemical Socciety 151:C210–C214.

    Article  Google Scholar 

  47. Fu XA, Dunning JL, Zorman CA, Mehregany M (2005). Polycrystalline 3C-SiC Thin Films Deposited by Dual Precursor LPCVD for MEMS Applications. Sensors and Actuators A 119:169–176

    Article  Google Scholar 

  48. Soloviev SI, Gao Y, Sudarshan TS (2000). Doping of 6H-SiC by Selective Diffusion of Boron. Applied Physics Letters 77(24):4004–4006

    Article  Google Scholar 

  49. Zhuang D, Edgar JH (2005). Wet Etching of GaN, AlN, and SiC: a Review. Materials Science and Engineering 48:1–46.

    Article  Google Scholar 

  50. Roper CS, Howe RT, Maboudian R (2009). Room-Temperature Wet Etching of Polycrystalline and Nanocrystalline Silicon Carbide Thin Films with HF and HNO3. Journal of The Electrochemical Society 156(3):D104–D107

    Article  Google Scholar 

  51. Wijesundara MBJ, Walther DC, Stoldt CR, Fu K, Gao D, Carraro C, Pisano AP, Maboudian R (2003). Low Temperature CVD SiC Coated Si Microcomponents for Reduced Scale Engines. Proceedings of ASME International Mechanical Engineering Congress and Exhibition, Washington D.C., November 15-21, 2003:IMECE2003-41696.

    Google Scholar 

  52. Fox DS, Opila EJ, Hann RE (2000). Paralinear Oxidation of CVD SiC in Simulated Fuel-Rich Combustion. Journal of American Ceramic Society 83(7):1761–1767

    Article  Google Scholar 

  53. Neudeck PG (2006). Silicon Carbide Technology. The VLSI Handbook, Chapter 5 (Editor Wai-Kai Chen, CRC Press, Second Edition).

    Google Scholar 

  54. Patil AC (2009). Silicon Carbide JFET Integrated Circuit Technology for High-Temperature Sensors. Ph.D. Thesis. Case Western Reserve University.

    Google Scholar 

  55. Ozpineci B, Tolbert LM(2003). Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications. ORNL/TM-2003/257

    Google Scholar 

  56. Lebedev AA, Kozlovski VV, Strokan NB, Davydov DV, Ivanov AM, Strel’chuk AM, Yakimova R (2002). Radiation Hardness of Wide-Gap Semiconductors (Using the Example of Silicon Carbide). Semiconductors 36(11):1270–1275

    Article  Google Scholar 

  57. Kon S, Oldham K, Horowitz R (2007). Piezoresistive and Piezoelectric MEMS Strain Sensors for Vibration Detection. Proc. of SPIE Vol. 6529, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems:65292V-1

    Google Scholar 

  58. French PJ, Evans AGR (1989). Piezoresistance in Polysilicon and its Applications. Solid-State Electronics 32(1):1–10

    Article  Google Scholar 

  59. Suhling JC, Jaeger RC. Silicon Piezoresistive Stress Sensors and Their Application in Electronic Packaging. IEEE Sensors Journal 1(1):14–30

    Google Scholar 

  60. Shor JS, Goldstein D, Kurtz AD (1993). Characterization of n-Type β-SiC as a Piezoresistor. IEEE Transactions on Electron Devices 40(6):1093–1099

    Article  Google Scholar 

  61. Srikar VT, Spearing SM (2003). Materials Selection in Micromechanical Design: An Application of the Ashby Approach. Journal of Microelectromechanical Systems 12(1):3–10

    Article  Google Scholar 

  62. Srikar VT, Senturia SD (2002). The Reliability of Microelectromechanical Systems (MEMS) in Shock Environments. Journal of Microelectromechanical Systems 11(3):206–214

    Article  Google Scholar 

  63. Spearing SM (2000). Materials Issues in Microelectromechanical Systems (MEMS). Acta Metallurgica 48:179–196.

    Google Scholar 

  64. Yonenaga I (2003). High-temperature Strength of Bulk Single Crystals of III-V Nitrides. Journal of Materials Science: Materials in Electronics 14:279–281

    Article  Google Scholar 

  65. Yonenaga I (2001). Thermo-Mechanical Stability of Wide-Bandgap Semiconductors: High Temperature Hardness of SiC, AlN, GaN, ZnO and ZnSe. Physica B 308-310:1150–1152

    Article  Google Scholar 

  66. Pozzi M, Hassan M, Harris AJ, Burdess JS, Jiang L, Lee KK, Cheung R, Phelps GJ, Wright NG, Zorman CA, Mehregany M (2007). Mechanical Properties of a 3C-SiC Film Between Room Temperature and 600  ∘ C. Journal of Physics D: Applied Physics 40:3335–3342

    Article  Google Scholar 

  67. Pakula LS, Yang H, Pham HTM, French PJ, Sarro PM (2004). Fabrication of a CMOS compatible pressure sensor for harsh environments. Journal of Micromechanics and Microengineering 14(11):1478–1483

    Article  Google Scholar 

  68. Cree Semiconductor Product Specifications, www.cree.com

  69. Wijesundara MBJ, Gao D, Carraro C, Howe RT, Maboudian R (2003). Nitrogen Doping of Polycrystalline 3C-SiC Films Grown Using 1,3-Disilabutane in a Conventional LPCVD Reactor. Journal of Crystal Growth 259:18–25

    Article  Google Scholar 

  70. Telford M (2003). SiC’s power cuts cost. III-Vs Review 16(4):44–47

    Article  Google Scholar 

  71. Neudeck PG, Gaverick SL, Spry DJ, Chen L-Y, Beheim GM, Krasowsk MJ, Mehregany M (2009). Extreme temperature 6H-SiC JFET integrated circuit technology. Physica Solidi A 206(10):2329–2345

    Article  Google Scholar 

  72. Savrun E (2002). Packaging Considerations for Very High Tepmerature Microsystems. Sensors 2002, June 12-14, 2002:1139–1143

    Google Scholar 

  73. Vig JR (2001). Temperature-Insensitive Dual-Mode Resonant Sensors – A Review. IEEE Sensors Journal 1:62–68

    Article  Google Scholar 

  74. Melamud R, Kim B, Hopcroft MA, Chandorkar S, Agarwal M, Jha CM, Kenny TW (2007). Composite Flexural-Mode Resonator with Controllable Turnover Temperature. MEMS 2007, Kobe, Japan:199–202

    Google Scholar 

  75. Li Z,Bradt C (1986). Thermal Expansion of the Cubic (3C) Polytype of SiC. Journal of Materials Science 21:4366–4368

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu B. J. Wijesundara .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wijesundara, M.B.J., Azevedo, R.G. (2011). Introduction. In: Silicon Carbide Microsystems for Harsh Environments. MEMS Reference Shelf, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7121-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7121-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7120-3

  • Online ISBN: 978-1-4419-7121-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics