Skip to main content

The Impact of Sperm Processing and Cryopreservation on Sperm DNA Integrity

  • Chapter
  • First Online:
Sperm Chromatin

Abstract

Here, an overview of the various clinical uses of processing of semen samples and cryopreservation is given. The effects of sperm processing on conventional semen parameters are discussed along with the ramifications of removing seminal plasma, oxidative stress and potential benefits of antioxidant addition in laboratory processing of testicular and ejaculated sperm. In the second part of the chapter, the effects of a second laboratory hazard, namely, cryopreservation, are discussed in terms of effects on conventional parameters of sperm structure and function and also on DNA fragmentation of testicular and ejaculated sperm. The greater vulnerability of sperm from infertile men is described, as well as the cryoinjury displayed by those with teratozoospermia. The mechanisms of cryoinjury are set out with special reference to oxidative damage and the process of repeated freezing and thawing. The efficacy of commercially available cryoprotectants is also discussed. Finally, novel freezing–thawing protocols such as freeze-drying and vitrification of sperm are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mortimer D. Sperm recovery techniques to maximize fertilizing capacity. Reprod Fertil Dev. 1994;6:25–31.

    PubMed  CAS  Google Scholar 

  2. Donnelly ET, Lewis SE, McNally JA, et al. In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome. Fertil Steril. 1998;70:305–14.

    PubMed  CAS  Google Scholar 

  3. Donnelly ET, McClure N, Lewis SE. Glutathione and hypotaurine in vitro: effects on human sperm motility, DNA integrity and production of reactive oxygen species. Mutagenesis. 2000;15:61–8.

    PubMed  CAS  Google Scholar 

  4. Sakkas D, Manicardi GC, Tomlinson M, et al. The use of two density gradient centrifugation technique and the swim up method to separate spermatozoa with chromatin and nuclear DNA anomalies. Hum Reprod. 2000;15(5):1112–6.

    PubMed  CAS  Google Scholar 

  5. Kanwar KC, Yanagimachi R, Lopata A. Effects of human seminal plasma on fertilizing capacity of human spermatozoa. Fertil Steril. 1979;31:321–7.

    PubMed  CAS  Google Scholar 

  6. Rogers BJ, Perreault SD, Bentwood BJ, et al. Variability in the human–hamster in vitro assay for fertility evaluation. Fertil Steril. 1983;39:204–11.

    PubMed  CAS  Google Scholar 

  7. van Loon AA, Den Boer PJ, van der Schans GP, et al. Immunochemical detection of DNA damage induction and repair at different cellular stages of spermatogenesis of the hamster after in vitro or in vivo exposure to ionizing radiation. Exp Cell Res. 1991;193:303–9.

    PubMed  Google Scholar 

  8. van Loon AA, Sonneveld E, Hoogerbrugge J, et al. Induction and repair of DNA single-strand breaks and DNA base damage at different cellular stages of spermatogenesis of the hamster upon in vitro exposure to ionizing radiation. Mutat Res. 1993;294:139–48.

    PubMed  Google Scholar 

  9. Drost JB, Lee WR. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Environ Mol Mutagen. 1995;25:48–64.

    PubMed  CAS  Google Scholar 

  10. Shekarriz M, DeWire DM, Thomas AJ, et al. A method of human semen centrifugation to minimize the iatrogenic sperm injuries caused by reactive oxygen species. Eur Urol. 1995;28:31–5.

    PubMed  CAS  Google Scholar 

  11. Shekarriz M, Thomas AJ, Agarwal A. Incidence and level of seminal reactive oxygen species in normal men. Urology. 1995;45:103–7.

    PubMed  CAS  Google Scholar 

  12. Griveau JF, Le Lannou D. Influence of oxygen tension on reactive oxygen species production and human sperm function. Int J Androl. 1997;20:195–200.

    PubMed  CAS  Google Scholar 

  13. Whittington K, Ford WC. The effect of incubation periods under 95% oxygen on the stimulated acrosome reaction and motility of human spermatozoa. Mol Hum Reprod. 1998;4:1053–7.

    PubMed  CAS  Google Scholar 

  14. Aitken RJ, Buckingham DW, West KM. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin dependent chemiluminescence. J Cell Physiol. 1992;151:466–77.

    PubMed  CAS  Google Scholar 

  15. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficiency of sperm preparation techniques. J Androl. 1998;9(6):367–76.

    Google Scholar 

  16. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–50.

    PubMed  CAS  Google Scholar 

  17. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59:2–11.

    PubMed  CAS  Google Scholar 

  18. Mahfouz R, Sharma R, Thiyagarajan A, et al. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil Steril. 2010;94:2141–6.

    PubMed  CAS  Google Scholar 

  19. Abd-Elmoaty MA, Saleh R, Sharma R, et al. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril. 2009;94:1531–4.

    Google Scholar 

  20. Hughes CM, Lewis SE, McKelvey-Martin VJ, et al. The effects of antioxidant supplementation during Percoll preparation on human sperm DNA integrity. Hum Reprod. 1998;13:1240–7.

    PubMed  CAS  Google Scholar 

  21. Twigg JP, Irvine DS, Aitken RJ. Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum Reprod. 1998;13:1864–71.

    PubMed  CAS  Google Scholar 

  22. Tremellen K. Oxidative stress and male infertility–a clinical perspective. Hum Reprod Update. 2008;14:243–58.

    PubMed  CAS  Google Scholar 

  23. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed. Oxford: Clarendon; 1989.

    Google Scholar 

  24. Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2004;95:503–7.

    Google Scholar 

  25. Donnelly ET, McClure N, Lewis SE. Antioxidant supplementation in vitro does not improve human sperm motility. Fertil Steril. 1999;72:484–95.

    PubMed  CAS  Google Scholar 

  26. Menezo YJR, Hazout A, Panteix G, et al. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online. 2007;14(4):418–21.

    PubMed  CAS  Google Scholar 

  27. Rolf C, Cooper TG, Yeung CH, et al. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin C and vitamin E: a randomized, placebo-controlled, double-blind study. Hum Reprod. 1999;14:1028–33.

    PubMed  CAS  Google Scholar 

  28. Li ZL, Lin QL, Liu RJ, et al. Reducing oxidative DNA damage by adding antioxidants in human semen samples undergoing cryopreservation procedure. Zhonghua Yi Xue Za Zhi. 2007;87:3174–7.

    PubMed  CAS  Google Scholar 

  29. Lewis SE, Boyle PM, McKinney KA, et al. Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril. 1995;64:868–70.

    PubMed  CAS  Google Scholar 

  30. Kessopoulou E, Powers HJ, Sharma KK, et al. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin E to treat reactive oxygen species associated male infertility. Fertil Steril. 1995;64:825–31.

    PubMed  CAS  Google Scholar 

  31. Baker HW, Brindle J, Irvine DS, et al. Protective effect of antioxidants on the impairment of sperm motility by activated polymorphonuclear leukocytes. Fertil Steril. 1996;65:411–9.

    PubMed  CAS  Google Scholar 

  32. Battista N, Rapino C, Di Tommaso M, et al. Regulation of male fertility by the endocannabinoid system. Mol Cell Endocrinol. 2008;286:S17–23.

    PubMed  CAS  Google Scholar 

  33. Sanger WG, Olson JH, Sherman JK. Semen cryobanking for men with cancer – criteria change. Fertil Steril. 1992;58:1024–7.

    PubMed  CAS  Google Scholar 

  34. Sherman JK. Current status of clinical cryobanking of human semen. In: Paulson JD, Negro-Vlar A, Lucena E, Martini L, editors. Andrology: male fertility and sterility. Orlando: Academic; 1986. p. 517–47.

    Google Scholar 

  35. Anger JT, Gilbert BR, Goldstein M. Cryopreservation of sperm: indications, methods and results. J Urol. 2003;170:1079–84.

    PubMed  Google Scholar 

  36. Borges E, Rossi LM, de Freitas CVL, et al. Fertilization and pregnancy outcome after intracytoplasmic injection with fresh or cryopreserved ejaculated spermatozoa. Fertil Steril. 2007;87:316–20.

    PubMed  Google Scholar 

  37. Centola GM, Raubertas RF, Mattox JH. Cryopreservation of human semen. Comparison of cryopreservatives, sources of variability, and prediction of post-thaw survival. J Androl. 1992;13:283–8.

    PubMed  CAS  Google Scholar 

  38. Nijs M, Ombelet W. Cryopreservation of human sperm. Hum Fertil. 2001;4(3):158–63.

    CAS  Google Scholar 

  39. Donnelly ET, McClure N, Lewis SE. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril. 2001;76:892–900.

    PubMed  CAS  Google Scholar 

  40. Esteves SC, Sharma RK, Thomas AJ, et al. Suitability of the hypo-osmotic swelling test for assessing the viability of cryopreserved sperm. Fertil Steril. 1996;66:798–804.

    PubMed  CAS  Google Scholar 

  41. Cross NL, Hanks SE. Effects of cryopreservation on human sperm acrosomes. Hum Reprod. 1991;6:1279–83.

    PubMed  CAS  Google Scholar 

  42. Mazur P, Rall WF, Leibo SP. Kinetics of water loss and the likelihood of intracellular freezing in mouse ova. Influence of the method of calculating the temperature dependence of water permeability. Cell Biophys. 1984;6:197–213.

    PubMed  CAS  Google Scholar 

  43. Lewis SEM, McKinney KA, Thompson W. Influence of pentoxifylline on human sperm motility in asthenozoospermic individuals using computer-assisted analysis. Arch Androl. 1994;32(3):175–83.

    PubMed  CAS  Google Scholar 

  44. Glenn DRJ, McVicar CM, McClure N, et al. Sidenafil citrate improves sperm motility but causes a premature acrosome reaction in vitro. Fertil Steril. 2007;87:1064–70.

    PubMed  CAS  Google Scholar 

  45. Sharma RK, Wang JH, Wu Z. Mechanisms of inhibition of calmodulin-stimulated cyclic nucleotide phosphodiesterase by dihydropyridine calcium antagonists. J Neurochem. 1997;69(2):845–50.

    PubMed  CAS  Google Scholar 

  46. Tournaye H, van der Linden M, van den Abbeel E, et al. Mouse in vitro fertilization using sperm treated with pentoxifylline and 2-deoxyadenosine. Fertil Steril. 1994;62:644–7.

    PubMed  CAS  Google Scholar 

  47. Glenn DR, McClure N, Cosby SL, et al. Sildenafil citrate (Viagra) impairs fertilization and early embryo development in mice. Fertil Steril. 2009;91(3):893–9.

    PubMed  CAS  Google Scholar 

  48. Fjällbrant B, Ackerman DR. Cervical mucus penetration in vitro by fresh and frozen-preserved human semen specimens. J Reprod Fertil. 1969;20:515–7.

    PubMed  Google Scholar 

  49. O’Connell M, McClure N, Lewis SEM. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod. 2002;17:704–9.

    PubMed  Google Scholar 

  50. Rossato M, La Sala GB, Balasini M, et al. Sperm treatment with extracellular ATP increases fertilization rates in in-vitro fertilization for male factor infertility. Hum Reprod. 1999;14:694–7.

    PubMed  CAS  Google Scholar 

  51. Verheyen G, Nagy Z, Joris H, et al. Quality of frozen thawed testicular sperm and its preclinical use for intracytoplasmic sperm injection into in vitro-matured germinal-vesicle stage oocytes. Fertil Steril. 1997;67:74–80.

    PubMed  CAS  Google Scholar 

  52. Sabanegh ES, Ragheb AM. Male fertility after cancer. Urology. 2009;73(2):225–31.

    PubMed  Google Scholar 

  53. Watson PF. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post thawing function. Reprod Fertil Dev. 1995;7:871–91.

    PubMed  CAS  Google Scholar 

  54. Duru NK, Morshedi MS, Schuffner A, et al. Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. J Androl. 2001;22(4):646–51.

    PubMed  CAS  Google Scholar 

  55. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.

    PubMed  Google Scholar 

  56. Smit M, Dohle GR, Hop WC, et al. Clinical correlates of the biological variation of sperm DNA fragmentation in infertile men attending an andrology outpatient clinic. Int J Androl. 2007;30(1):48–55.

    PubMed  CAS  Google Scholar 

  57. Lin MH, Lee KKR, Li SH, et al. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril. 2008;90:352–9.

    PubMed  Google Scholar 

  58. Gandini L, Lombardo F, Lenzi A, et al. Cryopreservation and sperm DNA integrity. Cell Tissue Bank. 2006;7:91–8.

    PubMed  CAS  Google Scholar 

  59. de Paula TS, Bertolla RP, Spaine DM, et al. Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertil Steril. 2006;86:597–600.

    PubMed  Google Scholar 

  60. Calamera JC, Buffone MG, Doncel GF, et al. Effect of thawing temperature on the motility recovery of cryopreserved human spermatozoa. Fertil Steril. 2010;93:789–94.

    PubMed  Google Scholar 

  61. Kalthur G, Adiga SK, Upadhya D, et al. Effect of cryopreservation on sperm DNA integrity in patients with teratospermia. Fertil Steril. 2008;89:1723–7.

    PubMed  Google Scholar 

  62. Zribi N, Chakroun FN, Euch EH, et al. Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;93:159–66.

    PubMed  CAS  Google Scholar 

  63. Thomson LK, Fleming SD, Schulke L, et al. The DNA integrity of cryopreserved spermatozoa separated for use in assisted reproductive technology is unaffected by the type of cryoprotectant used but is related to the DNA integrity of the fresh separated preparation. Fertil Steril. 2009;92:991–1001.

    PubMed  CAS  Google Scholar 

  64. Dalzell LH, Thompson-Cree MEM, McClure N, et al. Effects of 24-hour incubation after freeze-thawing on DNA fragmentation of testicular sperm from infertile and fertile men. Fertil Steril. 2003;79(3):1670–2.

    PubMed  Google Scholar 

  65. Pasqualotto FF, Sharma RK, Kobayashi H, et al. Oxidative stress in normospermic men undergoing infertility evaluation. J Androl. 2001;22:316–22.

    PubMed  CAS  Google Scholar 

  66. Stanic P, Tandara M, Sonicki Z, et al. Comparison of protective media and freezing techniques for cryopreservation of human semen. Eur J Obstet Gynecol Reprod Biol. 2000;91:65–70.

    PubMed  CAS  Google Scholar 

  67. Esteves SC, Sharma RK, Thomas AJ, et al. Evaluation of acrosomal status and sperm viability in fresh and cryopreserved specimens by the use of fluorescent peanut agglutinin lectin in conjunction with hypo-osmotic swelling test. Int Braz J Urol. 2007;33:364–74.

    PubMed  Google Scholar 

  68. Nallella KP, Sharma RK, Allamaneni SS, et al. Cryopreservation of human spermatozoa: comparison of two cryopreservation methods and three cryoprotectants. Fertil Steril. 2004;82:913–8.

    PubMed  CAS  Google Scholar 

  69. Sherman JK. Synopsis of the use of frozen human semen since 1964: state of the art of human semen banking. Fertil Steril. 1973;24:397–412.

    PubMed  CAS  Google Scholar 

  70. Verheyen G, Pletincx I, van Steirteghem A. Effect of freezing method, thawing temperature and post-thaw dilution/washing on motility (CASA) and morphology characteristics of high-quality human sperm. Hum Reprod. 1993;8:1678–84.

    PubMed  CAS  Google Scholar 

  71. Morris GJ. Rapidly cooled human sperm: no evidence of intracellular ice formation. Hum Reprod. 2006;21:2075–83.

    PubMed  CAS  Google Scholar 

  72. Morris GJ, Goodrich M, Acton E, et al. The high viscosity encountered during freezing in glycerol solutions: effects on cryopreservation. Cryobiology. 2006;52:323–34.

    PubMed  CAS  Google Scholar 

  73. Ablett S, Izzard MJ, Lillford PJ. Differential scanning calorimetric study of frozen sucrose and glycerol solutions. J Chem Soc Faraday Trans. 1992;88:789–94.

    CAS  Google Scholar 

  74. Denda M, Hosoi J, Asida Y. Visual imaging of ion distribution in human epidermis. Biochem Biophys Res Commun. 2000;272:134–7.

    PubMed  CAS  Google Scholar 

  75. Hernandez JA, Cristina E. Modeling cell volume regulation in nonexcitable cells: the roles of the Na+ pump and of cotransport systems. Am J Physiol. 1998;275:1067–80.

    Google Scholar 

  76. Li LY, Tighe BJ, Ruberti JW. Mathematical modeling of corneal swelling. Biomech Model Mechanobiol. 2004;3:114–23.

    PubMed  CAS  Google Scholar 

  77. Chen HH, Purtteman JJ, Heimfeld S, et al. Development of a microfluidic device for determination of cell osmotic behavior and membrane transport properties. Cryobiology. 2007;55:200–9.

    PubMed  CAS  Google Scholar 

  78. Mazur P. Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE, editors. Life in the frozen state. Boca Raton: CRC Press; 2004. p. 3–65.

    Google Scholar 

  79. Gao DY, Liu C, McGann LE, et al. Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum Reprod. 1995;10:1109–22.

    PubMed  CAS  Google Scholar 

  80. Gao D, Mazur P, Critser J. Fundamental cryobiology of mammalian spermatozoa. In: Karow AM, Critser JK, editors. Reproductive tissue banking. London: Academic; 1997. p. 263–328.

    Google Scholar 

  81. Isachenko E, Isachenko V, Katkov II, et al. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Hum Reprod. 2004;19:932–9.

    PubMed  CAS  Google Scholar 

  82. Baumber J, Ball BA, Linfor JJ, et al. Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. J Androl. 2003;24:621–8.

    PubMed  CAS  Google Scholar 

  83. Print CG, Loveland KL. Germ cell suicide: new insights into apoptosis during spermatogenesis. Bioessays. 2000;22(5):423–30.

    PubMed  CAS  Google Scholar 

  84. Kierszenbaum AL. Transition nuclear proteins during spermiogenesis: unrepaired DNA breaks not allowed. Mol Reprod Dev. 2001;58:357–8.

    PubMed  CAS  Google Scholar 

  85. Sakkas D, Mariethoz E, John JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res. 1999;251:350–5.

    PubMed  CAS  Google Scholar 

  86. Sakkas D, Mariethoz E, Manicardi G, et al. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4:431–7.

    Google Scholar 

  87. Huszar G, Sbracia M, Vigue L, et al. Sperm plasma membrane remodeling during spermiogenic maturation in men: relationship among plasma membrane beat 1,4 galactosyltransferase, cytoplasmic creatine phosphokinase and creatine phosphokinase isoform ratios. Biol Reprod. 1997;56:1020–4.

    PubMed  CAS  Google Scholar 

  88. Paasch U, Sharma RK, Gupta AK, et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod. 2004;71:1828–37.

    PubMed  CAS  Google Scholar 

  89. Wundrich K, Paasch U, Leicht M, et al. Activation of caspases in human spermatozoa during cryopreservation–an immunoblot study. Cell Tissue Bank. 2006;7:81–90.

    PubMed  Google Scholar 

  90. Martin G, Sabido O, Durand P, et al. Cryopreservation induces an apoptosis-like mechanism in bull sperm. Biol Reprod. 2004;71:28–37.

    PubMed  CAS  Google Scholar 

  91. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.

    PubMed  CAS  Google Scholar 

  92. Weng SL, Taylor SL, Morshedi M, et al. Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod. 2002;8:984–91.

    PubMed  CAS  Google Scholar 

  93. Marchetti C, Gallego MA, Defossez A, et al. Staining of human sperm with fluorochrome-labeled inhibitor of caspases to detect activated caspases: correlation with apoptosis and sperm parameters. Hum Reprod. 2004;19:1127–34.

    PubMed  CAS  Google Scholar 

  94. Agarwal A, Ranganathan P, Kattal N, et al. Fertility after cancer: a prospective review of assisted reproductive outcome with banked semen specimens. Fertil Steril. 2004;81:342–8.

    PubMed  Google Scholar 

  95. Sharma RK, Said T, Agarwal A. Sperm DNA damage and its clinical relevance in assessing reproductive outcome. Asian J Androl. 2004;6:139–48.

    PubMed  CAS  Google Scholar 

  96. Paasch U, Grunewald S, Agarwal A, et al. Activation pattern of caspases in human spermatozoa. Fertil Steril. 2004;81:802–9.

    PubMed  CAS  Google Scholar 

  97. Thomson LK, Fleming SD, Aitken RJ, et al. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod. 2009;24:2061–70.

    PubMed  CAS  Google Scholar 

  98. Perez-Sanchez F, Cooper TG, Yeung CH, et al. Improvement in quality of cryopreserved spermatozoa by swim-up before freezing. Int J Androl. 1994;17:115–20.

    PubMed  CAS  Google Scholar 

  99. Yogev L, Gamzu R, Paz G, Kleiman S, Botchan A, Hauser R, et al. Pre-freezing sperm preparation does not impair thawed spermatozoa binding to the zona pellucida. Hum Reprod. 1999;14:114–7.

    PubMed  CAS  Google Scholar 

  100. Royere D, Barthelemy C, Hamamah S, et al. Cryopreservation of spermatozoa: a 1996 review. Hum Reprod Update. 1996;2:553–9.

    PubMed  CAS  Google Scholar 

  101. Hallak J, Sharma RK, Wellstead C, et al. Cryopreservation of human spermatozoa: comparison of TEST-yolk buffer and glycerol. Int J Fertil Womens Med. 2000;45:38–42.

    PubMed  CAS  Google Scholar 

  102. Gilmore JA, Liu J, Gao DY, et al. Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum Reprod. 1997;12:112–8.

    PubMed  CAS  Google Scholar 

  103. Critser JK, Huse-Benda AR, Aaker DV, et al. Cryopreservation of human spermatozoa. III. The effect of cryopreservation on motility. Fertil Steril. 1988;50:314–20.

    PubMed  CAS  Google Scholar 

  104. Gao DY, Ashworth E, Watson PF, et al. Hyperosmotic tolerance of human spermatozoa: separate effects of glycerol, sodium chloride, and sucrose on spermolysis. Biol Reprod. 1993;49:112–23.

    PubMed  CAS  Google Scholar 

  105. Hammerstedt RH, Graham JK, Nolan JP. Cryopreservation of mammalian sperm: what we ask them to survive. J Androl. 1990;11:73–88.

    PubMed  CAS  Google Scholar 

  106. Padron OF, Brackett NL, Sharma RK, et al. Seminal reactive oxygen species, sperm motility and morphology in men with spinal cord injury. Fertil Steril. 1997;67:115–1120.

    Google Scholar 

  107. Lass A, Akagbosu F, Abusheikha N, et al. A programme of semen cryopreservation for patients with malignant disease in a tertiary infertility centre: lessons from 8 years’ experience. Hum Reprod. 1998;13(11):3256–61.

    PubMed  CAS  Google Scholar 

  108. O’Flaherty C, Hales BF, Chan P, et al. Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;94:1374–9.

    PubMed  Google Scholar 

  109. Polcz TE, Stronk J, Xiong C, et al. Optimal utilization of cryopreserved human semen for assisted reproduction: recovery and maintenance of sperm motility and viability. J Assist Reprod Genet. 1998;15:504–12.

    PubMed  CAS  Google Scholar 

  110. Rofeim O, Brown TA, Gilbert BR. Effects of serial thaw-refreeze cycles on human sperm motility and viability. Fertil Steril. 2001;75:1242–3.

    PubMed  CAS  Google Scholar 

  111. Bandularatne E, Bongso A. Evaluation of human sperm function after repeated freezing and thawing. J Androl. 2002;23:242–9.

    PubMed  Google Scholar 

  112. Zini A, Libman J. Sperm DNA damage: clinical significance in the era of assisted reproduction. CMAJ. 2006;175:495–500.

    PubMed  Google Scholar 

  113. Wang X, Sharma RK, Sikka SC, et al. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril. 2003;80:531–5.

    PubMed  Google Scholar 

  114. Gadea J, Gumbao D, Canovas S, et al. Supplementation of the dilution medium after thawing with reduced glutathione improves function and the in vitro fertilizing ability of frozen-thawed bull spermatozoa. Int J Androl. 2008;31:40–9.

    PubMed  CAS  Google Scholar 

  115. Bilodeau JF, Chatterjee S, Sirard MA, et al. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol Reprod Dev. 2000;55:282–8.

    PubMed  CAS  Google Scholar 

  116. Peris SI, Bilodeau JF, Dufour M, et al. Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Mol Reprod Dev. 2007;74:878–92.

    PubMed  CAS  Google Scholar 

  117. Roca J, Rodriguez MJ, Gil MA, et al. Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. J Androl. 2005;26:15–24.

    PubMed  CAS  Google Scholar 

  118. Beconi MT, Francia CR, Mora NG, et al. Effect of natural antioxidants on frozen bovine semen preservation. Theriogenology. 1993;40:841–51.

    PubMed  CAS  Google Scholar 

  119. Chatterjee S, de Lamirande E, Gagnon C. Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione. Mol Reprod Dev. 2001;60(4):498–506.

    PubMed  CAS  Google Scholar 

  120. Twigg J, Fulton N, Gomez E, et al. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36.

    PubMed  CAS  Google Scholar 

  121. Kusakabe H, Szczygiel MA, Whittingham DG, et al. Maintenance of genetic integrity in frozen and freeze-dried mouse spermatozoa. Proc Natl Acad Sci USA. 2001;98:13501–6.

    PubMed  CAS  Google Scholar 

  122. Ward MA, Kaneko T, Kusakabe H, et al. Long-term preservation of mouse spermatozoa after freeze-­drying and freezing without cryoprotection. Biol Reprod. 2003;69(6):2100–8.

    PubMed  CAS  Google Scholar 

  123. Luyet BJ, Hodapp R. Revival of frog spermatozoa vitrified in liquid air. Proc Meet Soc Exp Biol. 1938;39:433–4.

    Google Scholar 

  124. Luyet BJ. Differential staining for living and dead cells. Science. 1937;85:106.

    PubMed  CAS  Google Scholar 

  125. Liebermann J, Tucker M, Graham J, et al. Blastocyst development after vitrification of multipronucleate zygotes using the flexipet denuding pipette (FDP). Reprod Biomed Online. 2002;4:148–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheena E. M. Lewis PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yu, D., Simon, L., Lewis, S.E.M. (2011). The Impact of Sperm Processing and Cryopreservation on Sperm DNA Integrity. In: Zini, A., Agarwal, A. (eds) Sperm Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6857-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6857-9_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1781-2

  • Online ISBN: 978-1-4419-6857-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics