Skip to main content

Resources for Metabolomics

  • Chapter
  • First Online:
Genetics and Genomics of the Brassicaceae

Abstract

Metabolomics is developing toward an integral component of functional genomics approaches. The large structural diversity of plant metabolites requires different analytical techniques for broad metabolite analysis. In addition, new bioinformatics tools and databases are necessary for data analysis and storage. This chapter describes the resources available for comprehensive analysis of plant secondary metabolites focusing on Arabidopsis thaliana and Brassica species. In particular, a platform for non-targeted profiling of semi-polar plant metabolites based on liquid chromatography coupled to mass spectrometry is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCI:

Atmospheric pressure chemical ionization

API:

Atmospheric pressure ionization

APPI:

Atmospheric pressure photoionization

CID:

Collision-induced dissociation

DGDG:

Digalactosyldiacylglycerol

ESI:

Electrospray ionization

FT-ICR:

Fourier-transform ion cyclotron resonance

GC:

Gas chromatography

LC:

Liquid chromatography

MS:

Mass spectrometry

MGDG:

Monogalactosyldiacylglycerol

NMR:

Nuclear magnetic resonance

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

ppb:

Parts per billion

ppm:

Parts per million

PS:

Phosphatidylserine

QTOF:

Quadrupole-time-of-flight

SQDG:

Sulfoquinovosyldiacylglycerol

UPLC:

Ultra-performance liquid chromatography

References

  • Abdel-Farid IB, Kim HK, Choi YH, Verpoorte R (2007) Metabolic characterization of Brassica rapa leaves by NMR spectroscopy. J Agric Food Chem 55:7936–7943

    CAS  PubMed  Google Scholar 

  • Abello N, Geurink PP, van der Toorn M, van Oosterhout AJM, Lugtenburg J, van der Marel GA, Kerstjens HAM, Postma DS, Overkleeft HS, Bischoff R (2008) Poly(ethylene glycol)-based stable isotope labeling reagents for the quantitative analysis of low molecular weight metabolites by LC-MS. Anal Chem 80:9171–9180

    CAS  PubMed  Google Scholar 

  • Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier-transform ion cyclotron mass spectrometry. Omics 6:217–234

    CAS  PubMed  Google Scholar 

  • Barry SJ, Carr RM, Lane SJ, Leavens WJ, Manning CO, Monte S, Waterhouse I (2003) Use of S-pentafluorophenyl tris(2,4,6-trimethoxyphenyl) phosphonium acetate bromide and (4-hydrazino-4-oxobutyl) [tris(2,4,6-trimethoxyphenyl)]phosphonium bromide for the derivatization of alcohols, aldehydes and ketones for detection by liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Spectrom 17:484–497

    CAS  PubMed  Google Scholar 

  • Bednarek P, Schneider B, Svatos A, Oldham NJ, Hahlbrock K (2005) Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol 138:1058–1070

    CAS  PubMed  Google Scholar 

  • Benton HP, Wong DM, Trauger SA, Siuzdak G (2008) XCMS2: Processing tandem mass spectrometry data for metabolite identification and structural characterization. Anal Chem 80:6382–6389

    CAS  PubMed  Google Scholar 

  • Bloor SJ, Abrahams S (2002) The structure of the major anthocyanin in Arabidopsis thaliana. Phytochemistry 59:343–346

    CAS  PubMed  Google Scholar 

  • Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    CAS  PubMed  Google Scholar 

  • Böttcher C, von Roepenack-Lahaye E, Schmidt J, Clemens S, Scheel D (2009a) Analysis of phenolic choline esters from seeds of Arabidopsis thaliana and Brassica napus by capillary liquid chromatography/electrospray-tandem mass spectrometry. J Mass Spectrom 44:466–476

    PubMed  Google Scholar 

  • Böttcher C, von Roepenack-Lahaye E, Schmidt J, Schmotz C, Neumann S, Scheel D, Clemens S (2008) Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiol 147:2107–2120

    PubMed  Google Scholar 

  • Böttcher C, von Roepenack-Lahaye E, Willscher E, Scheel D, Clemens S (2007) Evaluation of matrix effects in metabolite profiling based on capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Anal Chem 79:1507–1513

    PubMed  Google Scholar 

  • Böttcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E (2009b) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21:1830–1845

    PubMed  Google Scholar 

  • Bouchereau A, Hamelin J, Lamour I, Renard M, Larher F (1991) Distribution of sinapine and related compounds in seeds of Brassica and allied genera. Phytochemistry 30:1873–1881

    CAS  Google Scholar 

  • Bringmann G, Kajahn I, Neususs C, Pelzing M, Laug S, Unger M, Holzgrabe U (2005) Analysis of the glucosinolate pattern of Arabidopsis thaliana seeds by capillary zone electrophoresis coupled to electrospray ionization-mass spectrometry. Electrophoresis 26:1513–1522

    CAS  PubMed  Google Scholar 

  • Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196

    CAS  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    CAS  PubMed  Google Scholar 

  • Browse J, Somerville CR (1994) Glycerolipids. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis, pp 881–912. Cold Spring Harbor Laboratory Press, Cold Spring Habor

    Google Scholar 

  • Carlson EE, Cravatt BF (2007a) Chemoselective probes for metabolite enrichment and profiling. Nat Methods 4:429–435

    CAS  PubMed  Google Scholar 

  • Carlson EE, Cravatt BF (2007b) Enrichment tags for enhanced-resolution profiling of the polar metabolome. J Am Chem Soc 129:15780–15782

    CAS  PubMed  Google Scholar 

  • Cataldi TRI, Rubino A, Lelario F, Bufo SA (2007) Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid Commun Mass Spectrom 21:2374–2388

    CAS  PubMed  Google Scholar 

  • Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci U S A 102:14458–14462

    CAS  PubMed  Google Scholar 

  • Chapple CCS, Shirely BW, Zook M, Hammerschmidt R, Somerville SC (1994) Secondary metabolism in Arabidopsis. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis, pp 989–1030. Cold Spring Harbor Laboratory Press, Cold Spring Habor

    Google Scholar 

  • Chen F, Tholl D, D’Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494

    CAS  PubMed  Google Scholar 

  • Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom 36:849–865

    CAS  PubMed  Google Scholar 

  • Cuyckens F, Claeys M (2004) Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom 39:1–15

    CAS  PubMed  Google Scholar 

  • De Vos RC, Moco S, Lommen A, Keurentjes JJ, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2:778–791

    PubMed  Google Scholar 

  • Devaiah SP, Roth MR, Baughman E, Li MY, Tamura P, Jeannotte R, Welti R, Wang XM (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE D alpha 1 knockout mutant. Phytochemistry 67:1907–1924

    CAS  PubMed  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins - a final frontier in flavonoid research? New Phytol 165:9–28

    CAS  PubMed  Google Scholar 

  • Dunn WB (2008) Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys Biol 5. doi:10.1088/1478–3975/5/1/011001

    CAS  PubMed  Google Scholar 

  • D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316

    PubMed  Google Scholar 

  • Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    CAS  PubMed  Google Scholar 

  • Fellenberg C, Milkowski C, Hause B, Lange PR, Bottcher C, Schmidt J, Vogt T (2008) Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis thaliana. Plant J 56:132–145

    CAS  PubMed  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    CAS  PubMed  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    CAS  PubMed  Google Scholar 

  • Fiehn O, Sumner LW, Rhee SY, Ward J, Dickerson J, Lange BM, Lane G, Roessner U, Last R, Nikolau B (2007) Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics 3:195–201

    CAS  Google Scholar 

  • Fu J, Keurentjes JJB, Bouwmeester H, America T, Verstappen FWA, Ward JL, Beale MH, de Vos RCH, Dijkstra M, Scheltema RA, Johannes F, Koornneef M, Vreugdenhil D, Breitling R, Jansen RC (2009) System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genet 41:166–167

    CAS  PubMed  Google Scholar 

  • Gangl ET, Annan M, Spooner N, Vouros P (2001) Reduction of signal suppression effects in ESI-MS using a nanosplitting device. Anal Chem 73:5635–5644

    CAS  PubMed  Google Scholar 

  • Giavalisco P, Hummel J, Lisec J, Inostroza AC, Catchpole G, Willmitzer L (2008) High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas. Anal Chem 80:9417–9425

    CAS  PubMed  Google Scholar 

  • Giavalisco P, Kohl K, Hummel J, Seiwert B, Willmitzer L (2009) 13C Isotope-labeled metabolomes allowing for improved compound annotation and relative quantification in liquid chromatography-mass spectrometry-based metabolomic research. Anal Chem 81:6546–6551

    CAS  PubMed  Google Scholar 

  • Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL (2008a) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407

    CAS  PubMed  Google Scholar 

  • Glauser G, Guillarme D, Grata E, Boccard J, Thiocone A, Carrupt PA, Veuthey JL, Rudaz S, Wolfender JL (2008b) Optimized liquid chromatography-mass spectrometry approach for the isolation of minor stress biomarkers in plant extracts and their identification by capillary nuclear magnetic resonance. J Chromatogr A 1180:90–98

    CAS  PubMed  Google Scholar 

  • Grange AH, Zumwalt MC, Sovocool GW (2006) Determination of ion and neutral loss compositions and deconvolution of product ion mass spectra using an orthogonal acceleration time-of-flight mass spectrometer and an ion correlation program. Rapid Commun Mass Spectrom 20:89–102

    CAS  PubMed  Google Scholar 

  • Grata E, Boccard J, Guillarme D, Glauser G, Carrupt PA, Farmer EE, Wolfender JL, Rudaz S (2008) UPLC-TOF-MS for plant metabolomics: a sequential approach for wound marker analysis in Arabidopsis thaliana. J Chromatogr B Analyt Technol Biomed Life Sci 871:261–270

    CAS  PubMed  Google Scholar 

  • Grata E, Guillarme D, Glauser G, Boccard J, Carrupt PA, Veuthey JL, Rudaz S, Wolfender JL (2009) Metabolite profiling of plant extracts by ultra-high-pressure liquid chromatography at elevated temperature coupled to time-of-flight mass spectrometry. J Chromatogr A 1216:5660–5668

    CAS  PubMed  Google Scholar 

  • Hagemeier J, Schneider B, Oldham NJ, Hahlbrock K (2001) Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proc Natl Acad Sci U S A 98:753–758

    CAS  PubMed  Google Scholar 

  • Harrabi S, Herchi W, Kallel H, Mayer PM, Boukhchina S (2009) Liquid chromatographic-mass spectrometric analysis of glycerophospholipids in corn oil. Food Chem 114:712–716

    CAS  Google Scholar 

  • Hegeman AD, Schulte CF, Cui Q, Lewis IA, Huttlin EL, Eghbalnia H, Harms AC, Ulrich EL, Markley JL, Sussman MR (2007) Stable isotope assisted assignment of elemental compositions for metabolomics. Anal Chem 79:6912–6921

    CAS  PubMed  Google Scholar 

  • Hill DW, Kertesz TM, Fontaine D, Friedman R, Grant DF (2008) Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra. Anal Chem 80:5574–5582

    CAS  PubMed  Google Scholar 

  • Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Papenbrock J, Saito K (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280:25590–25595

    CAS  PubMed  Google Scholar 

  • Hopley C, Bristow T, Lubben A, Simpson A, Bul E, Klagkou K, Herniman J, Langley J (2008) Towards a universal product ion mass spectral library - reproducibility of product ion spectra across eleven different mass spectrometers. Rapid Commun Mass Spectrom 22:1779–1786

    CAS  PubMed  Google Scholar 

  • Huhman DV, Sumner LW (2002) Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59:347–360

    CAS  PubMed  Google Scholar 

  • Isaac G, Jeannotte R, Esch SW, Welti R (2007) New mass-spectrometry-based strategies for lipids. Genet Eng (N Y) 28:129–157

    CAS  Google Scholar 

  • Kachlicki P, Einhorn J, Muth D, Kerhoas L, Stobiecki M (2008) Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling. J Mass Spectrom 43:572–586

    CAS  PubMed  Google Scholar 

  • Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Sakata K, Shimizu B (2008) Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J 55:989–999

    CAS  PubMed  Google Scholar 

  • Kai K, Shimizu B, Mizutani M, Watanabe K, Sakata K (2006) Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry 67:379–386

    CAS  PubMed  Google Scholar 

  • Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636

    CAS  PubMed  Google Scholar 

  • Katajamaa M, Oresic M (2005) Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics 6. doi:10.1186/1471–2105–6–179

    CAS  PubMed  Google Scholar 

  • Kendziorski C, Irizarry RA, Chen KS, Haag JD, Gould MN (2005) On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci U S A 102:4252–4257

    CAS  PubMed  Google Scholar 

  • Kerhoas L, Aouak D, Cingoz A, Routaboul JM, Lepiniec L, Einhorn J, Birlirakis N (2006) Structural characterization of the major flavonoid glycosides from Arabidopsis thaliana seeds. J Agric Food Chem 54:6603–6612

    CAS  PubMed  Google Scholar 

  • Keurentjes JJB, Koornneef M, Vreugdenhil D (2008) Quantitative genetics in the age of omics. Curr Opin Plant Biol 11:123–128

    CAS  PubMed  Google Scholar 

  • Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7. doi:10.1186/1471–2105–7–234

    CAS  PubMed  Google Scholar 

  • Kind T, Fiehn O (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8. doi:10.1186/1471–2105–8–105

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684

    CAS  Google Scholar 

  • Konishi Y, Kiyota T, Draghici C, Gao JM, Yeboah F, Acoca S, Jarussophon S, Purisima E (2007) Molecular formula analysis by an MS/MS/MS technique to expedite dereplication of natural products. Anal Chem 79:1187–1197

    CAS  PubMed  Google Scholar 

  • Lamos SM, Shortreed MR, Frey BL, Belshaw PJ, Smith LM (2007) Relative quantification of carboxylic acid metabolites by liquid chromatography-mass spectrometry using isotopic variants of cholamine. Anal Chem 79:5143–5149

    CAS  PubMed  Google Scholar 

  • Last RL, Jones AD, Shachar-Hill Y (2007) Towards the plant metabolome and beyond. Nat Rev Mol Cell Biol 8:167–174

    CAS  PubMed  Google Scholar 

  • Leavens WJ, Lane SJ, Carr RM, Lockie AM, Waterhouse I (2002) Derivatization for liquid chromatography/electrospray mass spectrometry: synthesis of tris(trimethoxyphenyl)phosphonium compounds and their derivatives of amine and carboxylic acids. Rapid Commun Mass Spectrom 16:433–441

    CAS  PubMed  Google Scholar 

  • Li Y, Beisson F, Pollard M, Ohlrogge J (2006) Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67:904–915

    CAS  PubMed  Google Scholar 

  • Li HJ, Deinzer ML (2007) Tandem mass spectrometry for sequencing proanthocyanidins. Anal Chem 79:1739–1748

    CAS  PubMed  Google Scholar 

  • Lommen A (2009) MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81:3079–3086

    CAS  PubMed  Google Scholar 

  • Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318–333

    CAS  PubMed  Google Scholar 

  • Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148:2021–2049

    CAS  PubMed  Google Scholar 

  • Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, Shinozaki K, Saito K (2009) MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J 57:555–577

    CAS  PubMed  Google Scholar 

  • Mellon FA, Bennett RN, Holst B, Williamson G (2002) Intact glucosinolate analysis in plant extracts by programmed cone voltage electrospray LC/MS: performance and comparison with LC/MS/MS methods. Anal Biochem 306:83–91

    CAS  PubMed  Google Scholar 

  • Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Törjék O, Fiehn O, Eckardt Ä, Willmitzer L, Selbig J, Altmann T (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:4759–4764

    CAS  PubMed  Google Scholar 

  • Mock HP, Wray V, Beck W, Metzger JW, Strack D (1993) Coumaroylaspartate from cell-suspension cultures of Arabidopsis thaliana. Phytochemistry 34:157–159

    CAS  Google Scholar 

  • Moco S, Schneider B, Vervoort J (2009) Plant micrometabolomics: the analysis of endogenous metabolites present in a plant cell or tissue. J Proteome Res 8:1694–1703

    CAS  PubMed  Google Scholar 

  • Muroi A, Ishihara A, Tanaka C, Ishizuka A, Takabayashi J, Miyoshi H, Nishioka T (2009) Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana . Planta 230:517–527

    CAS  PubMed  Google Scholar 

  • Neue UD, Mazzeo JR (2001) A theoretical study of the optimization of gradients at elevated temperature. J Sep Sci 24:921–929

    CAS  Google Scholar 

  • Nordstrom A, Want E, Northen T, Lehtio J, Siuzdak G (2008) Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal Chem 80:421–429

    PubMed  Google Scholar 

  • Ohta D, Shibata D, Kanaya S (2007) Metabolic profiling using Fourier-transform ion-cyclotron-resonance mass spectrometry. Anal Bioanal Chem 389:1469–1475

    CAS  PubMed  Google Scholar 

  • Ojanpera S, Pelander A, Pelzing M, Krebs I, Vuori E, Ojanpera I (2006) Isotopic pattern and accurate mass determination in urine drug screening by liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 20:1161–1167

    CAS  PubMed  Google Scholar 

  • Oksman-Caldentey KM, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–179

    CAS  PubMed  Google Scholar 

  • Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inze D, Goossens A (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci U S A 105:1380–1385

    CAS  PubMed  Google Scholar 

  • Pedras MS, Adio AM, Suchy M, Okinyo DP, Zheng QA, Jha M, Sarwar MG (2006) Detection, characterization and identification of crucifer phytoalexins using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J Chromatogr A 1133:172–183

    CAS  PubMed  Google Scholar 

  • Pedras MS, Okanga FI, Zaharia IL, Khan AQ (2000) Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry 53:161–176

    CAS  PubMed  Google Scholar 

  • Pellegrin V (1983) Molecular formulas of organic compounds-the nitrogen rule and degree of unsaturation. J Chem Educ 60:626–633

    CAS  Google Scholar 

  • Petersen BL, Chen SX, Hansen CH, Olsen CE, Halkier BA (2002) Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta 214:562–571

    CAS  PubMed  Google Scholar 

  • Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, Tokuhisa J, Kliebenstein DJ, Mitchell-Olds T, Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59:663–671

    CAS  PubMed  Google Scholar 

  • Roberts LD, McCombie G, Titman CM, Griffin JL (2008) A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B Analyt Technol Biomed Life Sci 871:174–181

    CAS  PubMed  Google Scholar 

  • Rochfort SJ, Trenerry VC, Imsic M, Panozzo J, Jones R (2008) Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation. Phytochemistry 69:1671–1679

    CAS  PubMed  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771

    CAS  PubMed  Google Scholar 

  • Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    CAS  PubMed  Google Scholar 

  • Saito K, Hirai MY, Yonekura-Sakakibara K (2008) Decoding genes with coexpression networks and metabolomics - ‘majority report by precogs’. Trends Plant Sci 13:36–43

    CAS  PubMed  Google Scholar 

  • Schmidt A, Karas M, Dulcks T (2003) Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J Am Soc Mass Spectrom 14:492–500

    CAS  PubMed  Google Scholar 

  • Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20:2447–2454

    CAS  PubMed  Google Scholar 

  • Scholz M, Selbig J (2007) Visualization and analysis of molecular data. In: Weckwerth W (ed) Metabolomics: methods and protocols, pp 87–104. Humana Press, Totowa, NJ

    Google Scholar 

  • Schwab W (2003) Metabolome diversity: too few genes, too many metabolites? Phytochemistry 62:837–649

    CAS  PubMed  Google Scholar 

  • Shepherd T, Dobson G, Verrall SR, Conner S, Griffiths DW, McNicol JW, Davies HV, Stewart D (2007) Potato metabolomics by GC-MS: what are the limiting factors? Metabolomics 3:475–488

    CAS  Google Scholar 

  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    CAS  PubMed  Google Scholar 

  • Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58

    CAS  PubMed  Google Scholar 

  • Steuer R, Morgenthal K, Weckwerth W, Selbig J (2007) A gentle guide to the analysis of metabolomic data. In: Weckwerth W (ed) Metabolomics: Methods and Protocols, pp 105–126. Humana Press, Totowa, NJ

    Google Scholar 

  • Stobiecki M, Skirycz A, Kerhoas L, Kachlicki P, Muth D, Einhorn J, Mueller-Roeber B (2006) Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS. Metabolomics 2:197–219

    CAS  Google Scholar 

  • Stoll N, Schmidt E, Thurow K (2006) Isotope pattern evaluation for the reduction of elemental compositions assigned to high-resolution mass spectral data from electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 17:1692–1699

    CAS  PubMed  Google Scholar 

  • Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O (2008) OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics 9. doi:10.1186/1471–2105–9–163

    PubMed  Google Scholar 

  • Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221

    CAS  Google Scholar 

  • Sysi-Aho M, Katajamaa M, Yetukuri L, Oresic M (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics 8. doi:10.1186/1471–2105–8–93

    CAS  PubMed  Google Scholar 

  • t’Kindt R, De Veylder L, Storme M, Deforce D, Van Bocxlaer J (2008) LC-MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: optimization of pre-LC-MS procedure parameters. J Chromatogr B Analyt Technol Biomed Life Sci 871:37–43

    PubMed  Google Scholar 

  • Tan J, Bednarek P, Liu J, Schneider B, Svatos A, Hahlbrock K (2004) Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry 65:691–699

    CAS  PubMed  Google Scholar 

  • Tautenhahn R, Bottcher C, Neumann S (2008) Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9. doi:10.1186/1471–2105–9–504

    CAS  Google Scholar 

  • Tautenhahn R, Böttcher C, Neumann S (2007) Annotation of LC/ESI-MS mass signals. In: Hochreiter S (ed) Bioinformatics and research and development, pp 371–380. Springer, Heidelberg

    Google Scholar 

  • Thiocone A, Farmer EE, Wolfender JL (2008) Screening for wound-induced oxylipins in Arabidopsis thaliana by differential HPLC-APCI/MS profiling of crude leaf extracts and subsequent characterisation by capillary-scale NMR. Phytochem Anal 19:198–205

    CAS  PubMed  Google Scholar 

  • Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771

    CAS  PubMed  Google Scholar 

  • Tian QG, Rosselot RA, Schwartz SJ (2005) Quantitative determination of intact glucosinolates in broccoli, broccoli sprouts, brussels sprouts, and cauliflower by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Biochem 343:93–99

    CAS  PubMed  Google Scholar 

  • Tohge T, Fernie AR (2009) Web-based resources for mass-spectrometry-based metabolomics: a user’s guide. Phytochemistry 70:450–456

    CAS  PubMed  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    CAS  PubMed  Google Scholar 

  • Tomer KB, Moseley MA, Deterding LJ, Parker CE (1994) Capillary liquid-chromatography mass-spectrometry. Mass Spectrom Rev 13:431–457

    CAS  Google Scholar 

  • Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol 98:1304–1309

    CAS  PubMed  Google Scholar 

  • van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7. doi:10.1186/1471–2164–7–142

    PubMed  Google Scholar 

  • Veit M, Pauli GF (1999) Major flavonoids from Arabidopsis thaliana leaves. J Nat Prod 62:1301–1303

    CAS  PubMed  Google Scholar 

  • von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L, Schmidt J, Scheel D, Clemens S (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol 134:548–559

    Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    CAS  PubMed  Google Scholar 

  • Wang X (2002) Phospholipase D in hormonal and stress signaling. Curr Opin Plant Biol 5:408–414

    CAS  PubMed  Google Scholar 

  • Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62:949–957

    CAS  PubMed  Google Scholar 

  • Welti R, Wang X (2004) Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr Opin Plant Biol 7:337–344

    CAS  PubMed  Google Scholar 

  • Werner E, Croixmarie V, Umbdenstock T, Ezan E, Chaminade P, Tabet JC, Junot C (2008a) Mass spectrometry-based metabolomics: accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution. Anal Chem 80:4918–4932

    CAS  PubMed  Google Scholar 

  • Werner E, Heilier JF, Ducruix C, Ezan E, Junot C, Tabet JC (2008b) Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends. J Chromatogr B Analyt Technol Biomed Life Sci 871:143–163

    CAS  PubMed  Google Scholar 

  • Wolfender JL, Waridel P, Ndjoko K, Hobby KR, Major HJ, Hostettmann K (2000) Evaluation of Q-TOF-MS/MS and multiple stage IT-MSn for the dereplication of flavonoids and related compounds in crude plant extracts. Analusis 28:895–906

    CAS  Google Scholar 

  • Yang WC, Adamec J, Regnier FE (2007) Enhancement of the LC/MS analysis of fatty acids through derivatization and stable isotope coding. Anal Chem 79:5150–5157

    CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Böttcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Böttcher, C., von Roepenack-Lahaye, E., Scheel, D. (2011). Resources for Metabolomics. In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_17

Download citation

Publish with us

Policies and ethics