Skip to main content

Bile Duct Development and Biliary Differentiation

  • Chapter
  • First Online:
Molecular Pathology of Liver Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 5))

  • 3735 Accesses

Abstract

Bile is excreted by the hepatocytes in the bile canaliculi and flows via the canals of Hering into the intrahepatic bile ducts. See Chap. 1 for more details on liver anatomy. The latter drain the bile to the intestine via the extrahepatic biliary tract, which consists of hepatic ducts, cystic duct, gallbladder, and common bile duct. All segments of the biliary tract are delineated by cholangiocytes, a specialized epithelial cell type that modifies the composition of the bile when it transits through the ducts. An independent chapter describing biliary epithelial cells is included in the textbook (see Chap. 4). Within the liver, the biliary tree forms a branched network in which the ducts are classified with respect to the lobular architecture into ductules and interlobular ducts [1]; an alternative view which takes the functional heterogeneity of the cholangiocytes into account classifies the bile ducts according to their size [2–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roskams TA, Theise ND, Balabaud C, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39:1739–45.

    Article  PubMed  Google Scholar 

  2. Glaser S, Francis H, Demorrow S, et al. Heterogeneity of the intrahepatic biliary epithelium. World J Gastroenterol. 2006;12:3523–36.

    PubMed  CAS  Google Scholar 

  3. Strazzabosco M, Fabris L. Functional anatomy of normal bile ducts. Anat Rec (Hoboken). 2008;291:653–60.

    Article  Google Scholar 

  4. Glaser SS, Gaudio E, Rao A, et al. Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Lab Invest. 2009;89:456–69.

    Article  PubMed  CAS  Google Scholar 

  5. Zhao R, Duncan SA. Embryonic development of the liver. Hepatology. 2005;41:956–67.

    Article  PubMed  CAS  Google Scholar 

  6. Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology. 2009;137:62–79.

    Article  PubMed  CAS  Google Scholar 

  7. Germain L, Blouin MJ, Marceau N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res. 1988;48:4909–18.

    PubMed  CAS  Google Scholar 

  8. Shiojiri N. Development and differentiation of bile ducts in the mammalian liver. Microsc Res Tech. 1997;39:328–35.

    Article  PubMed  CAS  Google Scholar 

  9. Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken). 2008;291:628–35.

    Article  CAS  Google Scholar 

  10. Hammar JA. Uber die erste Entstehung der nicht kapillaren intrahepatischen Gallengange beim Menschen. Z Mikrosk Anat Forsch. 1926;5:59–89.

    Google Scholar 

  11. Desmet VJ, Van Eyken P, Sciot R. Cytokeratins for probing cell lineage relationships in developing liver. Hepatology. 1990;12:1249–51.

    Article  PubMed  CAS  Google Scholar 

  12. Stosiek P, Kasper M, Karsten U. Expression of cytokeratin 19 during human liver organogenesis. Liver. 1990;10:59–63.

    PubMed  CAS  Google Scholar 

  13. Shiojiri N, Lemire JM, Fausto N. Cell lineages and oval cell progenitors in rat liver development. Cancer Res. 1991;51:2611–20.

    PubMed  CAS  Google Scholar 

  14. Antoniou A, Raynaud P, Cordi S, et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology. 2009;136:2325–33.

    Article  PubMed  CAS  Google Scholar 

  15. Hanley KP, Oakley F, Sugden S, et al. Ectopic SOX9 mediates extracellular matrix deposition characteristic of organ fibrosis. J Biol Chem. 2008;283:14063–71.

    Article  PubMed  CAS  Google Scholar 

  16. Chikhi N, Holic N, Guellaen G, et al. Gamma-glutamyl transpeptidase gene organization and expression: a comparative analysis in rat, mouse, pig and human species. Comp Biochem Physiol B Biochem Mol Biol. 1999;122:367–80.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang M, Thorgeirsson SS. Modulation of connexins during differentiation of oval cells into hepatocytes. Exp Cell Res. 1994;213:37–42.

    Article  PubMed  CAS  Google Scholar 

  18. Couvelard A, Bringuier AF, Dauge MC, et al. Expression of integrins during liver organogenesis in humans. Hepatology. 1998;27:839–47.

    Article  PubMed  CAS  Google Scholar 

  19. Shiojiri N, Katayama H. Development of Dolichos biflorus agglutinin (DBA) binding sites in the bile duct of the embryonic mouse liver. Anat Embryol (Berl). 1988;178:15–20.

    Article  CAS  Google Scholar 

  20. Clotman F, Jacquemin P, Plumb-Rudewiez N, et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev. 2005;19:1849–54.

    Article  PubMed  CAS  Google Scholar 

  21. Weinstein M, Monga SP, Liu Y, et al. Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on beta1-integrin to promote normal liver development. Mol Cell Biol. 2001;21:5122–31.

    Article  PubMed  CAS  Google Scholar 

  22. Oda T, Elkahloun AG, Pike BL, et al. Mutations in the human Jagged-1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16:235–42.

    Article  PubMed  CAS  Google Scholar 

  23. Li L, Krantz ID, Deng Y, et al. Alagille syndrome is caused by mutations in human Jagged-1, which encodes a ligand for Notch1. Nat Genet. 1997;16:243–51.

    Article  PubMed  CAS  Google Scholar 

  24. McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79:169–73.

    Article  PubMed  CAS  Google Scholar 

  25. Loomes KM, Russo P, Ryan M, et al. Bile duct proliferation in liver-specific Jag1 conditional knockout mice: effects of gene dosage. Hepatology. 2007;45:323–30.

    Article  PubMed  CAS  Google Scholar 

  26. Geisler F, Nagl F, Mazur PK, et al. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology. 2008;48:607–16.

    Article  PubMed  CAS  Google Scholar 

  27. Zong Y, Panikkar A, Xu J, et al. Notch signaling controls liver development by regulating biliary differentiation. Development. 2009;136:1727–39.

    Article  PubMed  CAS  Google Scholar 

  28. Suzuki K, Tanaka M, Watanabe N, et al. p75 Neurotrophin receptor is a marker for precursors of stellate cells and portal fibroblasts in mouse fetal liver. Gastroenterology. 2008;135:270–81.

    Article  PubMed  CAS  Google Scholar 

  29. Lorent K, Yeo SY, Oda T, et al. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development. 2004;131:5753–66.

    Article  PubMed  CAS  Google Scholar 

  30. McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development. 2002;129:1075–82.

    PubMed  CAS  Google Scholar 

  31. Lozier J, McCright B, Gridley T. Notch signaling regulates bile duct morphogenesis in mice. PLoS ONE. 2008;3:e1851.

    Article  PubMed  CAS  Google Scholar 

  32. Tchorz JS, Kinter J, Muller M, et al. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology. 2009;50:871–9.

    Article  PubMed  CAS  Google Scholar 

  33. Nejak-Bowen K, Monga SP. Wnt/beta-catenin signaling in hepatic organogenesis. Organogenesis. 2008;4:92–9.

    Article  PubMed  Google Scholar 

  34. Monga SP, Monga HK, Tan X, et al. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology. 2003;124:202–16.

    Article  PubMed  CAS  Google Scholar 

  35. Hussain SZ, Sneddon T, Tan X, et al. Wnt impacts growth and differentiation in ex vivo liver development. Exp Cell Res. 2004;292:157–69.

    Article  PubMed  CAS  Google Scholar 

  36. Tan X, Yuan Y, Zeng G, et al. Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology. 2008;47:1667–79.

    Article  PubMed  CAS  Google Scholar 

  37. Decaens T, Godard C, de Reynies A, et al. Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology. 2008;47:247–58.

    Article  PubMed  CAS  Google Scholar 

  38. Yanai M, Tatsumi N, Hasunuma N, et al. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev Dyn. 2008;237:1268–83.

    Article  PubMed  CAS  Google Scholar 

  39. Ader T, Norel R, Levoci L, et al. Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts. Mech Dev. 2006;123:177–94.

    Article  PubMed  CAS  Google Scholar 

  40. Clotman F, Lannoy VJ, Reber M, et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development. 2002;129:1819–28.

    PubMed  CAS  Google Scholar 

  41. Coffinier C, Gresh L, Fiette L, et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development. 2002;129:1829–38.

    PubMed  CAS  Google Scholar 

  42. Matthews RP, Lorent K, Pack M. Transcription factor onecut3 regulates intrahepatic biliary development in zebrafish. Dev Dyn. 2008;237:124–31.

    Article  PubMed  CAS  Google Scholar 

  43. Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci. 2004;117:3165–74.

    Article  PubMed  CAS  Google Scholar 

  44. Oikawa T, Kamiya A, Kakinuma S, et al. Sa114 regulates cell fate decision in fetal hepatic stem/progenitor cells. Gastroenterology. 2009;136:1000–11.

    Article  PubMed  CAS  Google Scholar 

  45. Hunter MP, Wilson CM, Jiang X, et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol. 2007;308:355–67.

    Article  PubMed  CAS  Google Scholar 

  46. Krupczak-Hollis K, Wang X, Kalinichenko VV, et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol. 2004;276:74–88.

    Article  PubMed  CAS  Google Scholar 

  47. Ludtke TH, Christoffels VM, Petry M, et al. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology. 2009;49:969–78.

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki A, Sekiya S, Buscher D, et al. Tbx3 controls the fate of hepatic progenitor cells in liver development by suppressing p19ARF expression. Development. 2008;135:1589–95.

    Article  PubMed  CAS  Google Scholar 

  49. Yamasaki H, Sada A, Iwata T, et al. Suppression of C/EBPalpha expression in periportal hepatoblasts may stimulate biliary cell differentiation through increased Hnf6 and Hnf1b expression. Development. 2006;133:4233–43.

    Article  PubMed  CAS  Google Scholar 

  50. Kodama Y, Hijikata M, Kageyama R, et al. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology. 2004;127:1775–86.

    Article  PubMed  CAS  Google Scholar 

  51. Tanimizu N, Miyajima A, Mostov KE. Liver progenitor cells fold up a cell monolayer into a double-layered structure during tubular morphogenesis. Mol Biol Cell. 2009;20:2486–94.

    Article  PubMed  CAS  Google Scholar 

  52. Terada T, Nakanuma Y. Detection of apoptosis and expression of apoptosis-related proteins during human intrahepatic bile duct development. Am J Pathol. 1995;146:67–74.

    PubMed  CAS  Google Scholar 

  53. Terada T, Okada Y, Nakanuma Y. Expression of matrix proteinases during human intrahepatic bile duct development. A possible role in biliary cell migration. Am J Pathol. 1995;147:1207–13.

    PubMed  CAS  Google Scholar 

  54. Quondamatteo F, Knittel T, Mehde M, et al. Matrix metalloproteinases in early human liver development. Histochem Cell Biol. 1999;112:277–82.

    Article  PubMed  CAS  Google Scholar 

  55. Tanimizu N, Miyajima A, Mostov KE. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol Biol Cell. 2007;18:1472–9.

    Article  PubMed  CAS  Google Scholar 

  56. Terada T, Nakanuma Y. Expression of tenascin, type IV collagen and laminin during human intrahepatic bile duct development and in intrahepatic cholangiocarcinoma. Histopathology. 1994;25:143–50.

    Article  PubMed  CAS  Google Scholar 

  57. Alvaro D, Mancino MG, Glaser S, et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology. 2007;132:415–31.

    Article  PubMed  CAS  Google Scholar 

  58. Alvaro D, Metalli VD, Alpini G, et al. The intrahepatic biliary epithelium is a target of the growth hormone/insulin-like growth factor 1 axis. J Hepatol. 2005;43:875–83.

    Article  PubMed  CAS  Google Scholar 

  59. Francis H, Glaser S, Demorrow S, et al. Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP3/CaMK I/CREB pathway. Am J Physiol Cell Physiol. 2008;295:C499–513.

    Article  PubMed  CAS  Google Scholar 

  60. Li Z, White P, Tuteja G, et al. Foxa1 and Foxa2 regulate bile duct development in mice. J Clin Invest. 2009;119:1537–45.

    Article  PubMed  CAS  Google Scholar 

  61. Pierreux CE, Poll AV, Kemp CR, et al. The transcription factor hepatocyte nuclear factor-6 controls the development of pancreatic ducts in the mouse. Gastroenterology. 2006;130:532–41.

    Article  PubMed  CAS  Google Scholar 

  62. Gresh L, Fischer E, Reimann A, et al. A transcriptional network in polycystic kidney disease. EMBO J. 2004;23:1657–68.

    Article  PubMed  CAS  Google Scholar 

  63. Sekine S, Ogawa R, Ito R, et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology. 2009;136:2304–15.

    Article  PubMed  CAS  Google Scholar 

  64. Hand NJ, Master ZR, Le Lay J, et al. Hepatic function is preserved in the absence of mature microRNAs. Hepatology. 2009;49:618–26.

    Article  PubMed  CAS  Google Scholar 

  65. Hand NJ, Master ZR, Eauclaire SF, et al. The microRNA-30 family is required for vertebrate hepatobiliary development. Gastroenterology. 2009;136:1081–90.

    Article  PubMed  CAS  Google Scholar 

  66. Rogler CE, Levoci L, Ader T, et al. MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology. 2009;50:575–84.

    Article  PubMed  CAS  Google Scholar 

  67. Lee SO, Masyuk T, Splinter P, et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest. 2008;118:3714–24.

    Article  PubMed  CAS  Google Scholar 

  68. Sumazaki R, Shiojiri N, Isoyama S, et al. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet. 2004;36:83–7.

    Article  PubMed  CAS  Google Scholar 

  69. Fukuda A, Kawaguchi Y, Furuyama K, et al. Ectopic pancreas formation in Hes1 -knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J Clin Invest. 2006;116:1484–93.

    Article  PubMed  CAS  Google Scholar 

  70. Fukuda A, Kawaguchi Y, Furuyama K, et al. Loss of the major duodenal papilla results in brown pigment biliary stone formation in pdx1 null mice. Gastroenterology. 2006;130:855–67.

    Article  PubMed  CAS  Google Scholar 

  71. Kalinichenko VV, Zhou Y, Bhattacharyya D, et al. Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development. J Biol Chem. 2002;277:12369–74.

    Article  PubMed  CAS  Google Scholar 

  72. Yamashita R, Takegawa Y, Sakumoto M, et al. Defective development of the gall bladder and cystic duct in Lgr4- hypomorphic mice. Dev Dyn. 2009;238:993–1000.

    Article  PubMed  CAS  Google Scholar 

  73. Everson GT, Taylor MR, Doctor RB. Polycystic disease of the liver. Hepatology. 2004;40:774–82.

    PubMed  CAS  Google Scholar 

  74. Kamath BM, Piccoli DA. Heritable disorders of the bile ducts. Gastroenterol Clin North Am. 2003;32:857–75.

    Article  PubMed  Google Scholar 

  75. Johnson CA, Gissen P, Sergi C. Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J Med Genet. 2003;40:311–9.

    Article  PubMed  CAS  Google Scholar 

  76. Raynaud P, Carpentier R, Antoniou A, et al. Biliary differentiation and bile duct morphogenesis in development an disease. Int J Biochem Cell Biol. 2009. [EPub ahead of print]

    Google Scholar 

  77. Emerick KM, Rand EB, Goldmuntz E, et al. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology. 1999;29:822–9.

    Article  PubMed  CAS  Google Scholar 

  78. Libbrecht L, Spinner NB, Moore EC, et al. Peripheral bile duct paucity and cholestasis in the liver of a patient with Alagille syndrome: further evidence supporting a lack of postnatal bile duct branching and elongation. Am J Surg Pathol. 2005;29:820–6.

    Article  PubMed  Google Scholar 

  79. Beckers D, Bellanne-Chantelot C, Maes M. Neonatal cholestatic jaundice as the first symptom of a mutation in the hepatocyte nuclear factor-1beta gene (HNF-1beta). J Pediatr. 2007;150:313–4.

    Article  PubMed  CAS  Google Scholar 

  80. Gissen P, Johnson CA, Morgan NV, et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat Genet. 2004;36:400–4.

    Article  PubMed  CAS  Google Scholar 

  81. Matthews RP, Plumb-Rudewiez N, Lorent K, et al. Zebrafish vps33b, an ortholog of the gene responsible for human arthrogryposis-renal dysfunction-cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development. 2005;132:5295–306.

    Article  PubMed  CAS  Google Scholar 

  82. Sadler KC, Amsterdam A, Soroka C, et al. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development. 2005;132:3561–72.

    Article  PubMed  CAS  Google Scholar 

  83. Alvaro D, Onori P, Alpini G, et al. Morphological and functional features of hepatic cyst epithelium in autosomal dominant polycystic kidney disease. Am J Pathol. 2008;172:321–32.

    Article  PubMed  CAS  Google Scholar 

  84. Fabris L, Cadamuro M, Fiorotto R, et al. Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases. Hepatology. 2006;43:1001–12.

    Article  PubMed  CAS  Google Scholar 

  85. Masyuk AI, Masyuk TV, LaRusso NF. Cholangiocyte primary cilia in liver health and disease. Dev Dyn. 2008;237:2007–12.

    Article  PubMed  CAS  Google Scholar 

  86. Masyuk AI, Masyuk TV, Splinter PL, et al. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology. 2006;131:911–20.

    Article  PubMed  CAS  Google Scholar 

  87. Nagasawa Y, Matthiesen S, Onuchic LF, et al. Identification and characterization of Pkhd1, the mouse orthologue of the human ARPKD gene. J Am Soc Nephrol. 2002;13:2246–58.

    Article  PubMed  CAS  Google Scholar 

  88. Ward CJ, Hogan MC, Rossetti S, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet. 2002;30:259–69.

    Article  PubMed  Google Scholar 

  89. Banales JM, Masyuk TV, Gradilone SA, et al. The cAMP effectors Epac and protein kinase a (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD). Hepatology. 2009;49:160–74.

    Article  PubMed  CAS  Google Scholar 

  90. Hou X, Mrug M, Yoder BK, et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest. 2002;109:533–40.

    PubMed  CAS  Google Scholar 

  91. Moyer JH, Lee-Tischler MJ, Kwon HY, et al. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science. 1994;264:1329–33.

    Article  PubMed  CAS  Google Scholar 

  92. Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 2002;13:2508–16.

    Article  PubMed  CAS  Google Scholar 

  93. Davila S, Furu L, Gharavi AG, et al. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Genet. 2004;36:575–7.

    Article  PubMed  CAS  Google Scholar 

  94. Drenth JP. te Morsche RH, Smink R, et al. Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat Genet. 2003;33:345–7.

    Article  PubMed  CAS  Google Scholar 

  95. Li A, Davila S, Furu L, et al. Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease. Am J Hum Genet. 2003;72:691–703.

    Article  PubMed  CAS  Google Scholar 

  96. Drenth JP, Martina JA, van de Kerkhof R, et al. Polycystic liver disease is a disorder of cotranslational protein processing. Trends Mol Med. 2005;11:37–42.

    Article  PubMed  CAS  Google Scholar 

  97. Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology. 1992;16:1069–83.

    Article  PubMed  CAS  Google Scholar 

  98. Adams M, Smith UM, Logan CV, et al. Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J Med Genet. 2008;45:257–67.

    Article  PubMed  CAS  Google Scholar 

  99. Sergi C, Kahl P, Otto HF. Contribution of apoptosis and apoptosis-related proteins to the malformation of the primitive intrahepatic biliary system in Meckel syndrome. Am J Pathol. 2000;156:1589–98.

    Article  PubMed  CAS  Google Scholar 

  100. Mazziotti MV, Willis LK, Heuckeroth RO, et al. Anomalous development of the hepatobiliary system in the Inv mouse. Hepatology. 1999;30:372–8.

    Article  PubMed  CAS  Google Scholar 

  101. Bamford RN, Roessler E, Burdine RD, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet. 2000;26:365–9.

    Article  PubMed  CAS  Google Scholar 

  102. Ware SM, Peng J, Zhu L, et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet. 2004;74:93–105.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang DY, Sabla G, Shivakumar P, et al. Coordinate expression of regulatory genes differentiates embryonic and perinatal forms of biliary atresia. Hepatology. 2004;39:954–62.

    Article  PubMed  CAS  Google Scholar 

  104. Chen L, Goryachev A, Sun J, et al. Altered expression of genes involved in hepatic morphogenesis and fibrogenesis are identified by cDNA microarray analysis in biliary atresia. Hepatology. 2003;38:567–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work by the author is supported by the Inter university Attraction Poles Program (Belgian Science Policy), the Fund for Scientific Medical Research (Belgium), the D.G. Higher Education and Scientific Research of the French Community of Belgium, and the Alphonse and Jean Forton Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic P. Lemaigre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lemaigre, F.P. (2011). Bile Duct Development and Biliary Differentiation. In: Monga, S. (eds) Molecular Pathology of Liver Diseases. Molecular Pathology Library, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7107-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7107-4_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7106-7

  • Online ISBN: 978-1-4419-7107-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics