Skip to main content

Genome-Wide Protein Structure Prediction

  • Chapter
  • First Online:
Multiscale Approaches to Protein Modeling

Abstract

The post-genomic era has witnessed an explosion of protein sequences in the public databases; but this has not been complemented by the availability of genome-wide structure and function information, due to the technical difficulties and labor expenses incurred by existing experimental techniques. The rapid advancements in computer-based protein structure prediction methods have enabled automated and yet reliable methods for generating three-dimensional (3D) structural models of proteins. Genome-scale structure prediction experiments have been conducted by a number of groups, starting as early as in 1997, and some noteworthy efforts have been made using the MODELLER and ROSETTA methods. Along another line, TOUCHSTONE was used to predict the structures of all 85 small proteins in the Mycoplasma genitalium genome, which established template-refinement-based structure prediction as a practical approach for genome-scale experiments. This was followed by the development of Threading ASSEmbly Refinement (TASSER) and Iterative Threading ASSEmbly Refinement (I-TASSER) algorithms which use a combination of various approaches for threading, fragment assembly, ab initio loop modeling, and structural refinement to predict the structures. A successful structural prediction for all medium-sized open reading frames (ORFs) in the Escherichia coli genome was demonstrated by this method, achieving high-accuracy models for 920 out of 1,360 proteins. G protein-coupled receptors (GPCRs) are an extremely important class of membrane proteins for which only very few structures are available in the Protein Data Bank (PDB). TASSER was used to predict the structures of all 907 putative GPCRs in the human genome, and the high accuracy confirmed by newly solved GPCR structures and recent blind tests have demonstrated the usefulness and robustness of the TASSER/I-TASSER models for the functional annotation of GPCRs. Recently, the I-TASSER protein structure prediction method has been used as a basis for functional annotation of protein sequences. The increasing popularity and need for such automated structure and function prediction algorithms can be judged by the fact that the I-TASSER server has generated structure predictions for 35,000 proteins submitted by more than 8,000 users from 86 countries in the last 24 months. The success of these modeling experiments demonstrates significant new progress in high-throughput and genome-wide protein structure prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloy P, Querol E, Aviles F, Sternberg J (2001) Automated structure based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. J Mol Biol 311:395–408

    Article  PubMed  CAS  Google Scholar 

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI_BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Blattner F, III GP, Bloch C, Perna N, Burland V, Riley M, Collado-Vides J, Glasner J, Rode C, Mayhew G and others (1997) The complete genome sequence of E. coli K-12. Science 277:1453–1474

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170

    Article  PubMed  CAS  Google Scholar 

  • Bradley P, Misuara K, Baker D (2005) Towards high-resolution de novo structure prediction for small proteins. Science 309:1868–1871

    Article  PubMed  CAS  Google Scholar 

  • Caffrey M (2003) Membrane protein crystallization. J Struct Biol 142:108–132

    Article  PubMed  CAS  Google Scholar 

  • Canutescu AA, Shelenkov AA, Dunbrack RL Jr (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12:2001–2014

    Article  PubMed  CAS  Google Scholar 

  • Chandonia J, Brenner S (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Zhou HX (2005a) Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Res 33(10):3193–3199

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Kuei C, Sutton S, Wilson S, Yu J, Kamme F, Mazur C, Lovenberg T, Liu C (2005b) Identification and pharmacological characterization of prokineticin 2beta as a selective ligand for prokineticin receptor 1. Mol Pharmacol 67:2070–2076

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Baldi P (2005) Three-stage prediction of protein beta-sheets by neural networks, alignments and graph algorithms. Bioinformatics 21(Suppl 1):i75–84

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Baldi P (2007) Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinformatics 8:113

    Article  PubMed  CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, others (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964

    Article  PubMed  CAS  Google Scholar 

  • Du P, Salon JA, Tamm JA, Hou C, Cui W, Walker MW, Adham N, Dhanoa DS, Islam I, Vaysse PJ, others (1997) Modeling the G-protein-coupled neuropeptide Y Y1 receptor agonist and antagonist binding sites. Protein Eng 10:109–117

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Eisenberg D (1997) Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium. Proc Natl Acad Sci 94:11929–11934

    Article  PubMed  CAS  Google Scholar 

  • Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  PubMed  CAS  Google Scholar 

  • Flower DR (1999) Modelling G-protein-coupled receptors for drug design. Biochim Biophys Acta 1422:207–234

    Article  PubMed  CAS  Google Scholar 

  • Fraser C, Gocayne J, White O, Adams M, Clayton R, Fleischmann R, Bult C, Kerlavage A, Sutton G, Kelley J, others (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403

    Article  PubMed  CAS  Google Scholar 

  • Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579

    Article  PubMed  CAS  Google Scholar 

  • Gerstein M, Edwards A, Arrowsmith C, Montelione G (2003) Structural genomics: Current progress. Science 299(5613):1663

    Article  PubMed  CAS  Google Scholar 

  • Granier S, Kim S, Shafer AM, Ratnala VR, Fung JJ, Zare RN, Kobilka B (2007) Structure and conformational changes in the C-terminal domain of the beta2-adrenoceptor: insights from fluorescence resonance energy transfer studies. J Biol Chem 282:13895–13905

    Article  PubMed  CAS  Google Scholar 

  • Hubbard R ed (2006) Structure based drug discovery, Royal Society of Chemistry.

    Google Scholar 

  • Hwa J, Graham RM, Perez DM (1995) Identification of critical determinants of alpha 1-adrenergic receptor subtype selective agonist binding. J Biol Chem 270:23189–23195

    Article  PubMed  CAS  Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Jones D (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) A new approach to protein fold recognition. Nature 358(6381):86–89

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33(10):3038–3049

    Article  PubMed  CAS  Google Scholar 

  • Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14(10):846–856

    Article  PubMed  CAS  Google Scholar 

  • Kihara D, Lu H, Kolinski A, Skolnick J (2001) TOUCHSTONE: an ab initio protein structure prediction method that uses threading based tertiary restraints Proc Natl Acad Sci 98:10125–10130

    Article  PubMed  CAS  Google Scholar 

  • Kihara D, Zhang Y, Lu H, Kolinski A, Skolnick J (2002) Ab initio protein structure prediction on a genomic scale: application to Mycoplasma genitalim genome. Proc Natl Acad Sci 99:5993–5998

    Article  PubMed  CAS  Google Scholar 

  • Klepeis JL, Wei Y, Hecht MH, Floudas CA (2005) Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Proteins 58:560–570

    Article  PubMed  CAS  Google Scholar 

  • Kleywegt GJ (1999) Recognition of spatial motifs in protein structures. J Mol Biol 285:1887–1897

    Article  PubMed  CAS  Google Scholar 

  • Kolinski A, Skolnick J (1994) Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18:338–352

    Article  PubMed  CAS  Google Scholar 

  • Kopp J, Bordoli L, Battey JN, Kiefer F, Schwede T (2007) Assessment of CASP7 predictions for template-based modeling targets. Proteins 69(Suppl 8):38–56

    Article  PubMed  CAS  Google Scholar 

  • Ladoux A, Frelin C (2000) Coordinated up-regulation by hypoxia of adrenomedullin and one of its putative receptors (RDC-1) in cells of the rat blood–brain barrier. J Biol Chem 275:39914–39919

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhang Y (2009) REMO: a new protocol to refine full atomic protein models from C-alpha traces by optimizing hydrogen-bonding networks. Proteins 76(3):665–676

    Google Scholar 

  • Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA (1999) Protein structure prediction by global optimization of a potential energy function. Proc Natl Acad Sci USA 96(10):5482–5485

    Article  PubMed  CAS  Google Scholar 

  • Lopez G, Rojas A, Tress M, Valencia A (2007) Assessment of predictions submitted for the CASP7 function prediction category. Proteins 69(Suppl 8):165–174

    Article  PubMed  CAS  Google Scholar 

  • Lundstrom K (2005) Structural biology of G protein-coupled receptors. Bioorg Med Chem Lett 15:3654–3657

    Article  PubMed  CAS  Google Scholar 

  • Mac TT, von Hacht A, Hung KC, Dutton RJ, Boyd D, Bardwell JC, Ulmer TS (2008) Insight into disulfide bond catalysis in Chlamydia from the structure and function of DsbH, a novel oxidoreductase. J Biol Chem 283:824–832

    Article  PubMed  CAS  Google Scholar 

  • Malmstrom L, Riffle M, Strauss CE, Chivian D, Davis TN, Bonneau R, Baker D (2007) Superfamily assignments for the yeast proteome through integration of structure prediction with the gene ontology. PLoS Biol 5:e76

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, others (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33(Database issue):D192–196

    Article  PubMed  CAS  Google Scholar 

  • Marti-Renom M, Stuart A, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Ann Rev Biophys Biomol Struct 29:291–325

    Article  CAS  Google Scholar 

  • McGuffin L, Jones D (2003) Improvement of GenTHREADER method for genomic fold recognition. Bioinformatics 19:874–881

    Article  PubMed  CAS  Google Scholar 

  • Miao Z, Luker KE, Summers BC, Berahovich R, Bhojani MS, Rehemtulla A, Kleer CG, Essner JJ, Nasevicius A, Luker GD, others (2007) CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA 104(40):15735–15740

    Article  PubMed  CAS  Google Scholar 

  • Michino M, Abola E, et al. (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8(6):455–463

    Google Scholar 

  • Needleman S, Wunsch C (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  PubMed  CAS  Google Scholar 

  • Oldziej S, Czaplewski C, Liwo A, Chinchio M, Nanias M, Vila JA, Khalili M, Arnautova YA, Jagielska A, Makowski M, others (2005) Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: assessment in two blind tests. Proc Natl Acad Sci USA 102:7547–7552

    Article  PubMed  CAS  Google Scholar 

  • Ostermeier C, Michel H (1997) Crystallization of membrane proteins. Curr Opin Struct Biol 7:697–701

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, others (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745

    Article  PubMed  CAS  Google Scholar 

  • Pisarska M, Mulchahey JJ, Sheriff S, Geracioti TD, Kasckow JW (2001) Regulation of corticotropin-releasing hormone in vitro. Peptides 22:705–712

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, others (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387

    Article  PubMed  CAS  Google Scholar 

  • Read RJ, Chavali G (2007) Assessment of CASP7 predictions in the high accuracy template-based modeling category. Proteins 69(Suppl 8):27–37

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, others (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318(5854):1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Kucukural A, Mukherjee S, Hefty PS, Zhang Y (2010) Large scale benchmarking of protein function prediction using modeled protein structures. J Mol Biol (Submitted)

    Google Scholar 

  • Sali A, Blundell T (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  • Sanchez R, Pieper U, Mirkovic N, Bakker Pd, Wittenstein E, Sali A (2000) MODBASE, a database of annotated comparitive protein structure models Nucleic Acids Rese 28:250–253

    Article  CAS  Google Scholar 

  • Sanchez R, Sali A (1997) Evaluation of comparative protein structure modelling by MODELLER-3. Proteins Suppl 1:50–58

    Google Scholar 

  • Sanchez R, Sali A (1998) Large scale structure modelling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci 95:13597–13602

    Article  PubMed  CAS  Google Scholar 

  • Sautel M, Rudolf K, Wittneben H, Herzog H, Martinez R, Munoz M, Eberlein W, Engel W, Walker P, Beck-Sickinger AG (1996) Neuropeptide Y and the nonpeptide antagonist BIBP 3226 share an overlapping binding site at the human Y1 receptor. Mol Pharmacol 50:285–292

    PubMed  CAS  Google Scholar 

  • Schwartz TW (1994) Locating ligand-binding sites in 7TM receptors by protein engineering. Curr Opin Biotechnol 5:434–444

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence–structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Javitch JA (2002) The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol 42:437–467

    Article  PubMed  CAS  Google Scholar 

  • Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268:209–225

    Article  PubMed  CAS  Google Scholar 

  • Simons KT, Strauss C, Baker D (2001) Prospects for ab initio protein structural genomics. J Mol Biol 306:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Sippl M, Weitckus S (1992) Detection of native like models for amino acid sequences of unknown three-dimensional structure in a database of known protein conformations. Proteins 13:258–271

    Article  PubMed  CAS  Google Scholar 

  • Skolnick J, Fetrow JS, Kolinski A (2000) Structural genomics and its importance for gene function analysis. Nat Biotechnol 18:283–287

    Article  PubMed  CAS  Google Scholar 

  • Skolnick J, Kihara D (2001) Defrosting the frozen approximation: PROSPECTOR – a new approach to threading. Proteins:Struct Funct Genet 42:319–331

    Article  PubMed  CAS  Google Scholar 

  • Skolnick J, Kihara D, Zhang Y (2004a) Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm. Proteins 56:502–518

    Article  PubMed  CAS  Google Scholar 

  • Skolnick J, Kihara D, Zhang Y (2004b) Development and large scale benchmark testing of the Prospector_3 threading algorithm. Proteins 56:502–518

    Article  PubMed  CAS  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  PubMed  CAS  Google Scholar 

  • Soding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960

    Article  PubMed  Google Scholar 

  • Tramontano A, Morea V (2003) Assesment of homology based predictions in CASP 5. Proteins 53(Suppl 6):352–368

    Article  PubMed  CAS  Google Scholar 

  • Vitkup D, Melamud E, Moult J, Sander C (2001) Completeness in structural genomics. Nat Struct Biol 8:559–566

    Article  PubMed  CAS  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1996) Derivation of 3D coordinate templates for searching structural databases: application to Ser-His-Asp catalytic triads in the serine proteinases and lipases. Protein Sci 5:1001–1013

    Article  PubMed  CAS  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454(7203):486–491

    Article  PubMed  CAS  Google Scholar 

  • Watson S, Arkinstall S. (1994) The G protein linked receptors factbook. Academic, New York, NY

    Google Scholar 

  • Wiley SR (1998) Genomics in the real world. Curr Pharm Des 4:417–422

    PubMed  CAS  Google Scholar 

  • Wu S, Skolnick J, Zhang Y (2007a) Ab initio modelling of small proteins by iterative TASSER simulations. BMC Biol 5:17

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Zhang Y (2007b) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35(10):3375–3382

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Zhang Y (2008a) A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics 24:924–931

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Zhang Y (2008b) MUSTER: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins 72:547–556

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Zhang Y (2009) Improving protein tertiary structure assembly by sequence based contact predictions. Submitted

    Google Scholar 

  • Xu Y, Xu D (2000) Protein threading using PROSPECT: design and evaluation. Proteins 40:343–354

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Jaroszewski L, Rychlewski L, Godzik A (1997) Similarities and differences between non-homologous proteins with similar folds: evaluation of threading strategies. Fold Des 2:307–317

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(Suppl 8):108–117

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2008a) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2008b) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 18:342–348

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2009a) I-TASSER: fully automated protein structure prediction in CASP8. Proteins:In press

    Google Scholar 

  • Zhang Y (2009b) Protein structure prediction: when is it useful? Curr Opin Struct Biol 19:145–155

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Devries ME, Skolnick J (2006a) Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2:e13

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J (2006b) On the origin and highly likely completeness of single-domain protein structures. Proc Natl Acad Sci USA 103:2605–2610

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Kihara D, Skolnick J (2002) Local energy landscape flattening: Parallel hyperbolic Monte-Carlo sampling of protein folding. Proteins 48:192–201

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Kolinski A, Skolnick J (2003) TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 85:1145–1164

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Skolnick J (2004a) Automated Structure prediction of weekly homologous proteins on a genomic scale. Proc Natl Acad Sci 101:7594–7599

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Skolnick J (2004b) Spicker: approach to clustering protein structures for near native model selection. J Comp Chem 25:865–871

    Article  CAS  Google Scholar 

  • Zhang Y, Skolnick J (2004c) Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins. Biophys J 87:2647–2655

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Skolnick J (2005a) The protein structure prediction problem could be solved using the current PDB library. Proc Natl Acad Sci USA 102:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Skolnick J (2005b) TM-align:a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Zhou Y (2004) Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins 55:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Zhou Y (2005) Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58:321–328

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Flanagan C, Ballesteros JA, Konvicka K, Davidson JS, Weinstein H, Millar RP, Sealfon SC (1994) A reciprocal mutation supports helix 2 and helix 7 proximity in the gonadotropin-releasing hormone receptor. Mol Pharmacol 45:165–170

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project is supported in part by the Alfred P. Sloan Foundation, NSF Career Award (DBI 0746198), and the National Institute of General Medical Sciences (R01GM083107, R01GM084222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mukherjee, S., Szilagyi, A., Roy, A., Zhang, Y. (2011). Genome-Wide Protein Structure Prediction. In: Kolinski, A. (eds) Multiscale Approaches to Protein Modeling. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6889-0_11

Download citation

Publish with us

Policies and ethics