Skip to main content

Effects of Male Accessory Gland Infection on Sperm Parameters

  • Chapter
  • First Online:
Sperm Chromatin

Abstract

Despite an open debate on pros and cons of the role of male accessory gland infection (MAGI) in male infertility, andrologists should at least consider MAGI as a risk factor of male infertility. In fact, MAGI may impair sperm function and cause male infertility through the multiple pathophysiological mechanisms discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. In: Rowe P, Comhaire F, Hargreave TB, Mellows HJ, editors. World Health Organization manual for the standardised investigation and diagnosis of the infertile couple. Cambridge: Cambridge University Press; 1993.

    Google Scholar 

  2. Vicari E. Seminal leukocyte concentration and related specific reactive oxygen species production in patients with male accessory gland infections. Hum Reprod. 1999;14:2025–30.

    PubMed  CAS  Google Scholar 

  3. Vicari E. Effectiveness and limits of antimicrobial treatment on seminal leukocyte concentration and related reactive oxygen species production in patients with male accessory gland infection. Hum Reprod. 2000;15:2536–44.

    PubMed  CAS  Google Scholar 

  4. Vicari E, La Vignera S, Castiglione R, et al. Sperm parameters abnormalities, low seminal fructose and reactive oxygen species overproduction do not discriminate patients with unilateral or bilateral post-infectious inflammatory prostato-vesiculo-­epididymitis. J Endocrinol Invest. 2006;29:18–25.

    PubMed  CAS  Google Scholar 

  5. Bayasgalan G, Naranbat D, Radnaabazar J, et al. Male infertility: risk factors in Mongolian men. Asian J Androl. 2004;6:305–11.

    PubMed  CAS  Google Scholar 

  6. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43.

    PubMed  Google Scholar 

  7. Sanocka D, Jedrzejczak P, Szumała-Kaekol A, et al. Male genital tract inflammation: the role of selected interleukins in regulation of pro-oxidant and anti­oxidant enzymatic substances in seminal plasma. J Androl. 2003;24:448–55.

    PubMed  Google Scholar 

  8. Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5:399–420.

    PubMed  CAS  Google Scholar 

  9. Vicari E, Calogero AE. Effects of treatment with carnitines in infertile patients with prostato-vesiculo-­epididymitis. Hum Reprod. 2001;16:2338–42.

    PubMed  CAS  Google Scholar 

  10. Vicari E, La Vignera S, Calogero AE. Antioxidant treatment with carnitines is effective in infertile patients with prostatovesiculoepididymitis and elevated seminal leukocyte concentrations after treatment with nonsteroidal anti-inflammatory compounds. Fertil Steril. 2002;78:1203–8.

    PubMed  Google Scholar 

  11. Weidner W, Colpi GM, Hargreave TB, et al. EAU guidelines on male infertility. Eur Urol. 2002;42:313–22.

    PubMed  CAS  Google Scholar 

  12. Diemer T, Hales DB, Weidner W. Immune-endocrine interactions and Leydig cell function: the role of cytokines. Andrologia. 2003;35:55–63.

    PubMed  CAS  Google Scholar 

  13. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14:727–33.

    PubMed  CAS  Google Scholar 

  14. Collodel G, Baccetti B, Capitani S. Necrosis in human spermatozoa. I. Ultrastructural features and FISH study in semen from patients with uro-genital infections. J Submicrosc Cytol Pathol. 2005;37:93–8.

    PubMed  Google Scholar 

  15. Moretti E, Baccetti B, Capitani S, et al. Necrosis in human spermatozoa. II. Ultrastructural features and FISH study in semen from patients with uro-genital infections. J Submicrosc Cytol Pathol. 2005;37:93–8.

    PubMed  CAS  Google Scholar 

  16. Comhaire F, Verschraegen G, Vermeulen L. Diagnosis of accessory gland infection and its possible role in male infertility. Int J Androl. 1980;3:32–45.

    PubMed  CAS  Google Scholar 

  17. Meares EM, Stamey TA. Bacteriologic localization patterns in bacterial prostatitis and urethritis. Invest Urol. 1968;5:492–518.

    PubMed  CAS  Google Scholar 

  18. Nickel JC. The pre and post massage test (PPMT): a simple screen for prostatitis. Tech Urol. 1997;3:38–43.

    PubMed  CAS  Google Scholar 

  19. Diemer T, Weidner W, Michelmann HW, et al. Influence of Escherichia coli on motility parameters of human spermatozoa in vitro. Int J Androl. 1996;19:271–7.

    PubMed  CAS  Google Scholar 

  20. Huwe P, Diemer T, Ludwig M, et al. Influence of different uropathogenic microorganisms on human sperm motility parameters in an in vitro experiment. Andrologia. 1998;30 Suppl 1:55–9.

    PubMed  Google Scholar 

  21. Diemer T, Huwe P, Ludwig M, et al. Influence of autogenous leucocytes and Escherichia coli on sperm motility parameters in vitro. Andrologia. 2003;35:100–5.

    PubMed  CAS  Google Scholar 

  22. Villegas J, Schulz M, Soto L, et al. Bacteria induce expression of apoptosis in human spermatozoa. Apoptosis. 2005;10:105–10.

    PubMed  CAS  Google Scholar 

  23. Schulz M, Sànchez R, Soto L, et al. Effect of Escherichia coli and its soluble factors on mitochondrial membrane potential, phosphatidylserine translocation, viability and motility of human spermatozoa. Fertil Steril. 2010;94:619–23.

    PubMed  CAS  Google Scholar 

  24. Prabha V, Sandhu R, Kaur S, et al. Mechanism of sperm immobilization by Escherichia coli. Adv Urol. 2010;2010:240–68.

    Google Scholar 

  25. Liu JH, Li HY, Cao ZG, et al. Influence of several uropathogenic microorganisms on human sperm motility parameters in vitro. Asian J Androl. 2002;4:179–82.

    PubMed  Google Scholar 

  26. Binnicker MJ, Williams RD, Apicella MA. Infection of human urethral epithelium with Neisseria gonorrhoeae factors and protects cells from staurosporine-induced apoptosis. Cell Microbiol. 2003;5:549–60.

    PubMed  CAS  Google Scholar 

  27. Wan CC, Wang H, Hao BJ, et al. Infection of Chlamydia trachomatis and apoptosis of spermatogenic cells. Zhonghua Nan Ke Xue. 2003;9:350–1.

    PubMed  CAS  Google Scholar 

  28. Hosseinzadeh S, Eley A, Pacey AA. Semen quality of men with asymptomatic chlamydial infection. J Androl. 2004;25:104–9.

    PubMed  Google Scholar 

  29. Gallegos G, Ramos B, Santiso R, et al. Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and mycoplasma. Fertil Steril. 2008;90:328–34.

    PubMed  Google Scholar 

  30. Gallegos-Avila G, Ortega-Martínez M, Ramos-González B, et al. Ultrastructural findings in semen samples of infertile men infected with Chlamydia trachomatis and mycoplasmas. Fertil Steril. 2009;91:915–9.

    PubMed  Google Scholar 

  31. Kokab A, Akhondi MM, Sadeghi MR, et al. Raised inflammatory markers in semen from men with asymptomatic chlamydial infection. J Androl. 2010;31:114–20.

    PubMed  CAS  Google Scholar 

  32. Hosseinzadeh S, Brewis IA, Eley A, et al. Co-incubation of human spermatozoa with Chlamydia trachomatis serovar E causes premature sperm death. Hum Reprod. 2001;16:293–9.

    PubMed  CAS  Google Scholar 

  33. Hosseinzadeh S, Pacey AA, Eley A. Chlamydia trachomatis-induced death of human spermatozoa is caused primarily by lipopolysaccharide. J Med Microbiol. 2003;52(Pt 3):193–200.

    PubMed  CAS  Google Scholar 

  34. Eley A, Pacey AA, Galdiero M, et al. Can Chlamydia trachomatis directly damage your sperm? Lancet Infect Dis. 2005;5:53–7.

    PubMed  Google Scholar 

  35. Satta A, Stivala A, Garozzo A, et al. Experimental Chlamydia trachomatis infection causes apoptosis in human sperm. Hum Reprod. 2006;21:134–7.

    PubMed  Google Scholar 

  36. Hakimi H, Geary I, Pacey A, et al. Spermicidal activity of bacterial lipopolysaccharide is only partly due to lipid A. J Androl. 2006;27:774–9.

    PubMed  CAS  Google Scholar 

  37. Dieterle S. Urogenital infections in reproductive medicine. Andrologia. 2008;40:117–9.

    PubMed  CAS  Google Scholar 

  38. Upadhyaya M, Hibbard BM, Walker SM. The effect of Ureaplasma urealyticum on semen characteristics. Fertil Steril. 1984;41:304–8.

    PubMed  CAS  Google Scholar 

  39. Sanocka-Maciejewska D, Ciupińska M, Kurpisz M. Bacterial infection and semen quality. J Reprod Immunol. 2005;67:51–6.

    PubMed  CAS  Google Scholar 

  40. Wang Y, Liang CL, Wu JQ, et al. Do Ureaplasma urealyticum infections in the genital tract affect semen quality? Asian J Androl. 2006;8:562–8.

    PubMed  Google Scholar 

  41. Zheng J, Yu SY, Jia DS, et al. Ureaplasma urealyticum infection in the genital tract reduces seminal quality in infertile men. Zhonghua Nan Ke Xue. 2008;14:507–12.

    PubMed  CAS  Google Scholar 

  42. Rose BI, Scott B. Sperm motility, morphology, hyperactivation, and ionophore-induced acrosome reactions after overnight incubation with mycoplasmas. Fertil Steril. 1994;61:341–8.

    PubMed  CAS  Google Scholar 

  43. Köhn FM, Erdmann I, Oeda T, et al. Influence of urogenital infections on sperm functions. Andrologia. 1998;30 Suppl 1:73–80.

    PubMed  Google Scholar 

  44. Núñez-Calonge R, Caballero P, Redondo C, et al. Ureaplasma urealyticum reduces motility and induces membrane alterations in human spermatozoa. Hum Reprod. 1998;13:2756–61.

    PubMed  Google Scholar 

  45. Reichart M, Levi H, Kahane I, et al. Dual energy metabolism-dependent effect of Ureaplasma urealyticum infection on sperm activity. J Androl. 2001;22:404–12.

    PubMed  CAS  Google Scholar 

  46. Busolo F, Zanchetta R. Do mycoplasmas inhibit the human sperm fertilizing ability in vitro? Isr J Med Sci. 1984;20:902–4.

    PubMed  CAS  Google Scholar 

  47. Soffer Y, Ron-El R, Golan A, et al. Male genital ­mycoplasmas and Chlamydia trachomatis culture: its relationship with accessory gland function, sperm quality, and autoimmunity. Fertil Steril. 1990;53:331–6.

    PubMed  CAS  Google Scholar 

  48. Kjaergaard N, Kristensen B, Hansen ES, et al. Microbiology of semen specimens from males attending a fertility clinic. APMIS. 1997;105:566–70.

    PubMed  CAS  Google Scholar 

  49. Xu C, Sun GF, Zhu YF, et al. The correlation of Ureaplasma urealyticum infection with infertility. Andrologia. 1997;29:219–26.

    PubMed  CAS  Google Scholar 

  50. Shi J, Yang Z, Wang M, et al. Screening of an antigen target for immunocontraceptives from cross-reactive antigens between human sperm and Ureaplasma urealyticum. Infect Immun. 2007;75:2004–11.

    PubMed  CAS  Google Scholar 

  51. Wang Y, Kang L, Hou Y, et al. Microelements in seminal plasma of infertile men infected with Ureaplasma urealyticum. Biol Trace Elem Res. 2005;105:11–8.

    PubMed  CAS  Google Scholar 

  52. Ma J, Xu C. Relationship between mycoplasma infection and germ cell sulfogalactosylglycerolipid. Zhonghua Nan Ke Xue. 2004;10:215–7.

    PubMed  CAS  Google Scholar 

  53. Shang XJ, Huang YF, Xiong CL, et al. Ureaplasma urealyticum infection and apoptosis of spermatogenic cells. Asian J Androl. 1999;1:127–9.

    PubMed  CAS  Google Scholar 

  54. Reichart M, Kahane I, Bartoov B. In vivo and in vitro impairment of human and ram sperm nuclear chromatin integrity by sexually transmitted Ureaplasma urealyticum infection. Biol Reprod. 2000;63:1041–8.

    PubMed  CAS  Google Scholar 

  55. Xu C, Lu MG, Feng JS, et al. Germ cell apoptosis induced by Ureaplasma urealyticum infection. Asian J Androl. 2001;3:199–204.

    PubMed  CAS  Google Scholar 

  56. Shalhoub D, Abdel-Latif A, Fredericks CM, et al. Physiological integrity of human sperm in the presence of Ureaplasma urealyticum. Arch Androl. 1986;16:75–80.

    PubMed  CAS  Google Scholar 

  57. Talkington DF, Davis JK, Canupp KC, et al. The effects of three serotypes of Ureaplasma urealyticum on spermatozoal motility and penetration in vitro. Fertil Steril. 1991;55:170–6.

    PubMed  CAS  Google Scholar 

  58. Cintron RD, Wortham Jr JW, et al. The association of semen factors with the recovery of Ureaplasma urealyticum. Fertil Steril. 1981;36:648–52.

    PubMed  CAS  Google Scholar 

  59. Gregoriou O, Botsis D, Papadias K, et al. Culture of seminal fluid in infertile men and relationship to semen evaluation. Int J Gynaecol Obstet. 1989;28:149–53.

    PubMed  CAS  Google Scholar 

  60. Gdoura R, Kchaou W, Chaari C, et al. Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis and Mycoplasma genitalium infections and semen quality of infertile men. BMC Infect Dis. 2007;7:129.

    PubMed  Google Scholar 

  61. Gdoura R, Kchaou W, Ammar-Keskes L, et al. Assessment of Chlamydia trachomatis, Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis, and Mycoplasma genitalium in semen and first void urine specimens of asymptomatic male partners of infertile couples. J Androl. 2008;29:198–206.

    PubMed  CAS  Google Scholar 

  62. Hofstetter A, Schmiedt E, Schill WB, et al. Genital mycoplasma strains as a cause of male infertility. Helv Chir Acta. 1978;45:329–33.

    PubMed  CAS  Google Scholar 

  63. Bornman MS, Mahomed MF, Boomker D, et al. Microbial flora in semen of infertile African men at Garankuwa hospital. Andrologia. 1990;22:118–21.

    PubMed  CAS  Google Scholar 

  64. Corradi G, Molnàr G, Pànovics J. Andrologic significance of genital mycoplasma. Orv Hetil. 1992;133:3085–8.

    PubMed  CAS  Google Scholar 

  65. Agbakoba NR, Adetosoye AI, Ikechebelu JI. Genital mycoplasmas in semen samples of males attending a tertiary care hospital in Nigeria: any role in sperm count reduction? Niger J Clin Pract. 2007;10:169–73.

    PubMed  CAS  Google Scholar 

  66. Dìaz-Garcìa FJ, Herrera-Mendoza AP, Giono-Cerezo S, et al. Mycoplasma hominis attaches to and locates intracellularly in human spermatozoa. Hum Reprod. 2006;21:1591–8.

    PubMed  Google Scholar 

  67. Svenstrup HF, Fedder J, Abraham-Peskir J, et al. Mycoplasma genitalium attaches to human spermatozoa. Hum Reprod. 2003;18:2103–9.

    PubMed  Google Scholar 

  68. Kalugdan T, Chan PJ, Seraj IM, et al. Polymerase chain reaction enzyme-linked immunosorbent assay detection of mycoplasma consensus gene in sperm with low oocyte penetration capacity. Fertil Steril. 1996;66:793–7.

    PubMed  CAS  Google Scholar 

  69. Hill JA, Haimovici F, Politch JA, et al. Effects of soluble products of activated lymphocytes and macrophages (lymphokines and monokines) on human sperm motion parameters. Fertil Steril. 1987;47:460–5.

    PubMed  CAS  Google Scholar 

  70. Eggert-Kruse W, Hofmann H, Gerhard I, et al. Effects of antimicrobial therapy on sperm-mucus interaction. Hum Reprod. 1988;3:861–9.

    PubMed  CAS  Google Scholar 

  71. Andrade-Rocha FT. Ureaplasma urealyticum and Mycoplasma hominis in men attending for routine semen analysis. Prevalence, incidence by age and clinical settings, influence on sperm characteristics, relationship with the leukocyte count and clinical value. Urol Int. 2003;71:377–81.

    PubMed  Google Scholar 

  72. Rosemond A, Lanotte P, Watt S, et al. Systematic screening tests for Chlamydia trachomatis, Mycoplasma hominis and Ureaplasma urealyticum in urogenital specimens of infertile couples. Pathol Biol (Paris). 2006;54:125–9.

    CAS  Google Scholar 

  73. Tuttle Jr JP, Bannister ER, Derrick FC. Interference of human spermatozoal motility and spermatozoal agglutination by Candida albicans. J Urol. 1997;118:797–9.

    Google Scholar 

  74. Tian Y-H, Xiong JW, Hu L, et al. Candida albicans and filtrates interfere with human spermatozoal motility and alter the ultrastructure of spermatozoa: an in vitro study. Int J Androl. 2007;30:421–9.

    PubMed  Google Scholar 

  75. Burrello N, Calogero AE, Perdichizzi A, et al. Inhibition of oocyte fertilization by assisted reproductive techniques and increased sperm DNA fragmentation in the presence of Candida albicans: a case report. Reprod Biomed Online. 2004;8:569–73.

    PubMed  Google Scholar 

  76. Burrello N, Salmeri M, Perdichizzi A, et al. Candida albicans experimental infection: effects on human sperm motility, mitochondrial membrane potential and apoptosis. Reprod Biomed Online. 2009;18:496–501.

    PubMed  Google Scholar 

  77. Rennemeier C, Frambach T, Hennicke F. Microbial quorum-sensing molecules induce acrosome loss and cell death in human spermatozoa. Infect Immun. 2009;77:4990–7.

    PubMed  CAS  Google Scholar 

  78. Gopalkrishnan K, Hinduja IN, Kumar TC. Semen characteristics of asymptomatic males affected by Trichomonas vaginalis. J In Vitro Fert Embryo Transf. 1990;7:165–7.

    PubMed  CAS  Google Scholar 

  79. Tuttle Jr JP, Holbrook TW, Derrick FC. Interference of human spermatozoal motility by Trichomonas vaginalis. J Urol. 1977;118:1024–5.

    PubMed  Google Scholar 

  80. Jarecki-Black JC, Lushbaugh WB, Golosov L. Trichomonas vaginalis: preliminary characterization of a sperm motility inhibiting factor. Ann Clin Lab Sci. 1988;18:484–9.

    PubMed  CAS  Google Scholar 

  81. Han Q, Liu J, Wang T. Influence of the metabolite produced by Trichomonas vaginalis on human sperm motility in vitro. Zhonghua Nan Ke Xue. 2004;10:272–4.

    PubMed  Google Scholar 

  82. Kranjcić-Zec I, Dzamić A, Mitrović S, et al. The role of parasites and fungi in secondary infertility. Med Pregl. 2004;57:30–2.

    PubMed  Google Scholar 

  83. Benchimol M, de Andrade Rosa I, da Silva Fontes R, et al. Trichomonas adhere and phagocytose sperm cells: adhesion seems to be a prominent stage during interaction. Parasitol Res. 2008;102:597–604.

    PubMed  Google Scholar 

  84. Daly JJ, Sherman JK, Green L, et al. Survival of Trichomonas vaginalis in human semen. Genitourin Med. 1989;65:106–8.

    PubMed  CAS  Google Scholar 

  85. Garrido N, Meseguer M, Remohí J, et al. Semen characteristics in human immunodeficiency virus (HIV)- and hepatitis C (HCV)-seropositive males: predictors of the success of viral removal after sperm washing. Hum Reprod. 2005;20:1028–34.

    PubMed  Google Scholar 

  86. Vicari E, Arcoria D, Di Mauro C, et al. Sperm output in patients with primary infertility and hepatitis B or C virus; negative influence of HBV infection during concomitant varicocele. Minerva Med. 2006;97:65–77.

    PubMed  CAS  Google Scholar 

  87. Durazzo M, Premoli A, Di Bisceglie C, et al. Alterations of seminal and hormonal parameters: an extrahepatic manifestation of HCV infection? World J Gastroenterol. 2006;12:3073–6.

    PubMed  CAS  Google Scholar 

  88. Moretti E, Federico MG, Giannerini V, et al. Sperm ultrastructure and meiotic segregation in a group of patients with chronic hepatitis B and C. Andrologia. 2008;40:286–91.

    PubMed  CAS  Google Scholar 

  89. Lorusso F, Palmisano M, Chironna M, et al. Impact of chronic viral diseases on semen parameters. Andrologia. 2010;42:121–6.

    PubMed  CAS  Google Scholar 

  90. Zhou XL, Sun PN, Huang TH, et al. Effects of hepatitis B virus S protein on human sperm function. Hum Reprod. 2009;24:1575–83.

    PubMed  CAS  Google Scholar 

  91. Huang JM, Huang TH, Qiu HY, et al. Effects of hepatitis B virus infection on human sperm chromosomes. World J Gastroenterol. 2003;9:736–40.

    PubMed  Google Scholar 

  92. Huang JM, Huang TH, Qiu HY, et al. Studies on the integration of hepatitis B virus DNA sequence in human sperm chromosomes. Asian J Androl. 2002;4:209–12.

    PubMed  CAS  Google Scholar 

  93. Krieger JN, Coombs RW, Collier AC, et al. Fertility parameters in men infected with human immunodeficiency virus. J Infect Dis. 1991;164:464–9.

    PubMed  CAS  Google Scholar 

  94. Dondero F, Rossi T, D’Offizi G, et al. Semen analysis in HIV seropositive men and in subjects at high risk for HIV infection. Hum Reprod. 1996;11:765–8.

    PubMed  CAS  Google Scholar 

  95. Nicopoullos JDM, Almeida PA, Ramsay JWA, et al. The effect of human immunodeficiency virus on sperm parameters and the outcome of intrauterine insemination following sperm washing. Hum Reprod. 2004;19:2289–97.

    PubMed  Google Scholar 

  96. Umapathy E. STD/HIV association: effects on semen characteristics. Arch Androl. 2005;51:361–5.

    PubMed  CAS  Google Scholar 

  97. Bujan L, Sergerie M, Moinard N, et al. Decreased semen volume and spermatozoa motility in HIV-1-infected patients under antiretroviral treatment. J Androl. 2007;28:444–52.

    PubMed  Google Scholar 

  98. Coll O, Lopez M, Vidal R, et al. Fertility assessment in non-infertile HIV-infected women and their partners. Reprod Biomed Online. 2007;14:488–94.

    PubMed  CAS  Google Scholar 

  99. Cardona-Maya W, Velilla P, Montoya CJ, et al. Presence of HIV-1 DNA in spermatozoa from HIV-positive patients: changes in the semen parameters. Curr HIV Res. 2009;7:418–24.

    PubMed  CAS  Google Scholar 

  100. Muciaccia B, Corallini S, Vicini E, et al. HIV-1 viral DNA is present in ejaculated abnormal spermatozoa of seropositive subjects. Hum Reprod. 2007;22:2868–78.

    PubMed  CAS  Google Scholar 

  101. van Leeuwen E, Wit FW, Prins JM, et al. Semen quality remains stable during 96 weeks of untreated human immunodeficiency virus-1 infection. Fertil Steril. 2008;90:636–41.

    PubMed  Google Scholar 

  102. Sergerie M, Martinet S, Kiffer N, et al. Impact of reverse transcriptase inhibitors on sperm mitochondrial genomic DNA in assisted reproduction techniques. Gynecol Obstet Fertil. 2004;32:841–9.

    PubMed  CAS  Google Scholar 

  103. van Leeuwen E, Wit FW, Repping S, et al. Effects of antiretroviral therapy on semen quality. AIDS. 2008;22:637–42.

    PubMed  Google Scholar 

  104. Chan PJ, Su BC, Kalugdan T, et al. Human papillomavirus gene sequences in washed human sperm deoxyribonucleic acid. Fertil Steril. 1994;61:982–5.

    PubMed  CAS  Google Scholar 

  105. Lai YM, Yang FP, Pao CC. Human papillomavirus deoxyribonucleic acid and ribonucleic acid in seminal plasma and sperm cells. Fertil Steril. 1996;65:1026–30.

    PubMed  CAS  Google Scholar 

  106. Brossfield JE, Chan PJ, Patton WC, et al. Tenacity of exogenous human papillomavirus DNA in sperm washing. Int J STD AIDS. 1999;15:740–3.

    Google Scholar 

  107. Pèrez-Andino J, Buck CB, Ribbeck K. Adsorption of human papillomavirus 16 to live human sperm. PLoS ONE. 2009;4:e5847.

    PubMed  Google Scholar 

  108. Foresta C, Garolla A, Zuccarello D, et al. Human papillomavirus found in sperm head of young adult males affects the progressive motility. Fertil Steril. 2010;93:802–6.

    PubMed  Google Scholar 

  109. Lai YM, Lee JF, Huang HY, et al. The effect of human papillomavirus infection on sperm cell motility. Fertil Steril. 1997;67:1152–5.

    PubMed  CAS  Google Scholar 

  110. Foresta C, Pizzol D, Moretti A, et al. Clinical and prognostic significance of human papillomavirus DNA in the sperm or exfoliated cells of infertile patients and subject with risk factors. Fertil Steril. 2010;94:1723–7.

    PubMed  CAS  Google Scholar 

  111. Tanaka H, Karube A, Kodama H, et al. Mass screening for human papillomavirus type 16 infection in infertile couples. J Reprod Med. 2000;45:907–11.

    PubMed  CAS  Google Scholar 

  112. Rintala MA, Grènman SE, Pöllänen PP, et al. Detection of high-risk HPV DNA in semen and its association with the quality of semen. Int J STD AIDS. 2004;15:740–3.

    PubMed  CAS  Google Scholar 

  113. Connelly DA, Chan PJ, Patton WC, et al. Human sperm deoxyribonucleic acid fragmentation by specific types of papillomavirus. J Assist Reprod Genet. 2001;184:1068–70.

    CAS  Google Scholar 

  114. Lee CA, Huang CT, King A, et al. Differential effects of human papillomavirus DNA types on p53 tumor-suppressor gene apoptosis in sperm. Gynecol Oncol. 2002;85:511–6.

    PubMed  CAS  Google Scholar 

  115. Lanzafame F, La Vignera S, Vicari E, et al. Oxidative stress and antioxidant medical treatment in male infertility. Reprod Biomed Online. 2009;19:638–59.

    PubMed  CAS  Google Scholar 

  116. Aitken RJ, Clarkson JS, Hargreave TB, et al. Analysis of the relationship between defective sperm function and the generation of reactive oxygen species in cases of oligozoospermia. J Androl. 1989;10:214–20.

    PubMed  CAS  Google Scholar 

  117. Saraniya A, Koner BC, Doureradjou P, et al. Altered malondialdehyde, protein carbonyl and sialic acid levels in seminal plasma of microscopically abnormal semen. Andrologia. 2008;40:56–7.

    PubMed  CAS  Google Scholar 

  118. Suleiman SA, Ali ME, Zaki ZM, et al. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17:530–7.

    PubMed  CAS  Google Scholar 

  119. Aydemir B, Onaran I, Kiziler AR, et al. The influence of oxidative damage on viscosity of seminal fluid in infertile men. J Androl. 2008;29:41–6.

    PubMed  CAS  Google Scholar 

  120. Twigg JP, Irvine DS, Aitken RJ. Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum Reprod. 1998;13:1864–71.

    PubMed  CAS  Google Scholar 

  121. Barroso G, Morshedi M, Oehringer S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod. 2000;15:1338–44.

    PubMed  CAS  Google Scholar 

  122. Kodama H, Yamaguchi R, Fukuda J, et al. Increased deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;65:519–24.

    Google Scholar 

  123. Henkel R, Kierspel E, Hajimohammad M, et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online. 2003;7:477–84.

    PubMed  Google Scholar 

  124. Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with the other techniques. J Androl. 2002;23:25–43.

    PubMed  Google Scholar 

  125. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20:61–9.

    PubMed  CAS  Google Scholar 

  126. Dousset B, Hussenet F, Daudin M, et al. Seminal cytokine concentrations (IL-1beta, IL-2, IL-6, sR IL-2, sR IL-6), semen parameters and blood hormonal status in male infertility. Hum Reprod. 1997;12:1476–9.

    PubMed  CAS  Google Scholar 

  127. Dimitrov DG, Petrovská M. Effects of products of activated immune cells and recombinant cytokines on spontaneous and ionophore-induced acrosome reaction. Am J Reprod Immunol. 1996;36:150–6.

    PubMed  CAS  Google Scholar 

  128. Fraczek M, Sanocka D, Kamieniczna M, et al. Proinflammatory cytokines as an intermediate factor enhancing lipid sperm membrane peroxidation in in vitro conditions. J Androl. 2008;29:85–92.

    PubMed  CAS  Google Scholar 

  129. Camejo MI, Segnini A, Proverbio F. Interleukin-6 (IL-6) in seminal plasma of infertile men, and lipid peroxidation of their sperm. Arch Androl. 2001;47:97–101.

    PubMed  CAS  Google Scholar 

  130. Lampiao F, du Plessis SS. TNF-alpha and IL-6 affect human sperm function by elevating nitric oxide production. Reprod Biomed Online. 2008;17:628–31.

    PubMed  CAS  Google Scholar 

  131. Lampiao F, du Plessis SS. Effects of tumour necrosis factor alpha and interleukin-6 on progesterone and calcium ionophore-induced acrosome reaction. Int J Androl. 2009;32:274–7.

    PubMed  CAS  Google Scholar 

  132. Fedder J, Ellerman-Eriksen S. Effect of cytokines on sperm motility and ionophore-stimulated acrosome reaction. Arch Androl. 1995;35:173–85.

    PubMed  CAS  Google Scholar 

  133. Eggert-Kruse W, Boit R, Rohr G, et al. Relationship of seminal plasma interleukin (IL) -8 and IL-6 with semen quality. Hum Reprod. 2001;16:517–28.

    PubMed  CAS  Google Scholar 

  134. Martínez P, Proverbio F, Camejo MI. Sperm lipid peroxidation and pro-inflammatory cytokines. Asian J Androl. 2007;9:102–7.

    PubMed  Google Scholar 

  135. Estrada LS, Champion HC, Wang R, et al. Effect of tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) on human sperm motility, viability and motion parameters. Int J Androl. 1997;20:237–42.

    PubMed  CAS  Google Scholar 

  136. Hill JA, Cohen J, Anderson DJ. The effects of lymphokines and monokines on human sperm fertilizing ability in the zona-free hamster egg penetration test. Am J Obstet Gynecol. 1989;160(5 Pt 1):1154–9.

    PubMed  CAS  Google Scholar 

  137. Bian SL, Jin HB, Wang SZ, et al. Effects of interferon-gamma and tumor necrosis factor-alpha on the fertilizing capacity of human sperm and their mechanisms. Zhonghua Nan Ke Xue. 2007;13:681–4.

    PubMed  CAS  Google Scholar 

  138. Sikka SC, Champion HC, Bivalacqua TJ, et al. Role of genitourinary inflammation in infertility: synergistic effects of lipopolysaccharide and interferon-gamma on human spermatozoa. Int J Androl. 2001;24:136–41.

    PubMed  CAS  Google Scholar 

  139. Eickhoff R, Baldauf C, Koyro HW, et al. Influence of macrophage migration inhibitory factor (MIF) on the zinc content and redox state of protein-bound sulphydryl groups in rat sperm: indications for a new role of MIF in sperm maturation. Mol Hum Reprod. 2004;10:605–11.

    PubMed  CAS  Google Scholar 

  140. Frenette G, Légaré C, Saez F, et al. Macrophage migration inhibitory factor in the human epididymis and semen. Mol Hum Reprod. 2005;11:575–82.

    PubMed  CAS  Google Scholar 

  141. Aljabari B, Calogero AE, Perdichizzi A, et al. Imbalance in seminal fluid MIF indicates male infertility. Mol Med. 2007;13:199–202.

    PubMed  CAS  Google Scholar 

  142. Carli C, Leclerc P, Metz CN, et al. Direct effect of macrophage migration inhibitory factor on sperm function: possible involvement in endometriosis-associated infertility. Fertil Steril. 2007;88(4 Suppl):1240–7.

    PubMed  CAS  Google Scholar 

  143. Hussenet F, Dousset B, Cordonnier JL, et al. Tumour necrosis factor alpha and interleukin 2 in normal and infected human seminal fluid. Hum Reprod. 1993;8:409–11.

    PubMed  CAS  Google Scholar 

  144. Gruschwitz MS, Brezinschek R, Brezinschek HP. Cytokine levels in the seminal plasma of infertile males. J Androl. 1996;17:158–63.

    PubMed  CAS  Google Scholar 

  145. Omu AE, Al-Qattan F, Al-Abdul-Hadi FM, et al. Seminal immune response in infertile men with leukocytospermia: effect on antioxidant activity. Eur J Obstet Gynecol Reprod Biol. 1999;86:195–202.

    PubMed  CAS  Google Scholar 

  146. Sikorski R, Kapec E, Krzeminski A, et al. Levels of proinflammatory cytokines (Il-1 alpha, Il-6, TNF-alpha) in the semen plasma of male partners of infertile couples. Ginekol Pol. 2001;72:1325–8.

    PubMed  CAS  Google Scholar 

  147. Wincek TJ, Meyer TK, Meyer MR, et al. Absence of a direct effect of recombinant tumor necrosis factor-alpha on human sperm function and murine preimplantation development. Fertil Steril. 1991;56:332–9.

    PubMed  CAS  Google Scholar 

  148. Haney AF, Hughes SF, Weinberg JB. The lack of effect of tumor necrosis factor-alpha, interleukin-1-alpha, and interferon-gamma on human sperm motility in vitro. J Androl. 1992;13:249–53.

    PubMed  CAS  Google Scholar 

  149. Lewis SE, Donnelly ET, Sterling ES, et al. Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility. Mol Hum Reprod. 1996;2:873–8.

    PubMed  CAS  Google Scholar 

  150. Kocak I, Yenisey C, Dundar M, et al. Relationship between seminal plasma interleukin-6 and tumor necrosis factor alpha levels with semen parameters in fertile and infertile men. Urol Res. 2002;30:263–7.

    PubMed  CAS  Google Scholar 

  151. Eisermann J, Register KB, Strickler RC, et al. The effect of tumor necrosis factor on human sperm motility in vitro. J Androl. 1989;10:270–4.

    PubMed  CAS  Google Scholar 

  152. Perdichizzi A, Nicoletti F, La Vignera S, et al. Effects of tumour necrosis factor-alpha on human sperm motility and apoptosis. J Clin Immunol. 2007;27:152–62.

    PubMed  CAS  Google Scholar 

  153. Bian J, Guo X, Xiong C, et al. Experimental study of the effect of rhTNF-alpha on human sperm mitochondrial function and motility in vitro. Zhonghua Nan Ke Xue. 2004;10:415–9.

    PubMed  Google Scholar 

  154. Said TM, Agarwal A, Falcone T, et al. Infliximab may reverse the toxic effects induced by tumor necrosis factor alpha in human spermatozoa: an in vitro model. Fertil Steril. 2005;83:1665–73.

    PubMed  CAS  Google Scholar 

  155. Allam JP, Fronhoffs F, Fathy A, et al. High percentage of apoptotic spermatozoa in ejaculates from men with chronic genital tract inflammation. Andrologia. 2008;40:329–34.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo E. Calogero MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Calogero, A.E., La Vignera, S., Condorelli, R.A., D’Agata, R., Vicari, E. (2011). Effects of Male Accessory Gland Infection on Sperm Parameters. In: Zini, A., Agarwal, A. (eds) Sperm Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6857-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6857-9_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1781-2

  • Online ISBN: 978-1-4419-6857-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics