Skip to main content

The University of California-Davis Methodology for Deriving Aquatic Life Pesticide Water Quality Criteria

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 209

Abstract

A national water quality criteria methodology was established in the United States (US) in 1985 (US Environmental Protection Agency; USEPA 1985).1 Since then, several other methods for establishing water quality criteria have been developed around the world, incorporating recent advances in the field of aquatic toxicology using a variety of different approaches. The authors of a recent review compared existing methodologies and summarized the differences between them (see tables 4 and 5 in TenBrook et al. 2009). TenBrook et al. (2009) observed that although methods from the USEPA provided a good basis for calculating criteria, many newer methodologies added valuable procedures that could improve criteria generation. Of particular concern were cases having small data sets, for which the USEPA (1985) methodology does not allow criteria calculation and provides little guidance. In this review, we elaborate on the review of methodologies by TenBrook et al. (2009) and we propose a new methodology that combines features derived from the existing methodologies that have been determined to generate the most flexible and robust criteria. This new methodology also incorporates results from recent research in aquatic ecotoxicology and environmental risk assessment and is hereafter referred to as the University of California-Davis Methodology (UCDM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Chemical names and CAS numbers of all chemicals referred to in this article are given in Table 26.

References

  • Aldenberg T (1993) ETX 1.3a. A program to calculate confidence limits for hazardous concentrations based on small samples of toxicity data. National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands

    Google Scholar 

  • Aldenberg T, Slob W (1993) Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf 25:48–63

    Article  CAS  Google Scholar 

  • Aldenberg T, Jaworska JS (2000) Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf 46:1–18

    Article  CAS  Google Scholar 

  • Aldenberg T, Luttik R (2002) Extrapolation factors for tiny toxicity data sets from species sensitivity distributions with known standard deviation. In: Posthuma L, Suter IIGW, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis Publishers, New York, NY

    Google Scholar 

  • Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23:1640–1648

    Article  CAS  Google Scholar 

  • Anderson JW, Moore LJ, Blaylock JW, Woodruff DL, Keissa SL (1977) Bioavailability of sediment-sorbed naphthalenes to the sipunculid worm. Phascolosoma agassizii. In: Wolfe DA (ed) Fate and effects of petroleum hydrocarbons in marine ecosystems and organisms. Pergamon Press, Elmsford, NY, pp 275–285

    Google Scholar 

  • Anderson TD, Lydy MJ (2002) Increased toxicity to invertebrates associated with a mixture of atrazine and organophosphate insecticides. Environ Toxicol Chem 21:1507–1514

    Article  CAS  Google Scholar 

  • Anderson BS, Phillips BM, Hunt JW, Connor V, Richard N, Tjeerdema RS (2006) Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): relative effects of pesticides and suspended particles. Environ Pollut 141:402–408

    Article  CAS  Google Scholar 

  • ANZECC, ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. Report Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, Australia

    Google Scholar 

  • Asfaw A, Ellersieck MR, Mayer FL (2003) Interspecies correlation estimations (ICE) for acute toxicity to aquatic organisms and wildlife. II. User manual and software. US Environmental Protection Agency Report No. EPA/600/R-03/106, Washington, DC, 20p + software

    Google Scholar 

  • ASTM (1997) Standard test method for partition coefficient (n-octanol/water) estimation by liquid chromatography. Annual book of standards, E 1147-92. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  • ASTM (2001a) Practice for determination of hydrolysis rate constants of organic chemicals in aqueous solutions. Annual book of standards, E 895-89. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  • ASTM (2001b) Test method for determining a sorption constant (Koc) for an organic chemical in soil and sediments. Annual book of standards, E 1195-01. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  • ASTM (2002a) Guide for conducting bioconcentration tests with fishes and saltwater bivalve mollusks. Annual Book of Standards, E 1022-94. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  • ASTM (2002b) Test method for measurements of aqueous solubility. Annual book of standards, E 1148-02. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  • Bailey HC, Miller JL, Miller MJ, Wiborg LC, Deanovic L, Shed T (1997) Joint acute toxicity of diazinon and chlorpyrifos to Ceriodaphnia dubia. Environ Toxicol Chem 16:2304–2308

    CAS  Google Scholar 

  • Barata C, Solayan A, Porte C (2004) Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquat Toxicol 66:125–139

    Article  CAS  Google Scholar 

  • Barry MJ, Logan DC, Vandam RA, Ahokas JT, Holdway DA (1995a) Effect of age and weight-specific respiration rate on toxicity of esfenvalerate pulse-exposure to the Australian crimson-spotted rainbow fish (Melanotaenia fluviatilis). Aquat Toxicol 32:115–126

    Article  CAS  Google Scholar 

  • Barry MJ, Ohalloran K, Logan DC, Ahokas JT, Holdway DA (1995b) Sublethal effects of esfenvalerate pulse-exposure on spawning and non-spawning Australian crimson-spotted rainbowfish (Melanotaenia fluviatilis). Arch Environ Contam Toxicol 28:459–463

    Article  CAS  Google Scholar 

  • Belden JB, Lydy MJ (2000) Impact of atrazine on organophosphate insecticide toxicity. Environ Toxicol Chem 19:2266–2274

    Article  CAS  Google Scholar 

  • Belden JB, Lydy MJ (2006) Joint toxicity of chlorpyrifos and esfenvalerate to fathead minnows and midge larvae. Environ Toxicol Chem 25:623–629

    Article  CAS  Google Scholar 

  • Berglund O, Larsson P, Ewald G, Okla L (2000) Bioaccumulation and differential partitioning of polychlorinated biphenyls in freshwater, planktonic food webs. Can J Fish Aquat Sci 57:1160–1168

    Article  CAS  Google Scholar 

  • Borthwick PW, Clark JR, Montgomery RM, Patrick JM Jr, Lores EM (1985) Field confirmation of a laboratory-derived hazard assessment of the acute toxicity of fenthion to pink shrimp, Penaeus duorarum. In: Bahner RC, Hansen DJ (eds) Aquatic toxicology and hazard assessment: eighth symposium. ASTM STP 891, American Society of Testing and Materials, Philadelphia, PA, pp 177–189

    Chapter  Google Scholar 

  • Bowman J (1988) Acute flow through toxicity of chlorpyrifos to bluegill sunfish (Lepomis macrochirus): project ID 37189. Unpublished study prepared by Analytical Biochemistry Laboratories, Inc, 174p, MRID 40840904

    Google Scholar 

  • Brannon JM, Pennington JC, Davis WM, Hayes C (1995) Fluoranthene K-DOC in sediment pore waters. Chemosphere 30:419–428

    Article  CAS  Google Scholar 

  • Brown R, Hugo J, Miller J, Harrington C (1997) Chlorpyrifos acute toxicity to the amphipod Hyalella azteca. Lab project No. 971095: 91/414 ANNEX I 8.3.4. Unpublished study prepared by the Dow Chemical Co., 27p, MRID 44345601

    Google Scholar 

  • Brown MD, Carter J, Thomas D, Purdie DM, Kay BH (2002) Pulse-exposure effects of selected insecticides to juvenile Australian crimson-spotted rainbowfish (Melanotaenia duboulayi). J Econ Entomol 95:294–298

    Article  CAS  Google Scholar 

  • Bruce RD, Versteeg DJ (1992) A statistical procedure for modeling continuous toxicity data. Environ Toxicol Chem 11:1485–1494

    Article  CAS  Google Scholar 

  • Burgess D (1988) Acute flow through toxicity of chlorpyrifos to Daphnia magna: final Report No. 37190. Unpublished study prepared by Analytical Biochemistry Laboratories, Inc., 158p, MRID 40840902

    Google Scholar 

  • Burgess RM, Pelletier MC, Gundersen JL, Perron MM, Ryba SA (2005) Effects of different forms of organic carbon on the partitioning and bioavailability of 4-nonylphenol. Environ Toxicol Chem 24:1609–1617

    Article  CAS  Google Scholar 

  • Burns LA (2004) Exposure analysis modeling system (EXAMS): user manual and system documentation, Revision G. Report US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13:215–232

    Article  Google Scholar 

  • Cairns J (1990) Lack of theoretical basis for predicting rate and pathways of recovery. Environ Manage 14:517–526

    Article  Google Scholar 

  • Cairns JJ, Dickson KL (1977) Recovery of streams from spills of hazardous materials. In: Cairns JJ, Dickson KL, Herricks EE (eds) Recovery and restoration of damaged ecosystems. University Press of Virginia, Charlottesville, VA, pp 24–42

    Google Scholar 

  • Calamari D, Galassi S, Setti F, Vighi M (1983) Toxicity of selected chlorobenzenes to aquatic organisms. Chemosphere 12:253–262

    Article  CAS  Google Scholar 

  • Call DJ, Brooke LT, Knuth ML, Poirier SH, Hoglund MD (1985) Fish subchronic toxicity prediction model for industrial organic chemicals that produce narcosis. Environ Toxicol Chem 4:335–341

    Article  CAS  Google Scholar 

  • Campbell E, Palmer MJ, Shao Q, Warne M, Wilson D (2000) BurrliOZ: a computer program for calculating toxicant trigger values for the ANZECC and ARMCANZ water quality guidelines. In: National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agricultural and Resource Management Council of Australia and New Zealand, Canberra, Australia. Available at http://www.cmis.csiro.au/Envir/burrlioz/

  • CCME (1999) A protocol for the derivation of water quality guidelines for the protection of aquatic life. Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Ottawa

    Google Scholar 

  • CDFG (1992a) Test No. 61, chronic, chlorpyrifos, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1992b) Test No. 133, acute, chlorpyrifos, Neomysis mercedis. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1992c) Test No. 137, acute, chlorpyrifos, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1992d) Test No. 139, acute, chlorpyrifos, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1992e) Test No. 142, acute, chlorpyrifos, Neomysis mercedis. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1992f) Test No. 143, acute, chlorpyrifos, Neomysis mercedis. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1992 g) Test No. 150, acute, chlorpyrifos, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1992 h) Test No. 157, acute, diazinon, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1992i) Test No. 162, acute, diazinon, Neomysis mercedis. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1992j) Test No. 163, acute, diazinon, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1992 k) Test No. 168, acute, diazinon, Neomysis mercedis. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1998a) Test No. 122, acute, diazinon, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1998b) Test No. 132, acute, diazinon, Physa spp. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (1999) Test No. 61, 7-day chronic, chlorpyrifos, Ceriodaphnia dubia. California Department of Fish and Game, Elk Grove, CA

    Google Scholar 

  • CDFG (2006a) State and federally listed endangered, threatened animals of California. California Natural Diversity Database. Available at http://www.dfg.ca.gov/hcpb/species/t_e_spp/tespp.shtml. California Department of Fish and Game, Sacramento, CA

  • CDFG (2006b) State and federally listed endangered, threatened, and rare plants of California. California Natural Diversity Database. Available at http://www.dfg.ca.gov/hcpb/species/t_e_spp/tespp.shtml. California Department of Fish and Game, Sacramento, CA

  • CDPR (2005) Registration desk manual. California Department of Pesticides Regulation, Sacramento, CA

    Google Scholar 

  • Chapman PM, Fairbrother A, Brown D (1998) A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ Toxicol Chem 17:99–108

    Article  CAS  Google Scholar 

  • Charles JR (1958) Final report on population manipulation studies in three Kentucky streams. Proc Southeast Assoc Game Fish Commrs 11:155–185

    Google Scholar 

  • Chin YP, Gschwend PM (1992) Partitioning of poly cyclic aromatic hydrocarbons to marine pore-water organic colloids. Environ Sci Technol 26:1621–1626

    Article  CAS  Google Scholar 

  • Chiou CT, Malcolm RL, Brinton TI, Kile DE (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic-acids. Environ Sci Technol 20:502–508

    Article  CAS  Google Scholar 

  • Chiou CT, Kile DE, Brinton TI, Malcolm RL, Leenheer JA, Maccarthy P (1987) A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids. Environ Sci Technol 21:1231–1234

    Article  CAS  Google Scholar 

  • CIBA-GEIGY (1987) Static acute toxicity of diazinon AG500 to bluegill (Lepomis macrochirus), EPA guidelines no. 72-1. Report for study conducted by Springborn Life Sciences, Inc., Wareham, MA for CIBA-GEIGY Corporation, Greensboro, NC

    Google Scholar 

  • Cold A, Forbes VE (2004) Consequences of a short pulse of pesticide exposure for survival and reproduction of Gammarus pulex. Aquat Toxicol 67:287–299

    Article  CAS  Google Scholar 

  • Cook SF, Moore RL (1969) The effects of rotenone treatment on the insect fauna of a California stream. Trans Am Fish Soc 98:539–544

    Article  Google Scholar 

  • Corbet PS (1958) Some effects of DDT on the fauna of the Victoria Nile. Rev Zool Bot Afr 57:73–95

    Google Scholar 

  • Cornelissen G, Breedveld GD, Naes K, Oen AMP, Ruus A (2006) Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod: freely dissolved concentrations and activated carbon amendment. Environ Toxicol Chem 25:2349–2355

    Article  CAS  Google Scholar 

  • Crane M (1997) Research needs for predictive multispecies tests in aquatic toxicology. Hydrobiologia 346:149–155

    Article  CAS  Google Scholar 

  • Crane M, Attwood C, Sheahan D, Morris S (1999) Toxicity and bioavailability of the organophosphorus insecticide pirimiphos methyl to the freshwater amphipod Gammarus pulex L. in laboratory and mesocosm systems. Environ Toxicol Chem 18:1456–1461

    CAS  Google Scholar 

  • Crosby DG (1998) Environmental toxicology and chemistry. Oxford University Press, New York, NY

    Google Scholar 

  • CSIRO (2001) BurrliOZ v. 1.0.13. Commonwealth Scientific and Industrial Research Organization, Australia

    Google Scholar 

  • CVRWQCB (2004) The water quality control plan (basin plan) for the California Regional Water Quality Control Board Central Valley Region, 4th edn. the Sacramento and San Joaquin River basins. Central Valley Regional Water Quality Control Board, Rancho Cordova, CA

    Google Scholar 

  • Day KE (1991) Effects of dissolved organic-carbon on accumulation and acute toxicity of fenvalerate, deltamethrin and cyhalothrin to Daphnia magna (Straus). Environ Toxicol Chem 10:91–101

    CAS  Google Scholar 

  • Debruijn J, Busser F, Seinen W, Hermens J (1989) Determination of octanol-water partition coefficients for hydrophobic organic chemicals with the slow-stirring method. Environ Toxicol Chem 8:499–512

    Article  CAS  Google Scholar 

  • Delle Site A (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data 30:187–439

    Article  CAS  Google Scholar 

  • Denton D, Norberg-King TJ (1996) Whole effluent toxicity statistics: a regulatory perspective. In: Grothe DR, Dickson KL, Reed-Judkins DK (eds) Whole effluent toxicity testing: an evaluation of methods and prediction of receiving system impacts. SETAC Press, Pensacola, FL, pp 83–102

    Google Scholar 

  • Denton DL, Fox JF, Fulk FA (2003) Enhancing toxicity performance by using a statistical criterion. Environ Toxicol Chem 22:2323–2328

    Article  CAS  Google Scholar 

  • Dermott RM, Spence HJ (1984) Changes in populations and drift of stream invertebrates following lampricide treatment. Can J Fish Aquat Sci 41:1695–1701

    Article  Google Scholar 

  • Dewolf W, Canton JH, Deneer JW, Wegman RCC, Hermens JLM (1988) Quantitative structure activity relationships and mixture-toxicity studies of alcohols and chlorohydrocarbons – reproducibility of effects on growth and reproduction of Daphnia magna. Aquat Toxicol 12:39–49

    Article  CAS  Google Scholar 

  • DiToro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic-chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583

    Article  CAS  Google Scholar 

  • Eadie BJ, Morehead NR, Landrum PF (1990) 3-Phase partitioning of hydrophobic organic-compounds in Great Lakes waters. Chemosphere 20:161–178

    Article  CAS  Google Scholar 

  • ECB (2003) Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment of new notified substances, commission regulation (EC) no. 1488/94 on risk assessment for existing substances, directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Environmental risk assessment. European Chemicals Bureau Office for Publications of the European Communities, Luxembourg

    Google Scholar 

  • ECETOC (1993) Technical Report No. 56 – aquatic toxicity data evaluation. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels. Available at http://www.ecetoc.org/technical-reports

  • ECOTOX (2006) ECOTOX code list. Report US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Eidt DC (1981) Recovery of aquatic arthropod populations in a woodland stream after depletion by fenitrothion treatment. Can Entomol 113:303–313

    Article  Google Scholar 

  • Ellersieck MR, Asfaw A, Mayer FL, Krause GF, Sun K, Lee G (2003) Acute-to-chronic estimation (ACE v. 2.0) with time-concentration-effect models: user manual and software. US Environmental Protection Agency Report No. EPA/600/R-03/107, Washington, DC, 26p, + software

    Google Scholar 

  • El-Merhibi A, Kumar A, Smeaton T (2004) Role of piperonyl butoxide in the toxicity of chlorpyrifos to Ceriodaphnia dubia and Xenopus laevis. Ecotoxicol Environ Saf 57:202–212

    Article  CAS  Google Scholar 

  • Elson PF (1967) Effects on wild young salmon of spraying DDT over New Brunswick forests. J Fish Res Board Can 24:731–767

    Article  Google Scholar 

  • Emans HJB, Vanderplassche EJ, Canton JH, Okkerman PC, Sparenburg PM (1993) Validation of some extrapolation methods used for effect assessment. Environ Toxicol Chem 12:2139–2154

    Article  CAS  Google Scholar 

  • Erickson RJ, Stephan CE (1988) Calculation of the final acute value for water quality criteria for aquatic organisms. Report Environmental Research Laboratory-Duluth, US Environmental Protection Agency, Duluth, MN

    Google Scholar 

  • Evans M, Hastings N, Peacock B (2000) Statistical distributions, 3rd edn. Wiley, New York, NY

    Google Scholar 

  • Evers EHG, Smedes F (1993) Adsorptiegedrag van extreme hydrofobe verbindingen: PCDs, PAK’s en dioxins. Bepalingsmethoden vertroebelen sorptiecoefficienten. Symposiumverslag Kontaminanten in Bodems en Sediment, Sorptie en Biologische Beschikbaarheid

    Google Scholar 

  • EVS (1999) A critique of the ANZECC and ARMCANZ (1999) Water quality guidelines. Prepared for Minerals Council of Australia and Kwinana Industries Council. Final report. Vancouver, BC

    Google Scholar 

  • Felsot AS (2005) A critical analysis of the draft report, “Amendments to the water quality control plan for the Sacramento River and San Joaquin River basins for the control of diazinon and chlorpyrifos runoff into the lower San Joaquin River,” (Karkoski et al. 2004) and supporting documents. Prepared for the Central Valley Regional Water Quality Control Board, Sacramento, CA

    Google Scholar 

  • Ferrari A, Venturino A, de D’Angelo AMP (2004) Time course of brain cholinesterase inhibition and recovery following acute and subacute azinphosmethyl, parathion and carbaryl exposure in the goldfish (Carassius auratus). Ecotoxicol Environ Saf 57:420–425

    Article  CAS  Google Scholar 

  • Finney DJ (1942) The analysis of toxicity tests on mixtures of poisons. Ann Appl Biol 29:82–94

    Article  CAS  Google Scholar 

  • Forbes VE, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–1556

    Article  CAS  Google Scholar 

  • Forbes VE, Calow P (2002) Species sensitivity distributions revisited: a critical appraisal. Hum Ecol Risk Assess 8:473–492

    Google Scholar 

  • Forbes VE, Cold A (2005) Effects of the pyrethroid esfenvalerate on life-cycle traits and population dynamics of Chironomus riparius – importance of exposure scenario. Environ Toxicol Chem 24:78–86

    Article  CAS  Google Scholar 

  • Fox DR (1999) Setting water quality guidelines – a statistician’s perspective. SETAC News 19:17–18

    Google Scholar 

  • Fredeen FJH (1975) Effects of a single injection of methoxyclor black-fly larvicide on insect larvae in a 161-km (100-Mile) section of North Saskatchewan River. Can Entomol 107:807–817

    Article  CAS  Google Scholar 

  • Fredeen FJH (1983) Trends in numbers of aquatic invertebrates in a large Canadian river during four years of black fly larviciding with methoxychlor (Diptera: Simuliidae). Quaestiones Entomologicae 19:53–92

    Google Scholar 

  • Galassi S, Mingazzini M, Vigano L, Cesareo D, Tosato ML (1988) Approaches to modeling toxic responses of aquatic organisms to aromatic hydrocarbons. Ecotoxicol Environ Saf 16:158–169

    Article  CAS  Google Scholar 

  • Garbarini DR, Lion LW (1986) Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ Sci Technol 20:1263–1269

    Article  CAS  Google Scholar 

  • Gauthier TD, Seitz WR, Grant CL (1987) Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ Sci Technol 21:243–248

    Article  CAS  Google Scholar 

  • Geiger DL, Call DJ, Brooke LT (1988) Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas), Volume IV. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, WI, pp 195–197

    Google Scholar 

  • Ghetti PF, Gorbi G (1985) Effects of acute pollution on macroinvertebrates in a stream. Verhandlungen IVL 22:2426–2431

    CAS  Google Scholar 

  • Giesy JP, Solomon KR, Coats JR, Dixon KR, Giddings JM, Kenaga EE (1999) Chlorpyrifos: ecological risk assessment in North American aquatic environments. Rev Environ Contam Toxicol 160:1–129

    Article  CAS  Google Scholar 

  • GLEC (2003) Draft compilation of existing guidance for the development of site-specific water quality objectives in the state of California. Great Lakes Environmental Center, Columbus, OH

    Google Scholar 

  • Grothe DR, Kickson KL, Reed-Judkins DK (eds) (1996) Whole effluent toxicity testing: an evaluation of methods and prediction of receiving system impacts. SETAC Press, Pensacola, FL

    Google Scholar 

  • Gustafson KE, Dickhut RM (1997) Distribution of polycyclic aromatic hydrocarbons in southern Chesapeake Bay surface water: evaluation of three methods for determining freely dissolved water concentrations. Environ Toxicol Chem 16:452–461

    Article  CAS  Google Scholar 

  • Halter MT, Johnson HE (1977) A model system to study the desorption and biological availability of PCB in hydrosoils. In: Mayer FL, Hamelink JL (eds) Aquatic Toxicity and Hazard Evaluation ASTM STP 634. American Society for Testing and Materials, Philadelphia, PA, pp 178–195

    Chapter  Google Scholar 

  • Hanson ML, Sanderson H, Solomon KR (2003) Variation, replication, and power analysis of Myriophyllum spp. microcosm toxicity data. Environ Toxicol Chem 22:1318–1329

    CAS  Google Scholar 

  • Harmon SM, Specht WL, Chandler GT (2003) A comparison of the daphnids Ceriodaphnia dubia and Daphnia ambigua for their utilization in routine toxicity testing in the Southeastern United States. Arch Environ Contam Toxicol 45:79–85

    Article  CAS  Google Scholar 

  • Harrison AD, Rattray EA (1966) Biological effects of mollusciciding natural waters. S Afr J Sci 62:236–241

    Google Scholar 

  • Hastings E, Kittams WH, Pepper JH (1961) Repopulation by aquatic insects in streams sprayed with DDT. Ann Entomol Soc Am 54:436–437

    Google Scholar 

  • Heckmann LH, Friberg N (2005) Macroinvertebrate community response to pulse exposure with the insecticide lambda-cyhalothrin using in-stream mesocosms. Environ Toxicol Chem 24:582–590

    Article  CAS  Google Scholar 

  • Hermens J, Canton H, Janssen P, Dejong R (1984) Quantitative structure activity relationships and toxicity studies of mixtures of chemicals with anesthetic potency – acute lethal and sublethal toxicity to Daphnia magna. Aquat Toxicol 5:143–154

    Article  CAS  Google Scholar 

  • Hoekstra JA, Van Ewijk (1993) Alternatives for the no-observed-effect level. Environ Toxicol Chem 12:187–194

    Article  Google Scholar 

  • Hoffman CH, Drooz AT (1953) Effects of a C-47 airplane application of DDT on fish-food organisms in two Pennsylvania watersheds. Am Midl Nat 50:172–188

    Article  Google Scholar 

  • Holcombe GW, Phipps GL, Tanner DK (1982) The acute toxicity of Kelthane, Dursban, Disulfoton, Pydrin, and Permethrin to Fathead Minnows Pimephales promelas and Rainbow Trout Salmo gairdneri. Environ Pollut Ser A Ecol Biol 29:167–178

    Article  CAS  Google Scholar 

  • Holdway DA, Barry MJ, Logan DC, Robertson D, Young V, Ahokas JT (1994) Toxicity of pulse-exposed fenvalerate and esfenvalerate to larval Australian crimson-spotted rainbow fish (Melanotaenia fluviatilis). Aquat Toxicol 28:169–187

    Article  CAS  Google Scholar 

  • Hose GC, Van Den Brink PJ (2004) Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data. Arch Environ Contam Toxicol 47:511–520

    Article  CAS  Google Scholar 

  • Host GE, Regal RR, Stephan CE (1995) Analyses of acute and chronic data for aquatic life. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Howard PH (1991) Handbook of environmental fate and exposure data for organic chemicals. Pesticides, vol III. CRC Press, Boca Raton, FL

    Google Scholar 

  • Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20:533–552

    Article  CAS  Google Scholar 

  • Huckins JN, Petty JD, Lebo JA, Almeida FV, Booij K, Alvarez DA, Clark RC, Mogensen BB (2002) Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environ Sci Technol 36:85–91

    Article  CAS  Google Scholar 

  • Huckins JN, Prest HF, Petty JD, Lebo JA, Hodgins MM, Clark RC, Alvarez DA, Gala WR, Steen A, Gale R, Ingersoll CI, Steen A (2004) Overview and comparison of lipid-containing semipermeable membrane devices and oysters (Crassostrea gigas) for assessing organic chemical exposure. Environ Toxicol Chem 23:1617–1628

    Article  CAS  Google Scholar 

  • Hyder AH, Overmyer JP, Noblet R (2004) Influence of developmental stage on susceptibilities and sensitivities of Simulium vittatum IS-7 and Simulium vittatum IIIL-1 (Diptera: Simuliidae) to chlorpyrifos. Environ Toxicol Chem 23:2856–2862

    Article  Google Scholar 

  • Irmer U, Markard C, Blondzik K, Gottschalk C, Kussatz C, Rechenberg B, Schudoma D (1995) Quality targets for concentrations of hazardous substances in surface waters in Germany. Ecotoxicol Environ Saf 32:233–243

    Article  CAS  Google Scholar 

  • Jacobi GZ, Degan DJ (1977) Aquatic macroinvertebrates in a small Wisconsin trout stream before, during and two years after treatment with the fish toxicant antimycin. US Bureau of Sport Fisheries and Wildlife. Investig Fish Control 81:1–24

    Google Scholar 

  • Jarvinen AW, Tanner DK (1982) Toxicity of selected controlled release and corresponding unformulated technical grade pesticides to the Fathead Minnow Pimephales promelas. Environ Pollut Series a-Ecol Biol 27:179–195

    Article  CAS  Google Scholar 

  • Jarvinen AW, Tanner DK, Kline ER (1988) Toxicity of chlorpyrifos, endrin, or fenvalerate to fathead minnows following episodic or continuous exposure. Ecotoxicol Environ Saf 15:78–95

    Article  CAS  Google Scholar 

  • Jeffrey KA, Beamish FWH, Ferguson SC, Kolton RJ, Macmahon PD (1986) Effects of the lampricide, 3-trifluoromethyl-4-nitrophenol (TFM) on the macroinvertebrates within the hyporheic region of a small stream. Hydrobiologia 134:43–51

    Article  Google Scholar 

  • JMP (2004) Statistical discovery software. Version 5.1.2. SAS Institute, Inc., Cary, NC

    Google Scholar 

  • Keenleyside MHA (1959) Effects of spruce budworm control on salmon and other fishes in New Brunswick. Can Fish Cult 24:17–22

    Google Scholar 

  • Kenaga EE (1982) Predictability of chronic toxicity from acute toxicity of chemicals in fish and aquatic invertebrates. Environ Toxicol Chem 1:347–358

    Article  CAS  Google Scholar 

  • Kersting K, Van Wijngaarden R (1992) Effects of chlorpyrifos on a microecosystem. Environ Toxicol Chem 11:365–372

    Article  CAS  Google Scholar 

  • Konemann H (1981) Quantitative structure-activity-relationships in fish toxicity studies. 1. Relationship for 50 industrial pollutants. Toxicology 19:209–221

    Article  CAS  Google Scholar 

  • Kooijman S (1987) A safety factor for LC50 values allowing for differences in sensitivity among species. Water Res 21:269–276

    Article  CAS  Google Scholar 

  • Kraufvelin P (1999) Baltic hard bottom mesocosms unplugged: replicability, repeatability and ecological realism examined by non-parametric multivariate techniques. J Exp Mar Biol Ecol 240:229–258

    Article  Google Scholar 

  • Kuhn R, Pattard M, Pernak KD, Winter A (1989) Results of the harmful effects of water pollutants to Daphnia magna in the 21-day reproduction test. Water Res 23:501–510

    Article  Google Scholar 

  • Kukkonen J, Oikari A (1991) Bioavailability of organic pollutants in boreal waters with varying levels of dissolved organic material. Water Res 25:455–463

    Article  CAS  Google Scholar 

  • Lange R, Hutchinson TH, Croudace CP, Siegmund F (2001) Effects of the synthetic estrogen 17 alpha-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1216–1227

    CAS  Google Scholar 

  • Laor Y, Farmer WJ, Aochi Y, Strom PF (1998) Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid. Water Res 32:1923–1931

    Article  CAS  Google Scholar 

  • Lauridsen RB, Friberg N (2005) Stream macroinvertebrate drift response to pulsed exposure of the synthetic pyrethroid lambda-cyhalothrin. Environ Toxicol 20:513–521

    Article  CAS  Google Scholar 

  • Lee GH, Ellersieck MR, Mayer FL, Krause GF (1995) Predicting chronic lethality of chemicals to fishes from acute toxicity test data – multifactor probit analysis. Environ Toxicol Chem 14:345–349

    Article  CAS  Google Scholar 

  • Lepper P (2000) Towards the derivation of quality standards for priority substances in the context of the Water Framework Directive. Final report of the study contract no. B4-3040/2000/30673/MAR/E1. Fraunhofer-Institute Molecular Biology and Applied Ecology, Munich

    Google Scholar 

  • Liess M, Schulz R (1999) Linking insecticide contamination and population response in an agricultural stream. Environ Toxicol Chem 18:1948–1955

    Article  CAS  Google Scholar 

  • Lillebo HP, Shaner S, Carlson D, Richard N (1988) Water quality criteria for selenium and other trace elements for protection of aquatic life and its uses in the San Joaquin Valley. Technical committee report: regulation of agricultural drainage to the San Joaquin River. Appendix D. California State Water Resources Control Board, Sacramento, CA

    Google Scholar 

  • Little JD (1966) Reclamation of Pine Creek, Tennessee. Proc Southeast Assoc Game Fish Commrs 19:302–315

    Google Scholar 

  • Liu WP, Gan JJ, Lee S, Kabashima JN (2004) Phase distribution of synthetic pyrethroids in runoff and stream water. Environ Toxicol Chem 23:7–11

    Article  Google Scholar 

  • Lu Y, Wang Z (2003) Accumulation of organochlorinated pesticides by triolein-containing semipermeable membrane device (triolein-SPMD) and rainbow trout. Water Res 37:2419–2425

    Article  CAS  Google Scholar 

  • Lydy MJ, Belden JB, Wheelock CE, Hammock BD, Denton DL (2004) Challenges in regulating pesticide mixtures. Ecol Soc 9:1

    Google Scholar 

  • Lydy MJ, Austin KR (2005) Toxicity assessment of pesticide mixtures typical of the Sacramento-San Joaquin Delta using Chironomus tentans. Arch Environ Contam Toxicol 48:49–55

    Article  CAS  Google Scholar 

  • Mackay D (1982) Correlation of bioconcentration factors. Environ Sci Technol 16:274–278

    Article  CAS  Google Scholar 

  • Mackay D, Shiu WY, Ma KC (1997) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. CRC Press, Boca Raton, FL

    Google Scholar 

  • Mackay D (2001) Multimedia environmental fate models: the fugacity approach, 2nd edn. Lewis Publishers, Boca Raton, FL

    Book  Google Scholar 

  • Maltby L, Blake N, Brock TCM, Van Den Brink PJ (2005) Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–388

    Article  CAS  Google Scholar 

  • Maltby L, Brock TCM, Van Den Brink PJ (2009) Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime. Environ Sci Technol 43:7556–7563

    Article  CAS  Google Scholar 

  • Maund SJ, Hamer MJ, Lane MCG, Farrelly E, Rapley JH, Goggin UM, Gentle WE (2002) Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ Toxicol Chem 21:9–15

    Article  CAS  Google Scholar 

  • Mayer FL, Krause GF, Buckler DR, Ellersieck MR, Lee GH (1994) Predicting chronic lethality of chemicals to fishes from acute toxicity test data – concepts and linear-regression analysis. Environ Toxicol Chem 13:671–678

    Article  CAS  Google Scholar 

  • Mayer FL, Ellersieck MR, Krause GF, Sun K, Lee G, Buckler DR (2002) Time-concentration-effect models in predicting chronic toxicity from acute toxicity data. In: Crane M, Newman MC, Chapman PF, Fenlon J (eds) Risk assessment with time to event models. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • McCarthy JF, Jimenez BD, Barbee T (1985) Effect of dissolved humic material on accumulation of polycyclic aromatic-hydrocarbons – structure activity relationships. Aquat Toxicol 7:15–24

    Article  CAS  Google Scholar 

  • Meehan WR, Sheridan WL (1966) Effects of toxaphene on fishes and bottom fauna of Big Kitoi Creek, Afognak Island, Alaska. Fish and Wildlife Service Resource Publication No. 12. US Department of the Interior, Washington, DC

    Google Scholar 

  • Menconi M, Beckman J (1996) Hazard assessment of the insecticide methomyl to aquatic organisms in the San Joaquin River system. Administrative Report 96-6. California Department of Fish and Game, Environmental Service Division, Rancho Cordova, CA

    Google Scholar 

  • MHSPE (1994) Intervention values and target values – soil quality standards. Ministry of Housing, Spatial Planning and Environment. Directorate-General for Environmental Protection, The Hague, The Netherlands

    Google Scholar 

  • Minckley WL, Mihalick P (1981) Effects of chemical treatment for fish eradication on stream-dwelling invertebrates. J Arizona-Nevada Acad Sci 16:79–82

    Google Scholar 

  • MITI (1992) Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Japan Chemical Industry Ecology-Toxicology & Information Center. Ministry of International Trade and Industry, Basic Industries Bureau, Chemical Products Safety Division

    Google Scholar 

  • Moore DRJ, Caux PY (1997) Estimating low toxic effects. Environ Toxicol Chem 16:794–801

    Article  CAS  Google Scholar 

  • Morrison BRS (1977) The effects of rotenone on the invertebrate fauna of three hill streams in Scotland. Fisheries Manage 8:128–139

    Google Scholar 

  • Moye WC, Luckmann WH (1964) Fluctuations in populations of certain aquatic insects following application of aldrin granules to Sugar Creek Iroquois County Illinois. J Econ Entomol 57:318–322

    Google Scholar 

  • Mu XY, LeBlanc GA (2004) Synergistic interaction of endocrine-disrupting chemicals: model development using an ecdysone receptor antagonist and a hormone synthesis inhibitor. Environ Toxicol Chem 23:1085–1091

    Article  CAS  Google Scholar 

  • Nabholz JV (1991) Environmental hazard and risk assessment under the United States Toxic Substances Control Act. Sci Total Environ 109:649–665

    Article  Google Scholar 

  • Naddy RB, Johnson KA, Klaine SJ (2000) Response of Daphnia magna to pulsed exposures of chlorpyrifos. Environ Toxicol Chem 19:423–431

    CAS  Google Scholar 

  • Neff JM (1979) Polycyclic aromatic hydrocarbons in the aquatic environment. Applied Science, London

    Google Scholar 

  • Niemi GJ, Devore P, Detenbeck N, Taylor D, Lima A, Pastor J, Yount JD, Naiman RJ (1990) Overview of case-studies on recovery of aquatic systems from disturbance. Environ Manage 14:571–587

    Article  Google Scholar 

  • Nikunen E, Leinonen R, Kemilainen B, Kultamaa A (2003) Environment guide 71 – environmental properties of chemicals. Finnish Environment Institute. Helsinki, Finland

    Google Scholar 

  • North Carolina DENR (2003) Redbook: surface water and wetland standards. Division of Water Quality North Carolina Department of Environment and Natural Resources, Raleigh, NC

    Google Scholar 

  • OECD (1981) Test No. 112: dissociation constants in water. OECD publishing. Available at http://browse.oecdbookshop.org/oecd/pdfs/browseit/9711201E.PDF

  • OECD (1995a) OECD environment monographs No. 92, OECD environmental health and safety publications, series on testing and assessment, No. 3, guidance document for aquatic effects assessment. Organization for Economic Co-operation and Development, Paris

    Google Scholar 

  • OECD (1995b) Test No. 105: water solubility. OECD publishing. Available at http://www.oecd.org/dataoecd/17/13/1948185.pdf

  • OECD (1996) Test No. 305: bioconcentration: flow-through fish test. OECD publishing. Available at http://browse.oecdbookshop.org/oecd/pdfs/browseit/9730501E.PDF

  • OECD (2000) Test No. 106: adsorption – desorption using a batch equilibrium method. OECD publishing. Available at http://browse.oecdbookshop.org/oecd/pdfs/browseit/9710601E.PDF

  • OECD (2001) Test No. 121: estimation of the adsorption coefficient (Koc) on soil and on sewage sludge using high performance liquid chromatography (HPLC). OECD publishing. Available at http://browse.oecdbookshop.org/oecd/pdfs/browseit/9712101E.PDF

  • OECD (2004) Test No. 111: hydrolysis as a function of pH. OECD publishing. Available at http://browse.oecdbookshop.org/oecd/pdfs/browseit/9711101E.PDF

  • Okkerman PC, Van Den Plassche EJ, Slooff W, Van Leeuwen CJ, Canton JH (1991) Ecotoxicological effects assessment: a comparison of several extrapolation procedures. Ecotox Environ Saf 21:182–193

    Article  CAS  Google Scholar 

  • Okkerman PC, Vanderplassche EJ, Emans HJB, Canton JH (1993) Validation of some extrapolation methods with toxicity data derived from multiple species experiments. Ecotoxicol Environ Saf 25:341–359

    Article  CAS  Google Scholar 

  • Olmstead AW, LeBlanc GA (2005) Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model. Integr Environ Assess Manage 1:114–122

    Article  CAS  Google Scholar 

  • Onsager L (1927) On the theory of electrolytes. II. Physikalische Zeitschrift 28:277–298

    CAS  Google Scholar 

  • PAN (2006) Pesticide Action Network Pesticide Database. Available at http://www.pesticideinfo.org/Index.html

  • PapeLindstrom PA, Lydy MJ (1997) Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ Toxicol Chem 16:2415–2420

    Article  CAS  Google Scholar 

  • Parsons JT, Surgeoner GA (1991a) Acute toxicities of permethrin, fenitrothion, carbaryl and carbofuran to mosquito larvae during single-pulse or multiple-pulse exposures. Environ Toxicol Chem 10:1229–1233

    Article  CAS  Google Scholar 

  • Parsons JT, Surgeoner GA (1991b) Effect of exposure time on the acute toxicities of permethrin, fenitrothion, carbaryl and carbofuran to mosquito larvae. Environ Toxicol Chem 10:1219–1227

    Article  CAS  Google Scholar 

  • Persoone G, Janssen CR (1994) Field validation of predictions based on laboratory toxicity tests. In: Hill IR, Heimbach F, Leeuwangh P, Matthiessen P (eds) Freshwater field tests for hazard assessment of chemicals. CRC Press, Boca Raton, FL, pp 379–397

    Google Scholar 

  • Peterson JL, Jepson PC, Jenkins JJ (2001) Effect of varying pesticide exposure duration and concentration on the toxicity of carbaryl to two field-collected stream invertebrates, Calineuria californica (Plecoptera: Perlidae) and Cinygma sp. (Ephemeroptera: Heptageniidae). Environ Toxicol Chem 20:2215–2223

    CAS  Google Scholar 

  • Phipps GL, Holcombe GW (1985) A method for aquatic multiple species toxicant testing – acute toxicity of 10 chemicals to 5 vertebrates and 2 invertebrates. Environ Pollut Series a-Ecol Biol 38:141–157

    Article  CAS  Google Scholar 

  • Phillips TA, Wu JG, Summerfelt RC, Atchison GJ (2002) Acute toxicity and cholinesterase inhibition in larval and early juvenile walleye exposed to chlorpyrifos. Environ Toxicol Chem 21:1469–1474

    Article  CAS  Google Scholar 

  • Phillips TA, Summerfelt RC, Wu J, Laird DA (2003) Toxicity of chlorpyrifos adsorbed on humic colloids to larval walleye (Stizostedion vitreum). Arch Environ Contam Toxicol 45:258–263

    Article  CAS  Google Scholar 

  • PHYSPROP (2006) Physical Properties Database. Available at http://www.syrres.com/esc/physprop.htm. SRC Inc

  • Plackett RL, Hewlett PS (1952) Quantal responses to mixtures of poisons. J R Stat Soc Series B Stat Methodol 14:141–163

    Google Scholar 

  • Prest H, Petty JD, Huckins JN (1998) Validity of using semipermeable membrane devices for determining aqueous concentrations of freely dissolved PAHs. Environ Toxicol Chem 17:535–536

    Article  CAS  Google Scholar 

  • Printes LB, Callaghan A (2004) A comparative study on the relationship between acetyl cholinesterase activity and acute toxicity in Daphnia magna exposed to anticholinesterase insecticides. Environ Toxicol Chem 23:1241–1247

    Article  CAS  Google Scholar 

  • Reynaldi S, Liess M (2005) Influence of duration of exposure to the pyrethroid fenvalerate on sublethal responses and recovery of Daphnia magna Straus. Environ Toxicol Chem 24:1160–1164

    Article  CAS  Google Scholar 

  • Rider CV, LeBlanc GA (2005) An integrated addition and interaction model for assessing toxicity of chemical mixtures. Toxicol Sci 87:520–528

    Article  CAS  Google Scholar 

  • RIVM (2001) Guidance document on deriving environmental risk limits in The Netherlands, report 601501012. National Institute of Public Health and the Environment, Bilthoven, The Netherlands

    Google Scholar 

  • Roesijadi G, Anderson JW, Blaylock JW (1978a) Uptake of hydrocarbons from marine sediments contaminated with Prudhoe Bay crude oil – influence of feeding type of test species and availability of polycyclic aromatic hydrocarbons. J Fish Res Board Can 35:608–614

    Article  CAS  Google Scholar 

  • Roesijadi G, Woodruff DL, Anderson JW (1978b) Bioavailability of naphthalenes from marine sediments artificially contaminated with Prudhoe Bay crude oil. Environ Pollut 15:223–229

    Article  CAS  Google Scholar 

  • Rogers HR (1993) Speciation and partitioning of priority organic contaminants in estuarine waters. Colloids Surf A 73:229–235

    Article  CAS  Google Scholar 

  • Rossi SS (1977) Bioavailability of petroleum hydrocarbons from water, sediments and detritus to the marine annelid, Neanthes arenaceodentata. American Petroleum Institute, Washington, DC, pp 621–626

    Google Scholar 

  • Roux DJ, Jooste SHJ, MacKay HM (1996) Substance-specific water quality criteria for the protection of South African freshwater ecosystems: methods for derivation and initial results for some inorganic toxic substances. S Afr J Sci 92:198–206

    CAS  Google Scholar 

  • Samsoe-Petersen L, Pedersen F (1995) Water quality criteria for selected priority substances, working report TI 44. Water Quality Institute, Danish Environmental Protection Agency, Copenhagen, Denmark

    Google Scholar 

  • Sanderson H (2002) Pesticide studies – replication of micro/mesocosm studies. Environ Sci Pollut Res 6:429–435

    Article  Google Scholar 

  • Sangster Research Laboratories (2004) LOGKOW, a databank of evaluated octanol-water partition coefficients (Log P), http://logkow.cisti.nrc.ca/logkow/intro.html. Canadian National Committee for CODATA, Montreal, QC

  • Schnürer Y, Persson P, Nilsson M, Nordgren A, Giesler R (2006) Effects of surface sorption on microbial degradation of glyphosate. Environ Sci Technol 40:4145–4150

    Article  CAS  Google Scholar 

  • Schulz R, Liess M (2000) Toxicity of fenvalerate to caddisfly larvae: chronic effects of 1-vs 10-hr pulse-exposure with constant doses. Chemosphere 41:1511–1517

    Article  CAS  Google Scholar 

  • Schulz R, Liess M (2001) Toxicity of aqueous-phase and suspended particle-associated fenvalerate: chronic effects after pulse-dosed exposure of Limnephilus lunatus (Trichoptera). Environ Toxicol Chem 20:185–190

    CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New York, NY

    Google Scholar 

  • Segner H (2005) Developmental, reproductive, and demographic alterations in aquatic wildlife: establishing causality between exposure to endocrine-active compounds (EACs) and effects. Acta Hydrochim Hydrobiol 33:17–26

    Article  CAS  Google Scholar 

  • Shen L, Wania F (2005) Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. J Chem Eng Data 50:742–768

    Article  CAS  Google Scholar 

  • Siepmann S, Jones MR (1998) Hazard assessment of the insecticide carbaryl to aquatic organisms in the Sacramento-San Joaquin river system, Administrative Report 98-1. California Department of Fish and Game, Office of Spill Prevention and Response, Rancho Cordova, CA

    Google Scholar 

  • Siepmann S, Finlayson B (2000) Water quality criteria for diazinon and chlorpyrifos, Administrative Report 00-3. California Department of Fish and Game, Rancho Cordova, CA

    Google Scholar 

  • Solomon KR, Giddings JM, Maund SJ (2001) Probabilistic risk assessment of cotton pyrethroids: I. Distributional analyses of laboratory aquatic toxicity data. Environ Toxicol Chem 20:652–659

    Article  CAS  Google Scholar 

  • Solomon KR, Takacs P (2002) Probabilistic risk assessment using species sensitivity distributions. In: Posthuma L, Suter GW, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis Publishers, New York, NY, pp 285–314

    Google Scholar 

  • Staples CA, Dickson KL, Rodgers JHJ, Saleh FY (1985) A model for predicting the influence of suspended sediments on the bioavailability of neutral organic chemicals in the water compartment. In: Cardwell RD, Purdy R, Bahner RC (eds) Aquatic toxicology and hazard assessment: seventh symposium ASTM STP 854. American Society for Testing and Materials, Philadelphia, PA, pp 417–428

    Chapter  Google Scholar 

  • Steinberg CEW, Sturm A, Kelbel J, Lee SK, Hertkorn N, Freitag D, Kettrup AA (1992) Changes of acute toxicity of organic chemicals to Daphnia magna in the presence of dissolved humic material (DHM). Acta Hydrochim Hydrobiol 20:326–332

    CAS  Google Scholar 

  • Steinberg CEW, Xu Y, Lee SK, Freitag D, Kettrup A (1993) Effect of dissolved humic material (DHM) on bioavailability of some organic xenobiotics to Daphnia magna. Chem Spec Bioavail 5:1–9

    CAS  Google Scholar 

  • Stephan CE (1985) Are the “Guidelines for deriving numerical national water quality criteria for the protection of aquatic life and its uses” based on sound judgments? In: Cardwell RD, Purdy R, Bahner RC (eds) Aquatic toxicology and hazard assessment: seventh symposium, ASTM STP 854. American Society for Testing and Materials, Philadelphia, PA, pp 515–526

    Chapter  Google Scholar 

  • Stephan CE, Rogers JW (1985) Advantages of using regression analysis to calculate results of chronic toxicity tests. Aquatic Toxicology and Hazard Assessment: eighth symposium. American Society for Testing and Materials, pp 328–338

    Google Scholar 

  • Sun K, Krause GF, Mayer FL, Ellersieck MR, Basu AP (1995) Predicting chronic lethality of chemicals to fishes from acute toxicity test data – theory of accelerated life testing. Environ Toxicol Chem 14:1745–1752

    Article  CAS  Google Scholar 

  • Suter GWI, Barnthouse LW (1993) Assessment concepts. In: Suter GWI (ed) Ecological risk assessment. Lewis Publishers, Boca Raton, FL, pp 21–47

    Google Scholar 

  • Takahashi N, Ito M, Mikami N, Matsuda T, Miyamoto J (1988) Identification of reactive oxygen species generated by irradiation of aqueous humic-acid solution. J Pestic Sci 13:429–435

    Article  CAS  Google Scholar 

  • TenBrook PL, Tjeerdema RS, Hann P, Karkoski J (2009) Methods for deriving pesticide aquatic life criteria. Rev Environ Contamin Toxicol 199:19–109

    CAS  Google Scholar 

  • Torblaa RL (1968) Effects of lamprey larvicides on invertebrates in streams. US Department of the Interior, Washington, DC

    Google Scholar 

  • Traas TP, VandeMeent D, Posthuma L, Hamers T, Kater BJ, De Zwart D, Aldenberg T (2002) The potentially affected fraction as a measure of ecological risk. In: Posthuma L, Suter GWI, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis Publishers, New York, NY, pp 315–344

    Google Scholar 

  • US Code Title 7 (1947) Federal Insecticide, Fungicide and Rodenticide Act. Code of Federal Regulations, Title 7. As amended through 2004 Ed

    Google Scholar 

  • US Code Title 40 (2009) Terrestrial and aquatic non-target organisms data requirements table. Federal Insecticide, Fungicide and Rodenticide Act. Code of Federal Regulations, Title 40, Volume 23, Part 158.630. As amended through 2009 Ed

    Google Scholar 

  • USEPA (1980a) Ambient water quality criteria for aldrin/dieldrin. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1980b) Ambient water quality criteria for chlordane, EPA 440/5-80-027. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1980c) Ambient water quality criteria for endosulfan, EPA 440/5-80-046. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1980d) Ambient water quality criteria for endrin, EPA 440/5-80-047. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1980e) Ambient Water Quality Criteria for Heptachlor, EPA 440/5-80-062. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1980f) Ambient Water Quality Criteria for Hexachlorocyclohexane, EPA 440/5-80-054. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1980 g) Ambient Water Quality Criteria for DDT, EPA 440/5-80-038. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1985) Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses, PB-85-227049. US Environmental Protection Agency, National Technical Information Service, Springfield, VA

    Google Scholar 

  • USEPA (1986a) Ambient water quality criteria for chlorpyrifos, EPA 440/5-86-005. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1986b) Ambient Water Quality Criteria for Toxaphene, EPA 440/5-86-006. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1991) Technical Support Document for Water Quality-based Toxics Control, EPA/505/2-90-001. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1993) 40 CFR 158.490 Wildlife and aquatic organisms data requirements. Code of Federal Regulations. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1994) Water quality standards handbook. EPA-823-B-94-005. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1996a) Product properties test guidelines. OPPTS 830.7560. Partition coefficient (n-octanol/water), generator column method, EPA 712-C-96-039. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1996b) Product properties test guidelines. OPPTS 830.7550. Partition coefficient (n-octanol/water), shake flask method, 712-C-96-038. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (2002a) Understanding and accounting for method variability in whole effluent toxicity application under the National Pollutant Discharge Elimination System Program. EPA/833R-00-003. US EPA Office of Water, Washington, DC

    Google Scholar 

  • USEPA (2002b) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 4th Ed. EPA-821-R-02-013. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (2003a) Water quality guidance for the Great Lakes system. Fed Regist 40

    Google Scholar 

  • USEPA (2003b) Ambient aquatic life water quality criteria for tributyltin (TBT) – Final, EPA 822-R-03-031. US Environmental Protection Agency

    Google Scholar 

  • USEPA (2003c) Draft ambient life water quality criteria for atrazine, EPA-822-R-03-023. Office of Water, Health and Ecological Criteria Division, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (2003d) 2003 Draft update of ambient water quality criteria for copper, EPA 822-R-03-026. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (2005a) Aquatic life ambient water quality criteria, diazinon, final, EPA-822-R-05-006. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (2005b) Science Advisory Board consultation document, proposed revisions to aquatic life guidelines, water-based criteria. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (2006) Recognition and management of pesticide poisonings, 5th edn. Section IV, Chapter 16 Fumigants. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USGS (2000) The virtual fish: SPMD basics. US Geological Survey Columbia Environmental Research Center

    Google Scholar 

  • Van den Berg M, Birnbaum L, Bosveld ATC, Brunstrom B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, Van Leeuwen FXR, Liem AKD, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T (1998) Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106:775–792

    Article  Google Scholar 

  • Van Der Hoeven N, Gerritsen AAM (1997) Effects of chlorpyrifos on individuals and populations of Daphnia pulex in the laboratory and field. Environ Toxicol Chem 16:2438–2447

    Google Scholar 

  • Van Der Hoeven N, Noppert F, Leopold A (1997) How to measure no effect. 1. Towards a new measure of chronic toxicity in ecotoxicology, introduction and workshop results. Environmetrics 8:241–248

    Article  Google Scholar 

  • Van Leeuwen CJ, Adema DMM, Hermens J (1990) Quantitative structure-activity-relationships for fish early life stage toxicity. Aquat Toxicol 16:321–334

    Article  Google Scholar 

  • Van Leeuwen CJ, Vanderzandt PTJ, Aldenberg T, Verhaar HJM, Hermens JLM (1992) Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. 1. Narcotic industrial pollutants. Environ Toxicol Chem 11:267–282

    Article  Google Scholar 

  • Van Straalen NM, Denneman CAJ (1989) Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Saf 18:241–251

    Article  Google Scholar 

  • Van Straalen NM, Van Leeuwen CJ (2002) European history of species sensitivity distributions. In: Posthuma L, Suter GWI, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis Publishers, New York, NY pp 19–34

    Google Scholar 

  • Van Vlaardingen PLA, Traas TP, Wintersen AM, Aldenberg T (2004) ETX 2.0 A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands

    Google Scholar 

  • Van Wijngaarden R, Leeuwangh P, Lucassen WGH, Romijn K, Ronday R, Vandervelde R, Willigenburg W (1993) Acute toxicity of chlorpyrifos to fish, a newt, and aquatic invertebrates. Bull Environ Contam Toxicol 51:716–723

    Article  Google Scholar 

  • Varó I, Serrano R, Pitarch E, Amat F, Lopez FJ, Navarro JC (2002) Bioaccumulation of chlorpyrifos through an experimental food chain: study of protein HSP70 as biomarker of sublethal stress in fish. Arch Environ Contam Toxicol 42:229–235

    Article  Google Scholar 

  • Veith GD, Call DJ, Brooke LT (1983) Structure toxicity relationships for the fathead minnow, Pimephales promelas – narcotic industrial chemicals. Can J Fish Aquat Sci 40:743–748

    Article  CAS  Google Scholar 

  • Verhaar HJM, Van Leeuwen CJ, Bol J, Hermens JLM (1994) Application of QSARs in risk management of existing chemicals. SAR QSAR Environ Res 2:39–58

    Article  CAS  Google Scholar 

  • Verschueren K (2009) Handbook of environmental data on organic chemicals, 5th edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Versteeg DJ, Belanger SE, Carr GJ (1999) Understanding single-species and model ecosystem sensitivity: data-based comparison. Environ Toxicol Chem 18:1329–1346

    CAS  Google Scholar 

  • Victor R, Ogbeibu AE (1986) Recolonization of macrobenthic invertebrates in a Nigerian stream after pesticide treatment and associated disruption. Environ Pollut Ser A Ecol Biol 41:125–137

    Article  CAS  Google Scholar 

  • Wagner C, Løkke H (1991) Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Res 25:1237–1242

    Article  CAS  Google Scholar 

  • Wallace JB, Vogel DS, Cuffney TF (1986) Recovery of a headwater stream from an insecticide-induced community disturbance. J N Am Benthol Soc 5:115–126

    Article  Google Scholar 

  • Warner K, Fenderson OC (1962) Effects of DDT spraying for forest insects on Maine trout streams. J Wildl Manage 26:86–93

    Article  CAS  Google Scholar 

  • Wheelock CE, Eder KJ, Werner I, Huang HZ, Jones PD, Brammell BF, Elskus AA, Hammock BD (2005) Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquat Toxicol 74:172–192

    Article  CAS  Google Scholar 

  • Whiles MR, Wallace JB (1995) Macroinvertebrate production in a headwater stream during recovery from anthropogenic disturbance and hydrologic extremes. Can J Fish Aquat Sci 52:2402–2422

    Article  Google Scholar 

  • Whitehouse P, Crane M, Grist E, O’Hagan A, Sorokin N (2004) Derivation and expression of water quality standards; opportunities and constraints in adopting risk-based approaches in EQS setting, UK

    Google Scholar 

  • Wu JG, Laird DA (2004) Interactions of chlorpyrifos with colloidal materials in aqueous systems. J Environ Qual 33:1765–1770

    Article  CAS  Google Scholar 

  • Yount JD, Niemi GJ (1990) Recovery of lotic communities and ecosystems from disturbance – a narrative review of case studies. Environ Manage 14:547–569

    Article  Google Scholar 

  • Zabel TF, Cole S (1999) The derivation of environmental quality standards for the protection of aquatic life in the UK. J Chart Inst Water Environ Manag 13:436–440

    Article  Google Scholar 

  • Zischke JA, Arthur JW, Hermanutz RO, Hedtke SF, Helgen JC (1985) Effects of pentachlorophenol on invertebrates and fish in outdoor experimental channels. Aquat Toxicol 7:37–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the following reviewers: Daniel McClure (CVRWQCB), Joshua Grover (CVRWQCB), Zhimin Lu (CVRWQCB), Lawrence R. Curtis (Oregon State University), Brian Finlayson (CDFG), Evan P. Gallagher (University of Washington), John P. Knezovich (Lawrence Livermore National Laboratory), and Marshall Lee (CDPR). This project was funded through a contract with the CVRWQCB. Mention of specific products, policies, or procedures does not represent endorsement by the CVRWQCB. The contents also do not necessarily reflect the views or policies of the USEPA nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tessa L. Fojut .

Editor information

Editors and Affiliations

Appendix: Acute Chlorpyrifos Data Collected for Criteria Derivation Using the UCDM Derivation

Appendix: Acute Chlorpyrifos Data Collected for Criteria Derivation Using the UCDM Derivation

Table 27 Final acute toxicity data set for chlorpyrifos. All studies were rated relevant and reliable (RR) and were conducted at standard temperaturea

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

TenBrook, P.L., Palumbo, A.J., Fojut, T.L., Hann, P., Karkoski, J., Tjeerdema, R.S. (2010). The University of California-Davis Methodology for Deriving Aquatic Life Pesticide Water Quality Criteria. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 209. Reviews of Environmental Contamination and Toxicology, vol 209. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6883-8_1

Download citation

Publish with us

Policies and ethics