Skip to main content

Aging and Sperm DNA Damage

  • Chapter
  • First Online:
Sperm Chromatin

Abstract

As life expectancy increases and our lives become busier every day, many couples are waiting longer to establish their families. Female fecundity declines slowly after age 30 and more rapidly after 40 and is considered the main limiting factor in the treatment of infertility. Also, the effects of paternal age on a couple’s fertility are real and may be greater than have previously been thought. After adjustments for other factors, it has been demonstrated that the probability that a fertile couple will take >12 months to conceive nearly doubles from 8% when the man is <25 years to 15% when he is >35 years; thus, paternal age is a further factor to be taken into account when deciding the prognosis of infertile couples. Also, the increased male age is associated with a significant decline in fertility ­(fivefold longer time to pregnancy at the age of 45 years), which is independent of the woman’s age, coital frequency, and lifestyle effect, as well as the effect of other subfertility risk factors. Furthermore, fathering at older ages may have significant effects on the viability and genetic health of human pregnancies and offspring, primarily as a result of structural chromosomal aberrations in sperm. The evidence for sex chromosomal aneuploidy suggests that there may be about a twofold increase in risk at the age of 50. In fact, the risk for a father over 40 years old to have a child with an autosomal dominant mutation equals the risk of Down syndrome for a child whose mother is 35–40 years old. Recent reports have raised concern about decreasing male fertility caused by genomic abnormalities. There are reports of increased congenital anomalies and testicular cancer in children. Sperm DNA is known to contribute one half of the genomic material to offspring. Thus, normal sperm genetic material is required for fertilization, embryo and fetal development, and postnatal child well-being. Abnormal DNA can lead to derangements in any of these processes. The abnormality or defect in the genomic material may take the form of condensation or nuclear maturity defects, DNA breaks or DNA integrity defects, and sperm chromosomal aneuploidy. Evidence for the decline in men’s fertility with increasing age and its quantification are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Templeton A. Infertility – epidemiology, aetiology and effective management. Health Bull (Edinb). 1995;53(5):294–8.

    CAS  Google Scholar 

  2. Joffe M, Li Z. Male and female factors in fertility. Am J Epidemiol. 1995;141(11):1107–8.

    Google Scholar 

  3. Lansac J. Delayed parenting. Is delayed childbearing a good thing? Hum Reprod. 1995;10(5):1033–5.

    PubMed  CAS  Google Scholar 

  4. Lubna P, Santoro N. Age-related decline in fertility. Endocrinol Metab Clin N Am. 2003;32:669–88.

    Google Scholar 

  5. Jensen TK, Jorgensen N, Punab M, Haugen TB, Suominen J, Zilaitiene B, et al. Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1770 young men from the general population in five European countries. Am J Epidemiol. 2004;159:49–58.

    PubMed  Google Scholar 

  6. Handelsman DJ. Sperm output of healthy men in Australia: magnitude of bias due to self-selected ­volunteers. Hum Reprod. 1997;12:2701–5.

    PubMed  CAS  Google Scholar 

  7. Cohn BA, Overstreet JW, Fogel RJ, Brazil CK, Baird DD, Cirillo PM. Epidemiologic studies of human semen quality: considerations for study design. Am J Epidemiol. 2002;155:664–71.

    PubMed  Google Scholar 

  8. Kidd SA, Eskenazi B, Wyrobek AJ. Effects of male age on semen quality and fertility: a review of the literature. Fertil Steril. 2001;75:237–48.

    PubMed  CAS  Google Scholar 

  9. Ford WCL, North K, Taylor H, Farrow A, Hull MGR, Golding J and the ALSPAC Study Team. Increasing paternal age is associated with delayed conception in a large population of fertile couples: evidence for declining fecundity in older men. Hum Reprod. 2000;15:1703–8.

    Google Scholar 

  10. Hammiche F, Laven JSE, Boxmeer JC, Dohle GR, Steegers EAP, Steegers-Theunissen RPM. Sperm quality decline among men below 60 years of age undergoing IVF or ICSI treatment. J Androl. 2011;32(1):70–6.

    PubMed  CAS  Google Scholar 

  11. Eskenazi B, Wyrobek AJ, Sloter E, Kidd SA, Moore L, Young S, et al. The association of age and semen quality in healthy men. Hum Reprod. 2003;18:447–54.

    PubMed  CAS  Google Scholar 

  12. Hassan MAM, Killick SR. Effect of male age on ­fertility: evidence for the decline in male fertility with increasing age. Fertil Steril. 2003;79:1520–7.

    PubMed  Google Scholar 

  13. Neaves WB, Johnson L, Porter JC, Parker CR, Petty S. Leydig cell numbers, daily sperm production and serum gonadotropin levels in aging men. J Clin Endocrinol Metab. 1984;59:756–63.

    PubMed  CAS  Google Scholar 

  14. Rolf C, Kenkel S, Nieschlag E. Age-related disease pattern in infertile men: increasing incidence of infections in older patients. Andrologia. 2002;34:209–17.

    PubMed  CAS  Google Scholar 

  15. Dallinga JW, Moonen EJ, Dumoulin JC, Evers JL, Geraedts JP, Kleinjans JC. Decreased human semen quality and organochlorine compounds in blood. Hum Reprod. 2002;17:1973–99.

    PubMed  CAS  Google Scholar 

  16. Oldereid NB, Thomassen Y, Attramadal A, Olaisen B, Purvis K. Concentrations of lead, cadmium and zinc in the tissues of reproductive organs of men. J Reprod Fertil. 1993;99:421–55.

    PubMed  CAS  Google Scholar 

  17. Oldereid NB, Thomassen Y, Purvis K. Selenium in human male reproductive organs. Hum Reprod. 1998;13:2172–6.

    PubMed  CAS  Google Scholar 

  18. Handelsman DJ, Staraj S. Testicular size: the effects of aging, malnutrition, and illness. J Androl. 1985;6:144–51.

    PubMed  CAS  Google Scholar 

  19. Mahmoud AM, Goemaere S, El-Garem Y, Van Pottelbergh I, Comhaire FH, Kaufman JM. Testicular volume in relation to hormonal indices of gonadal function in community-dwelling elderly men. J Clin Endocrinol Metab. 2003;88:179–84.

    PubMed  CAS  Google Scholar 

  20. Pasqualotto FF, Sobreiro BP, Hallak J, Pasqualotto EB, Lucon AM. Sperm concentration and normal sperm morphology decrease and follicle-stimulating hormone level increases with age. BJU Int. 2005;96:1087–91.

    PubMed  CAS  Google Scholar 

  21. Harbitz TB. Morphometric studies of the Sertoli cells in elderly men with special reference to the histology of the prostate. Acta Pathol Microbiol Scand A Pathol. 1973;81:703–17.

    CAS  Google Scholar 

  22. Johnson L. Spermatogenesis and aging in the human. J Androl. 1986;7:331–54.

    PubMed  CAS  Google Scholar 

  23. Paniagua R, Amat P, Nistal M, Martin A. Ultrastructure of Leydig cells in human ageing testes. J Anat. 1986;146:173–83.

    PubMed  CAS  Google Scholar 

  24. Paniagua R, Nistal M, Amat P, Rodriguez MC, Martin A. Seminiferous tubule involution in elderly men. Biol Reprod. 1987;36:939–47.

    PubMed  CAS  Google Scholar 

  25. Regadera J, Nistal M, Paniagua R. Testis, epididymis, and spermatic cord in elderly men. Correlation of angiographic and histologic studies with systemic arteriosclerosis. Arch Pathol Lab Med. 1985;109:663–7.

    PubMed  CAS  Google Scholar 

  26. Hermann M, Untergasser G, Rumpold H, Berger P. Aging of the male reproductive system. Exp Gerontol. 2000;35:1267–79.

    PubMed  CAS  Google Scholar 

  27. Coffey DS, Berry SJ, Ewing LL. An overview of current concepts in the study of benign prostate hyperplasia. In: Rodgers CH, Coffey DS, Cunha G, Grayhack JT, Hinman F, Horton R, editors. Benign prostatic hyperplasia, vol II. NIH publication No. 87-2881; 1987. p. 1–13.

    Google Scholar 

  28. Kühnert B, Nieschlag E. Reproductive functions of the ageing male. Hum Reprod Update. 2004;10:327–39.

    PubMed  Google Scholar 

  29. Ng KK, Donat R, Chan L, Lalak A, Di Pierro I, Handelsman DJ. Sperm output of older men. Hum Reprod. 2004;8:1811–5.

    Google Scholar 

  30. Fisch H, Goluboff ET, Olson JH, Feldshuh J, Broder SJ, Barad DH. Semen analysis in 1,283 men from the United States over a 25-year period: no decline in quality. Fertil Steril. 1996;65:1009–14.

    PubMed  CAS  Google Scholar 

  31. Eskenazi B, Wyrobek AJ, Kidd SA, Lowe X, Moore II D, Weisiger K, et al. Sperm aneuploidy in fathers of children with paternally and maternally inherited Klinefelter syndrome. Hum Reprod. 2002;17:576–83.

    PubMed  CAS  Google Scholar 

  32. Schwartz D, Mayaux MJ, Spira A, Moscato ML, Jouannet P, Czyglik F, et al. Semen characteristics as a function of age in 833 fertile men. Fertil Steril. 1983;39:530–5.

    PubMed  CAS  Google Scholar 

  33. Auger J, Kunstmann JM, Czyglik F, Jouannet P. Decline in semen quality among fertile men in Paris during the past 20 years. N Engl J Med. 1995;332:281–5.

    PubMed  CAS  Google Scholar 

  34. Rolf C, Behre HM, Nieschlag E. Reproductive parameters of older couples compared to younger men of infertile couples. Int J Androl. 1996;19:135–42.

    PubMed  CAS  Google Scholar 

  35. Andolz P, Bielsa MA, Vila J. Evolution of semen quality in North-eastern Spain: a study in 22 759 infertile men over a 36 year period. Hum Reprod. 1999;14:731–5.

    PubMed  CAS  Google Scholar 

  36. Berling S, Wolner-Hanssen P. No evidence of deteriorating semen quality among men in infertile relationships during the last decade: a study of males from southern Sweden. Hum Reprod. 1997;12:1002–5.

    PubMed  CAS  Google Scholar 

  37. Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305:609–13.

    PubMed  CAS  Google Scholar 

  38. Agarwal A, Ozturk E, Loughlin KR. Comparison of semen analysis between the two Hamilton-Thorn semen analysers. Andrologia. 1992;24:327–9.

    PubMed  CAS  Google Scholar 

  39. Hommonai ZT, Fainman N, David MP, Paz GF. Semen quality and sex hormone pattern of 29 middle aged men. Andrologia. 1982;14:164–70.

    Google Scholar 

  40. Nieschlag E, Lammers U, Freischem CW, Langer K, Wickings EJ. Reproductive functions in young fathers and grandfathers. J Clin Endocrinol Metab. 1982;55:676–81.

    PubMed  CAS  Google Scholar 

  41. Baccarelli A, Morpurgo PS, Corsi A, Vaghi I, Fanelli M, Cremonesi G, et al. Activin A serum levels and aging of the pituitary–gonadal axis: a cross-sectional study in middle-aged and elderly healthy subjects. Exp Gerontol. 2001;36:1403–12.

    PubMed  CAS  Google Scholar 

  42. Seymour FI, Duffy C, Koerner A. A case of authenticated fertility in a man, aged 94. J Am Med Assoc. 1935;105:1423–4.

    Google Scholar 

  43. de la Rochebrochard E, Thonneau P. Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod. 2002;17:1649–56.

    PubMed  Google Scholar 

  44. Dunson DB, Colombo B, Baird D. Changes with age in the level and duration of fertility in the menstrual cycle. Hum Reprod. 2002;17:1399–403.

    PubMed  Google Scholar 

  45. Dunson DB, Baird DD, Colombo B. Increased infertility with age in men and women. Obstet Gynecol. 2004;103:51–6.

    PubMed  Google Scholar 

  46. Olson J. Subfecundity according to the age of the mother and the father. Dan Med Bull. 1990;37:281–2.

    Google Scholar 

  47. Spandorfer SD, Avrech OM, Colombero LT, Palermo GD, Rosenwaks Z. Effect of parental age on fertilization and pregnancy characteristics in couples treated by intracytoplasmic sperm injection. Hum Reprod. 1998;13:334–8.

    PubMed  CAS  Google Scholar 

  48. Piette C, de Mouzon J, Bachelot A, Spira A. In-vitro fertilization: influence of women’s age on pregnancy rates. Hum Reprod. 1990;5:56–9.

    PubMed  CAS  Google Scholar 

  49. Gallardo E, Simón C, Levy M. Effect of age on sperm fertility potential: oocyte donation as a model. Fertil Steril. 1996;66:260–4.

    PubMed  CAS  Google Scholar 

  50. Paulson RJ, Milligan RC, Sokol RZ. The lack of influence of age on male fertility. Am J Obstet Gynecol. 2001;184:818–22.

    PubMed  CAS  Google Scholar 

  51. Mathieu C, Ecochard R, Bied V, Lornage J, Czyba JC. Cumulative conception rate following intrauterine artificial insemination with husband’s spermatozoa: influence of husband’s age. Hum Reprod. 1995;10:1090–7.

    PubMed  CAS  Google Scholar 

  52. Brzechffa PR, Buyalos RP. Female and male partner age and menotrophin requirements influence pregnancy rates with human menopausal gonadotrophin therapy in combination with intrauterine insemination. Hum Reprod. 1997;12:29–33.

    PubMed  CAS  Google Scholar 

  53. Wyrobek AJ, Aardema M, Eichenlaub-Ritter U, Ferguson L, Marchetti F. Mechanisms and targets involved in maternal and paternal age effects on numerical aneuploidy. Environ Mol Mutagen. 1996;28:254–64.

    PubMed  CAS  Google Scholar 

  54. Penrose LS. Parental age and mutation. Lancet. 1955;269:312–3.

    PubMed  CAS  Google Scholar 

  55. Crow JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000;1:40–7.

    PubMed  CAS  Google Scholar 

  56. Drost JB, Lee WR. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Environ Mol Mutagen. 1995;25 Suppl 26:48–64.

    PubMed  CAS  Google Scholar 

  57. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428:145–50.

    PubMed  CAS  Google Scholar 

  58. American Society for Reproductive Medicine. Guidelines for therapeutic donor insemination: sperm. Fertil Steril. 1998;70 Suppl 3:1S–3.

    Google Scholar 

  59. British Andrology Society. British Andrology Society guidelines for the screening of semen donors for donor insemination. Hum Reprod. 1999;14:1823–6.

    PubMed  CAS  Google Scholar 

  60. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2:280–91.

    PubMed  CAS  Google Scholar 

  61. Griffin DK. The incidence, origin, and etiology of aneuploidy. Int Rev Cytol. 1996;167:263–96.

    PubMed  CAS  Google Scholar 

  62. Eichenlaub-Ritter U. Parental age-related aneuploidy in human germ cells and offspring: a story of past and present. Environ Mol Mutagen. 1996;28:211–36.

    PubMed  CAS  Google Scholar 

  63. Shi Q, Martin RH. Aneuploidy in human sperm: a review of the frequency and distribution of aneuploidy, effects of donor age and lifestyle factors. Cytogenet Cell Genet. 2000;90:219–26.

    PubMed  CAS  Google Scholar 

  64. Lowe X, Eskenazi B, Nelson DO, Kidd S, Alme A, Wyrobek AJ. Frequency of XY sperm increases with age in fathers of boys with Klinefelter syndrome. Am J Hum Genet. 2001;69:1046–54.

    PubMed  CAS  Google Scholar 

  65. Lorda-Sanchez I, Binkert F, Maechler M, Robinson WP, Schinzel AA. Reduced recombination and paternal age effect in Klinefelter syndrome. Hum Genet. 1992;89:524–30.

    PubMed  CAS  Google Scholar 

  66. Hatch M, Kline J, Levine B, Hutzler M, Wartburton D. Paternal age and trisomy among spontaneous abortions. Hum Genet. 1990;85:355–61.

    PubMed  CAS  Google Scholar 

  67. Bordson BL, Leonardo VS. The appropriate upper age limit for semen donors: a review of the genetic effects of paternal age. Fertil Steril. 1991;56:397–401.

    PubMed  CAS  Google Scholar 

  68. Stene E, Stene J, Stengel-Rutkowski S. A reanalysis of the New York State prenatal diagnosis data on Down’s syndrome and paternal age effects. Hum Genet. 1987;77:299–302.

    PubMed  CAS  Google Scholar 

  69. Hook EB, Cross PK. Paternal age and Down’s syndrome genotypes diagnosed prenatally: no association in New York state data. Hum Genet. 1982;62:167–74.

    PubMed  CAS  Google Scholar 

  70. de Michelena MI, Burstein E, Lama JR, Vasquez JC. Paternal age as a risk factor for Down syndrome. Am J Med Genet. 1993;45:679–82.

    PubMed  Google Scholar 

  71. Stoll C, Alembik Y, Dott B, Roth MP. Study of Down syndrome in 238 942 consecutive births. Ann Génét. 1998;41:44–51.

    PubMed  CAS  Google Scholar 

  72. Fisch H, Hyun G, Golden R, Hensle TW, Olsson CA, Liberson GL. The influence of paternal age on Down syndrome. J Urol. 2003;169:2275–8.

    PubMed  Google Scholar 

  73. McIntosh GC, Olshan AF, Baird PA. Paternal age and the risk of birth defects in offspring. Epidemiology. 1995;6:282–8.

    PubMed  CAS  Google Scholar 

  74. Hassold T, Sherman S. Down syndrome: genetic recombination and the origin of the extra chromosome 21. Clin Genet. 2000;57:95–100.

    PubMed  CAS  Google Scholar 

  75. Hook EB, Regal RR. A search for a paternal-age effect upon cases of 47, þ 21 in which the extra chromosome is of paternal origin. Am J Hum Genet. 1984;36:413–21.

    PubMed  CAS  Google Scholar 

  76. Olsen SD, Magenis RE. Preferential paternal origin of de novo structural chromosome rearrangements. In: Daniel A, editor. The cytogenetics of mammalian autosomal rearrangements. New York: Alan R. Liss; 1988. p. 583–99.

    Google Scholar 

  77. Jacobs PA. The chromosome complement of human gametes. Oxf Rev Reprod Biol. 1992;14:47–72.

    PubMed  CAS  Google Scholar 

  78. Sartorelli EM, Mazzucatto LF, de Pina-Neto JM. Effect of paternal age on human sperm chromosomes. Fertil Steril. 2001;76:1119–23.

    PubMed  CAS  Google Scholar 

  79. Bosch M, Rajmil O, Martinez-Pasarell O, Egozcue J, Templado C. Linear increase of diploidy in human sperm with age: a four-colour FISH study. Eur J Hum Genet. 2001;9:533–8.

    PubMed  CAS  Google Scholar 

  80. Glaser RL, Broman KW, Schulman RL, Eskenazi B, Wyrobek AJ, Jabs EW. The paternal-age effect in Apert syndrome is due, in part, to the increased ­frequency of mutations in sperm. Am J Hum Genet. 2003;73:939–47.

    PubMed  CAS  Google Scholar 

  81. Goriely A, McVean GA, Rojmyr M, Ingemarsson B, Wilkie AO. Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science. 2003;301:643–6.

    PubMed  CAS  Google Scholar 

  82. Glaser RL, Jiang W, Boyadjiev SA, Tran AK, Zachary AA, Van Maldergem L, et al. Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome. Am J Hum Genet. 2000;66:768–77.

    PubMed  CAS  Google Scholar 

  83. Risch N, Reich EW, Wishnick MM, McCarthy JG. Spontaneous mutation and parental age in humans. Am J Hum Genet. 1987;41:218–48.

    PubMed  CAS  Google Scholar 

  84. Sivakumaran TA, Ghose S, Kumar HAS, Kucheria K. Parental age in Indian patients with sporadic hereditary retinoblastoma. Ophthalmic Epidemiol. 2000;7:285–91.

    PubMed  CAS  Google Scholar 

  85. Lazaro C, Gaona A, Ainsworth P, Tenconi R, Vidaud D, Kruyer H, et al. Sex differences in the mutation rate and mutational mechanism in the NF gene in neurofibromatosis type 1 patients. Hum Genet. 1996;98:696–9.

    PubMed  CAS  Google Scholar 

  86. Friedman JM. Genetic disease in the offspring of older fathers. Obstet Gynecol. 1981;57:745–9.

    PubMed  CAS  Google Scholar 

  87. Bertram L, Busch R, Spiegl M, Lautenschlager NT, Müller U, Kurz A. Paternal age is a risk factor for Alzheimer disease in the absence of a major gene. Neurogenetics. 1998;1:277–80.

    PubMed  CAS  Google Scholar 

  88. Dalman C, Allebeck P. Paternal age and schizophrenia: further support for an association. Am J Psychiatry. 2002;159:1591–2.

    PubMed  Google Scholar 

  89. Malaspina D, Corcoran C, Fahim C, Berman A, Harkavy-Friedman J, Yale S, et al. Paternal age and sporadic schizophrenia: evidence for de novo mutations. Am J Med Genet. 2002;114:299–303.

    PubMed  Google Scholar 

  90. Green RF, Devine O, Crider KS, Olney RS, Archer N, Olshan AF, Shapira SK, National Birth Defects prevention study. Association of paternal age and risk for major congenital anomalies from the National Birth Defects Prevention Study, 1997 to 2004. Ann Epidemiol. 2010;20(3):241–9.

    Google Scholar 

  91. Harlap S, Paltiel O, Deutsch L, Knaanie A, Masalha S, Tiram E, et al. Paternal age and preeclampsia. Epidemiology. 2002;13:660–7.

    PubMed  Google Scholar 

  92. Hemminki K, Kyyronen P. Parental age and risk of sporadic and familial cancer in offspring: implications for germ cell mutagenesis. Epidemiology. 1999;10:747–51.

    PubMed  CAS  Google Scholar 

  93. Zhang Y, Kreger BE, Dorgan JF, Cupples LA, Myers RH, Splansky GL, et al. Parental age at child’s birth and son’s risk of prostate cancer. The Framingham Study. Am J Epidemiol. 1999;150:1208–12.

    PubMed  CAS  Google Scholar 

  94. Fisch H. Older men are having children, but the reality of a male biological clock makes this trend worrisome. Geriatrics. 2009;64(1):14–7.

    PubMed  Google Scholar 

  95. Schmid TE, Eskenazi B, Baumgartner A, Marchetti F, Young S, Weldon R, et al. The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod. 2007;22(1):180–7.

    PubMed  CAS  Google Scholar 

  96. Wyrobek AJ, Evenson D, Arnheim N, Jabs EW, Young S, Pearson F, et al. Advancing male age increase the frequencies of sperm with DNA fragmentation and certain gene mutations, but not ­aneuploidies or diploidies. Proc Natl Acad Sci USA. 2006;103(25):9601–6.

    PubMed  CAS  Google Scholar 

  97. Morris ID. Sperm DNA damage and cancer treatment. Int J Androl. 2002;25(5):255–61.

    PubMed  CAS  Google Scholar 

  98. Singh NP, Muller CH, Berger RE. Effects of age on DNA doublestrand breaks and apoptosis in human sperm. Fertil Steril. 2003;80(6):1420–30.

    PubMed  Google Scholar 

  99. Spano M, Kolstad AH, Larsen SB, Cordelli E, Leter G, Giwercman A, et al. The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies. Hum Reprod. 1998;13(9):2495–505.

    PubMed  CAS  Google Scholar 

  100. Barnes CJ, Hardman WE, Maze GL, Lee M, Cameron IL. Age-dependent sensitization to oxidative stress by dietary fatty acids. Aging (Milano). 1998;10(6):455–62.

    CAS  Google Scholar 

  101. Barroso G, Morshedi M, Oehninger S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod. 2000;15(6):1338–44.

    PubMed  CAS  Google Scholar 

  102. Aitken RJ, Baker MA, Sawyer D. Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod Biomed Online. 2003;7(1):65–70.

    PubMed  CAS  Google Scholar 

  103. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68(3):519–24.

    PubMed  CAS  Google Scholar 

  104. Brinkworth MH, Weinbauer GF, Bergmann M, Nieschlag E. Apoptosis as a mechanism of germ cell loss in elderly men. Int J Androl. 1997;20(4):222–8.

    PubMed  CAS  Google Scholar 

  105. Print CG, Loveland KL. Germ cell suicide: new insights into apoptosis during spermatogenesis. Bioessays. 2000;22(5):423–30.

    PubMed  CAS  Google Scholar 

  106. Marchetti F, Lowe X, Bishop J, Wyrobek J. Induction of chromosomal aberrations in mouse zygotes by acrylamide treatment of male germ cells and their correlation with dominant lethality and heritable translocations. Environ Mol Mutagen. 1997;30:410–7.

    PubMed  CAS  Google Scholar 

  107. Marchetti F, Bishop JB, Cosentino L, Moore II D, Wyrobek AJ. Paternally transmitted chromosomal aberrations in mouse zygotes determine their embryonic fate. Biol Reprod. 2004;70:616–24.

    PubMed  CAS  Google Scholar 

  108. Barratt CLR, Aitken J, Bjorndahl L, Carrell DT, de Boer P, Kvist U, et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications – a position report. Hum Reprod. 2010;25(4):824–38.

    PubMed  Google Scholar 

  109. Desai N, Sabanegh Jr E, Kim T, Agarwal A. Free radical theory of aging: implications in male infertility. Urology. 2010;75(1):14–9.

    PubMed  Google Scholar 

  110. Pasqualotto FF, Sharma RK, Nelson DR, Thomas Jr AJ, Agarwal A. Relationship between oxidative stress, semen characteristics and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73:459–64.

    PubMed  CAS  Google Scholar 

  111. Pasqualotto FF, Sharma RK, Kobayashi H, Nelson DR, Thomas Jr AJ, Agarwal A. Oxidative stress in normospermic men undergoing fertility evaluation. J Androl. 2001;22:316–22.

    PubMed  CAS  Google Scholar 

  112. Sharma RK, Pasqualotto FF, Nelson DR, Thomas Jr AJ, Agarwal Jr A. ROS-TAC is a novel marker of oxidative stress. Hum Reprod. 1999;14:2801–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio F. Pasqualotto MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pasqualotto, F.F., Pasqualotto, E.B. (2011). Aging and Sperm DNA Damage. In: Zini, A., Agarwal, A. (eds) Sperm Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6857-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6857-9_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1781-2

  • Online ISBN: 978-1-4419-6857-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics