Skip to main content

Statistical Contact Potentials in Protein Coarse-Grained Modeling: From Pair to Multi-body Potentials

  • Chapter
  • First Online:
Multiscale Approaches to Protein Modeling

Abstract

The basic concepts of coarse-graining protein structures led to the introduction of empirical statistical potentials in protein computations. We review the history of the development of statistical contact potentials in computational biology and discuss the common features and differences between various pair contact potentials. Potentials derived from the statistics of non-bonded contacts in protein structures from the Protein Data Bank (PDB) are compared with potentials developed for threading purposes based on the optimization of the selection of the native structures among decoys. The energy of transfer of amino acids from water to a protein environment is discussed in detail. We suggest that a next generation of statistical contact potentials should include the effects of residue packing in proteins to improve predictions of protein native three-dimensional structures. We review existing multi-body potentials that have been proposed in the literature, including our own recent four-body potentials. We show how these are related to amino acid substitution matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anfinsen C, Haber E, Sela M, White F (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 47:1309–1314

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  • Bahar I, Kaplan M, Jernigan RL (1997) Short-range conformational energies, secondary structure propensities, and recognition of correct sequence-structure matches. Proteins: Struct Funct Genet 29:292–308

    Article  CAS  Google Scholar 

  • Bahar I, Jernigan RL (1997) Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J Mol Biol 266:195–214

    Article  PubMed  CAS  Google Scholar 

  • Betancourt MR, Thirumalai D (1999) Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci 8:361–369

    Article  PubMed  CAS  Google Scholar 

  • Bordner AJ, Abagyan RA (2004) Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 57:400–413

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  PubMed  CAS  Google Scholar 

  • Carter C Jr, LeFebvre B, Cammer S, Tropsha A, Edgell M (2001) Fourbody potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations. J Mol Biol 311:625–638

    Article  PubMed  CAS  Google Scholar 

  • Czaplewski C, Rodziewicz-Motowidlo S, Liwo A, Ripoll DR, Wawak RJ, Scheraga HA (2000) Molecular simulation study of cooperativity in hydrophobic association. Protein Sci 9:1235–45

    Article  PubMed  CAS  Google Scholar 

  • Dehouck Y, Gilis D, Rooman M (2006) A new generation of statistical potentials for proteins. Biophys J 90:4010–4017

    Article  PubMed  CAS  Google Scholar 

  • Deutsch JM, Kurosky T (1996) New algorithm for protein design. Phys Rev Lett 76:323–326

    Article  PubMed  CAS  Google Scholar 

  • DeWitte RS, Shakhnovich EI (1996) SMoG: de novo design method based on simple, fast and accurate free energy estimates. 1. Methodology and supporting evidence. J Am Chem Soc 118:11733–11744

    Article  CAS  Google Scholar 

  • Dobbs H, Orlandini E, Bonaccini R, Seno F (2002) Optimal potentials for predicting inter-helical packing in transmembrane proteins. Proteins 49:342–349

    Article  PubMed  CAS  Google Scholar 

  • Dombkowski AA, Crippen GM (2000) Disulfide recognition in an optimized threading potential. Protein Eng 13:679–689

    Article  PubMed  CAS  Google Scholar 

  • Dong Q, Wang X, Lin L (2006) Novel knowledge-based mean force potential at the profile level. BMC Bioinformatics 7:324

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Kloczkowski A, Jernigan RL (2007) Four-body contact potentials derived from two protein datasets to discriminate native structures from decoys. Proteins 68:57–66

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Jernigan RL, Kloczkowski A (2008) Orientational distributions of contact clusters in proteins closely resemble those of an icosahedron. Proteins Struct Funct Bioinf 73:730–741

    Article  CAS  Google Scholar 

  • Feng Y, Kloczkowski A, Jernigan RL (2010) Potentials ‘R’Us web-server for protein energy estimations with coarse-grained knowledge-based potentials. BMC Bioinformatics 11:92

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein AV, Badretdinov AY, Gutin AM (1995) Why do protein architectures have Boltzmann-like statistics? Proteins 23:142–150

    Article  PubMed  CAS  Google Scholar 

  • Goldstein R, Luthey-Schulten ZA, Wolynes PG (1992) Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc Natl Acad Sci USA 89:9029–9033

    Article  PubMed  CAS  Google Scholar 

  • Gatchell DW, Dennis S, Vajda S (2000) Discrimination of near-native protein structures from misfolded models by empirical free energy functions. Proteins 41:518–534

    Article  PubMed  CAS  Google Scholar 

  • Georgescu RE, Alexov EG, Gunner MR (2002) Combining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins. Biophys J 83:1731–1748

    Article  PubMed  CAS  Google Scholar 

  • Gilis D, Rooman M (1996) Stability changes upon mutation of solvent accessible residues in proteins evaluated by database-derived potentials. J Mol Biol 257:1112–1126

    Article  PubMed  CAS  Google Scholar 

  • Gilis D, Rooman M (1997) Predicting protein stability changes upon mutation using database-derived potentials: Solvent accessibility determines the importance of local versus non-local interactions along the sequence. J Mol Biol 272:276–290

    Article  PubMed  CAS  Google Scholar 

  • Gilis D (2004) Protein decoy sets for evaluating energy functions. J Biomol Struct Dyn 21:725–736

    Article  PubMed  CAS  Google Scholar 

  • Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–387

    Article  PubMed  CAS  Google Scholar 

  • Haji-Akbari A, Engel M, Keys AS, Zheng X, Petschek RG, Palffy-Muhoray P, Glotzer SC (2009) Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462:773–7

    Article  PubMed  CAS  Google Scholar 

  • Hao MH, Scheraga HA (1996) How optimization of potential functions affects protein folding. Proc Natl Acad Sci USA 93:4984–4989

    Article  PubMed  CAS  Google Scholar 

  • Hao MH, Scheraga HA (1999) Designing potential energy functions for protein folding. Curr Opin Struct Biol 9:184–188

    Article  PubMed  CAS  Google Scholar 

  • Hendlich M, Lackner P, Weitckus S, Floechner H, Froschauer R, Gottsbachner K, Casari G, Sippl MJ (1990) Identification of native protein folds amongst a large number of incorrect models: the calculation of low energy conformations from potentials of mean force. J Mol Biol 216:167–180

    Article  PubMed  CAS  Google Scholar 

  • Hill TL (1960) Statistical mechanics. Addison-Wesley, Reading, MA

    Google Scholar 

  • Hinds DA, Levitt M (1992) A lattice model for protein structure prediction at low resolution. Proc Natl Acad Sci 89:2536–2540

    Article  PubMed  CAS  Google Scholar 

  • Hoppe C, Schomburg D (2005) Prediction of protein thermostability with a direction- and distance-dependent knowledge-based potential. Protein Sci 14:2682–2692

    Article  PubMed  CAS  Google Scholar 

  • Hu C, Li X, Liang J (2004) Developing optimal non-linear scoring function for protein design. Bioinformatics 20:3080–3098

    Article  PubMed  CAS  Google Scholar 

  • Hubner IA, Deeds EJ, Shakhnovich EI (2005) High-resolution protein folding with a transferable potential. Proc Natl Acad Sci 102:18914–18919

    Article  PubMed  CAS  Google Scholar 

  • Jernigan RL, Bahar I (1996) Structure-derived potentials and protein simulations. Curr Opin Struct Biol 6:195–209

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) A new approach to protein fold recognition. Nature 358:86–89

    Article  PubMed  CAS  Google Scholar 

  • Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347:631–639

    Article  PubMed  CAS  Google Scholar 

  • Koehl P, Levitt M (1999a) De novo protein design. I. In search of stability and specificity. J Mol Biol 293:1161–1181

    Article  PubMed  CAS  Google Scholar 

  • Koehl P, Levitt M (1999b) De novo protein design. II. Plasticity of protein sequence. J Mol Biol 293:1183–1193

    Article  PubMed  CAS  Google Scholar 

  • Kolinski A (2004) Protein modeling and structure prediction with a reduced representation. Acta Biochimica Polonica 51:349–371

    PubMed  CAS  Google Scholar 

  • Koretke KK, Luthey-Schulten Z, Wolynes PG (1996) Self-consistently optimized statistical mechanical energy functions for sequence structure alignment. Protein Sci 5:1043–1059

    Article  PubMed  CAS  Google Scholar 

  • Koretke KK, Luthey-Schulten Z, Wolynes PG (1998) Self-consistently optimized energy functions for protein structure prediction by molecular dynamics. Proc Natl Acad Sci USA 95:2932–2937

    Article  PubMed  CAS  Google Scholar 

  • Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci USA 99:14116–14121

    Article  PubMed  CAS  Google Scholar 

  • Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein–protein interfaces. Sci STKE 2004:pl2

    Article  Google Scholar 

  • Krishnamoorthy B, Tropsha A (2003) Development of a four-body statistical pseudo-potential to discriminate native from nonnative protein conformations. Bioinformatics 19:1540–1548

    Article  PubMed  CAS  Google Scholar 

  • Laurents DV, Huyghes-Despointes BMP, Bruix M, Thurlkill RL, Schell D, Newsom S, Grimsley GR, Shaw KL, Trevi S, Rico M, Briggs JM, Antosiewicz JM, Scholtz JM, Pace CN (2003) Charge–charge interactions are key determinants of the pK values of ionizable groups in ribonuclease Sa (pI = 3.5) and a basic variant (pI = 10.2). J Mol Biol 325:1077–1092

    Article  PubMed  CAS  Google Scholar 

  • Lee B (1993) Estimation of the maximum change in stability of globular proteins upon mutation of a hydrophobic residue to another of smaller size. Protein Sci 2:733–738

    Article  PubMed  CAS  Google Scholar 

  • Li H, Helling R, Tang C, Wingreen N (1996) Emergence of preferred structures in a simple model of protein folding. Science 273:666–669

    Article  PubMed  CAS  Google Scholar 

  • Li X, Hu C, Liang J (2003) Simplicial edge representation of protein structures and alpha contact potential with confidence measure. Proteins 53:792–805

    Article  PubMed  CAS  Google Scholar 

  • Li X, Liang J (2005a) Computational design of combinatorial peptide library for modulating protein–protein interactions. Pacific Symposium of Biocomputing 10:28–39

    Google Scholar 

  • Li X, Liang J (2005b) Geometric cooperativity and anti-cooperativity of three-body interactions in native proteins. Proteins 60:46–65

    Article  PubMed  CAS  Google Scholar 

  • Li X, Liang J (2007) Knowledge-based energy functions for computational studies of proteins. In: Xu Y, Xu D, Liang J (eds) Computational methods for protein structure prediction and modeling, 1st edn. Springer, New York, NY, pp 71–123

    Google Scholar 

  • Liu S, Zhang C, Zhou H, Zhou Y (2004) A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins 56:93–101

    Article  PubMed  CAS  Google Scholar 

  • Liwo A, Czaplewski C, Pillardy J, Scheraga HA (2001) Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. J Chem Phys 115:2323–2347

    Article  CAS  Google Scholar 

  • Liwo A, Kazmierkiewicz R, Czaplewski C, Groth M, Oldziej S, Wawak RJ, Rackovsky S, Pincus MR, Scheraga HA (1998) United-residue force field for off-lattice protein-structure simulations: III. Origin of backbone hydrogen-bonding cooperativity in united-residue potentials. J Com Chem 19:259–276

    Article  CAS  Google Scholar 

  • Liwo A, Oldziej S, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA (1997a) A united-residue force field for off-lattice protein-structure simulations. 1. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. J Com Chem 18:849–873

    Article  CAS  Google Scholar 

  • Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Oldziej S, Scheraga HA (1997b) A united-residue force field for off-lattice protein-structure simulations. 2. Parameterization of short-range interactions and determination of weights of energy terms by Z-score optimization. J Com Chem 18:874–887

    Article  CAS  Google Scholar 

  • Lu H, Skolnick J (2001) A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins 44:223–232

    Article  PubMed  CAS  Google Scholar 

  • Maiorov VN, Crippen GM (1992) Contact potential that recognizes the correct folding of globular proteins. J Mol Biol 227:876–888

    Article  PubMed  CAS  Google Scholar 

  • McConkey BJ, Sobolev V, Edelman M (2003) Discrimination of native protein structures using atom–atom contact scoring. Proc Natl Acad Sci USA 100:3215–3220

    Article  PubMed  CAS  Google Scholar 

  • McGuffin LJ (2007) Benchmarking consensus model quality assessment for protein fold recognition. BMC Bioinformatics 8:345

    Article  PubMed  CAS  Google Scholar 

  • Mehler EL, Fuxreiter M, Simon I, Garcia-Moreno EB (2002) The role of hydrophobic microenvironments in modulating pKa shifts in proteins. Proteins 48:283–292

    Article  PubMed  CAS  Google Scholar 

  • Méndez R, Leplae R, Lensink MF, Wodak SJ (2005) Assessment of Capri predictions in rounds 3–5 shows progress in docking procedures. Proteins 60:150–169

    Article  PubMed  CAS  Google Scholar 

  • Mirny LA, Shakhnovich EI (1996) How to derive a protein folding potential? A new approach to an old problem. J Mol Biol 264:1164–1179

    Article  PubMed  CAS  Google Scholar 

  • Mitchell BO, Laskowski RA, Alex A, Thornton JM (1999) BLEEP: Potential of mean force describing protein–ligand interactions: II. Calculation of binding energies and comparison with experimental data. J Comp Chem 20:1177–1185

    Article  CAS  Google Scholar 

  • Miyazawa S, Jernigan RL (1985) Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation. Macromolecules 18:534–552

    Article  CAS  Google Scholar 

  • Miyazawa S, Jernigan RL (1994) Protein stability changes for single substitution mutants and the extent of local compactness in the denatured state. Prot Eng 7:1209–1220

    Article  CAS  Google Scholar 

  • Miyazawa S, Jernigan RL (1996) Residue–residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Bio 256:623–644

    Article  CAS  Google Scholar 

  • Miyazawa S, Jernigan RL (1999a) Evaluation of short-range interactions as secondary structure energies for protein fold and sequence recognition. Proteins 36:347–356

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa S, Jernigan RL (1999b) Self-consistent estimation of interresidue protein contact energies based on an equilibrium mixture approximation of residues. Proteins 34:49–68

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa S, Jernigan RL (1999c) An empirical energy potential with a reference state for protein fold and sequence recognition. Proteins Struct Funct Genet 36:357–369

    Article  PubMed  CAS  Google Scholar 

  • Muegge I, Martin YC (1999) A general and fast scoring function for protein–ligand interactions: A simplified potential approach. J Med Chem 42:791–804

    Article  PubMed  CAS  Google Scholar 

  • Munson PJ, Singh RK (1997) Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence structure alignment. Protein Science 6:1467–1481

    Article  PubMed  CAS  Google Scholar 

  • Park BH, Levitt M (1996) Energy functions that discriminate X-ray and near native folds from well-constructed decoys. J Mol Biol 258:367–392

    Article  PubMed  CAS  Google Scholar 

  • Pillardy J, Czaplewski C, Liwo A, Lee J, Ripoll DR, Kazmierkiewicz R, Oldziej S, Wedemeyer WJ, Gibson KD, Arnautova YA, Saunders J, Ye YJ, Scheraga HA (2001) Recent improvements in prediction of protein structure by global optimization of a potential energy function. Proc Nat Acad Sci USA 98:2329–2333

    Article  PubMed  CAS  Google Scholar 

  • Pokarowski P, Kloczkowski A, Jernigan RL, Kothari NS, Pokarowska M, Kolinski A (2005) Inferring ideal amino acid interaction forms from statistical protein contact potentials. Proteins: Struct Func Bioinf 59:49–57

    Article  CAS  Google Scholar 

  • Qiu, J, Elber R (2005) Atomically detailed potentials to recognize native and approximate protein structures. Proteins 61:44–55

    Article  PubMed  CAS  Google Scholar 

  • Samudrala R, Levitt M (2000) Decoys ‘R’ Us: A database of incorrect conformations to improve protein structure prediction. Protein Sci 9:1399–1401

    Article  PubMed  CAS  Google Scholar 

  • Samudrala R, Moult J (1998) An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J Mol Biol 275:895–916

    Article  PubMed  CAS  Google Scholar 

  • Sandberg L, Edholm O (1999) A fast and simple method to calculate protonation states in proteins. Proteins 36:474–483

    Article  PubMed  CAS  Google Scholar 

  • Shakhnovich EI, Gutin AM (1993) Engineering of stable and fast-folding sequences of model proteins. Proc Natl Acad Sci USA 90:7195–7199

    Article  PubMed  CAS  Google Scholar 

  • Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    Article  PubMed  CAS  Google Scholar 

  • Simons KT, Ruczinski I, Kooperberg C, Fox BA, Bystroff C, Baker D (1999) Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34:82–95

    Article  PubMed  CAS  Google Scholar 

  • Singh RK, Tropsha A, Vaisman II (1996) Delaunay tessellation of proteins: four body nearest-neighbor propensities of amino acid residues. J Comp Biol 3:213–221

    Article  CAS  Google Scholar 

  • Sippl MJ (1990) Calculation of conformational ensembles from potentials of the main force. J Mol Biol 213:167–180

    Article  Google Scholar 

  • Sippl MJ (1993) Boltzmann’s principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J Comp Aided Mol Des 7:473–501

    Article  CAS  Google Scholar 

  • Skolnick J (2006) In quest of an empirical potential for protein structure prediction. Curr Opin Struct Biol 16:166–171

    Article  PubMed  CAS  Google Scholar 

  • Skolnick J, Jaroszewski L, Kolinski A, Godzik A (1997) Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci 6:676–688

    CAS  Google Scholar 

  • Tanaka S, Scheraga HA (1976) Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9:945–950

    Article  PubMed  CAS  Google Scholar 

  • Thomas PD, Dill KA (1996a) An iterative method for extracting energy-like quantities from protein structures. Proc Natl Acad Sci USA 93:11628–11633

    Article  PubMed  CAS  Google Scholar 

  • Thomas PD, Dill KA (1996b) Statistical potentials extracted from protein structures: How accurate are they? J Mol Biol 257:457–469

    Article  PubMed  CAS  Google Scholar 

  • Tobi D, Elber R (2000) Distance-dependent, pair potential for protein folding: Results from linear optimization. Proteins 41:40–46

    Article  PubMed  CAS  Google Scholar 

  • Tobi D, Shafran G, Linial N, Elber R (2000) On the design and analysis of protein folding potentials. Proteins 40:71–85

    Article  PubMed  CAS  Google Scholar 

  • Tollinger M, Crowhurst KA, Kay LE, Forman-Kay JD (2003) Site specific contributions to the pH dependence of protein stability. Proc Natl Acad Sci USA 100:4545–4550

    Article  PubMed  CAS  Google Scholar 

  • Vajda S, Sippl M, Novotny J (1997) Empirical potentials and functions for protein folding and binding. Curr Opin Struc Biol 7:222–228

    Article  CAS  Google Scholar 

  • Vendruscolo M, Domanyi E (1998) Pairwise contact potentials are unsuitable for protein folding. J Chem Phys 109:11101–11108

    Article  CAS  Google Scholar 

  • Vendruscolo M, Najmanovich R, Domany E (2000) Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins-Struc Funct Genet 38:134–148

    Article  CAS  Google Scholar 

  • Wolynes PG, Onuchic JN, Thirumalai D (1995) Navigating the folding routes. Science 267:1619–1620

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Chen M, Lu M, Wang Q, Ma J (2005a) Determining protein topology from skeletons of secondary structures. J Mol Biol 350:571–586

    Article  PubMed  CAS  Google Scholar 

  • Wu YH, Lu MY, Chen MZ, Li JL, Ma JP (2007) OPUS-Ca: a knowledge-based potential function requiring only C alpha positions. Protein Sci 16:1449–1463

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Tian X, Lu M, Chen M, Wang Q, Ma J (2005b) Folding of small helical proteins assisted by small-angle X-ray scattering profiles. Structure 13:1587–1597

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Tan CH, Hsieh MJ, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman PA, Luo R (2006) New-generation amber united-atom force field. J Phys Chem B 110:13166–76

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Kim SH (2000)  Environment-dependent residue contact energies for proteins. Proc Nat Acad Sci 97:2550–2555

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Liu S, Zhu Q, Zhou Y (2005) A knowledge-based energy function for protein–ligand, protein–protein, and protein–DNA complexes. J Med Chem 48:2325–2335

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chen R, Liang J (2006) Empirical potential function for simplified protein models: Combining contact and local sequence-structure descriptors. Proteins 63:949–960

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Cho SJ, Vaisman II, Tropsha A (1997) A new approach to protein fold recognition based on Delaunay tessellation of protein structure. Pac Symp Biocomp 1997:486–497

    Google Scholar 

  • Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 11:2714–2726

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support provided by NIH grants 1R01GM073095-3, 1R01GM072014-5, and 1R01GM081680-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Jernigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leelananda, S.P., Feng, Y., Gniewek, P., Kloczkowski, A., Jernigan, R.L. (2011). Statistical Contact Potentials in Protein Coarse-Grained Modeling: From Pair to Multi-body Potentials. In: Kolinski, A. (eds) Multiscale Approaches to Protein Modeling. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6889-0_6

Download citation

Publish with us

Policies and ethics