Skip to main content

Abortive Apoptosis and Sperm Chromatin Damage

  • Chapter
  • First Online:
Sperm Chromatin

Abstract

The term apoptosis refers to a morphologically distinct form of cell death that plays a major role during the normal development and homeostasis of multicellular organisms. This mode of cell death is a tightly regulated series of energy-dependent molecular and biochemical events orchestrated by a genetic program. Apoptosis is either developmentally regulated (launched in response to specific stimuli, such as deprivation of survival factors, exposure to ionizing radiation and chemotherapeutic drugs, or activation by various death factors and their ligands) or induced in response to cell injury or stress. Apoptosis is also being recognized in the pathogenesis of many diverse human diseases including cancer, acquired immune deficiency syndrome, neurodegenerative disorders, atherosclerosis, and cardiomyopathy. Maintaining the homeostatic relationship between apoptosis and cell proliferation is important for tissue development and degeneration. Decreased apoptosis may lead to neoplasia, whereas increased apoptosis may lead to a dystrophic condition.

The online version of the original chapter can be found at http://dx.doi.org/10.1007/978-1-4419-6857-9_20

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4419-6857-9_38

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinha HA, Swerdloff RS. Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod. 1999;4(1):38–47.

    Article  Google Scholar 

  2. Tilly J, Ratts V. Biological and clinical importance of ovarian cell death. Contemp Obstet Gynecol. 1996;41:49–86.

    Google Scholar 

  3. Kroemer G, Petit P, Zamzami N, Vayssiere J, Mignotte B. The biochemistry of programmed cell death. FASEB J. 1995;9:1277–87.

    PubMed  CAS  Google Scholar 

  4. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today. 1997;18:44–51.

    Article  PubMed  CAS  Google Scholar 

  5. Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000;157(5):1415–30.

    Article  PubMed  CAS  Google Scholar 

  6. Reed JC. Double identity for proteins of the Bcl-2 family. Nature. 1997;387(6635):773–6.

    Article  PubMed  CAS  Google Scholar 

  7. Reed J. Cytochrome C: can’t live with it – can’t live without it. Cell. 1997;91:559–62.

    Article  PubMed  CAS  Google Scholar 

  8. Sinha-Hikim A, Swerdloff R. Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod. 1999;4:38–47.

    Article  PubMed  CAS  Google Scholar 

  9. Sinha-Hikim A, Lue Y, Diaz-Romero M, Yen P, Wang C, Swerdloff R. Deciphering the pathways of germ cell apoptosis in the testis. J Steroid Biochem Mol Biol. 2003;85:175–82.

    Article  PubMed  CAS  Google Scholar 

  10. Milligan C, Schwartz L. Programmed cell death during animal development. Br Med Bull. 1997;52(3):570–90.

    Google Scholar 

  11. Sharpe R. Regulation of spermatogenesis. In: Knobil E, Neill J, editors. The physiology of reproduction. New York: Raven; 1994. p. 1363–434.

    Google Scholar 

  12. Berensztein E, Sciara M, Rivarola M, Belgorosky A. Apoptosis and proliferation of human testicular somatic and germ cells during prepuberty: high rate of testicular growth in newborns mediated by decreased apoptosis. J Clin Endocrinol Metab. 2002;87:5113–8.

    Article  PubMed  CAS  Google Scholar 

  13. Sinha-Hikim A, Wang C, Lue Y, Johnson L, Wang X, Swerdloff R. Spontaneous germ cell apoptosis in humans: evidence for ethnic differences in the susceptibility of germ cells to programmed cell death. J Clin Endocrinol Metab. 1998;83:152–6.

    Article  Google Scholar 

  14. Tres L, Kierszenbaum A. Cell death patterns of the rat spermatogonial cell progeny induced by Sertoli cell geometric changes and Fas (CD95) agonist. Dev Dyn. 1999;214:361–71.

    Article  PubMed  CAS  Google Scholar 

  15. Henriksen K, Hakovirta H, Parvinen M. In-situ quantification of stage-specific apoptosis in the rat seminiferous epithelium: effects of short-term experimental cryptorchidism. Int J Androl. 1995;18:256–62.

    PubMed  CAS  Google Scholar 

  16. de Rooij D, Janssen J. Regulation of the density of spermatogonia in the seminiferous epithelium of the Chinese hamster. Anat Rec. 1987;217:124–30.

    Article  PubMed  Google Scholar 

  17. Gandini L, Lombardo F, Paoli D, Caponecchia L, Familiari G, Verlengia C, et al. Study of apoptotic DNA fragmentation in human spermatozoa. Hum Reprod. 2000;15:830–9.

    Article  PubMed  CAS  Google Scholar 

  18. Orth J, Gunsalus G, Lamperti A. Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology. 1988;122:787–94.

    Article  PubMed  CAS  Google Scholar 

  19. Knudson C, Tung K, Tourtellotte W, Brown G, Korsmeyer S. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 1995;270:96–9.

    Article  PubMed  CAS  Google Scholar 

  20. Rodriguez I, Ody C, Araki K, Garcia I, Vasalli P. An early and massive wave of germ cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 1997;16:2262–70.

    Article  PubMed  CAS  Google Scholar 

  21. Blanco-Rodriguez J, Martinez-Garcia C. Apoptosis is physiologically restricted to a specialized cytoplasmic compartment in rat spermatids. Biol Reprod. 1999;61:1541–7.

    Article  PubMed  CAS  Google Scholar 

  22. Kim E, Barqawi A, Seo J, Meacham R. Apoptosis: its importance in spermatogenic dysfunction. Urol Clin North Am. 2002;29(4):755–65.

    Article  PubMed  Google Scholar 

  23. Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y. Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development. 1996;122:1703–9.

    PubMed  CAS  Google Scholar 

  24. Sugihara A, Saiki S, Tsuji M, Tsujimura T, Nakata Y, Kubota A, et al. Expression of Fas and Fas ligand in the testes and testicular germ cell tumors: an immunohistochemical study. Anticancer Res. 1997;17:3861–5.

    PubMed  CAS  Google Scholar 

  25. Lee J, Richburg J, Shipp E, Meistrich M, Boekelheide K. The Fas system, a regulator of testicular germ cell apoptosis, is differentially upregulated in Sertoli cell versus germ cell injury of the testis. Endocrinology. 1999;140:852–8.

    Article  PubMed  CAS  Google Scholar 

  26. Adachi M, Suematsu S, Kondo T, Ogasawara J, Tanaka T, Yoshida N, et al. Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat Genet. 1995;11:294–300.

    Article  PubMed  CAS  Google Scholar 

  27. Kane D, Sarafian T, Anton R, Hahn H, Gralla E, Valentine J, et al. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science. 1993;262:1274–7.

    Article  PubMed  CAS  Google Scholar 

  28. Polyak K, Xia Y, Zweier JL, Kinzler K, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997;389:300–5.

    Article  PubMed  CAS  Google Scholar 

  29. Salvesen G, Dixit V. Caspases: intracellular signaling by proteolysis. Cell. 1997;91:443–6.

    Article  PubMed  CAS  Google Scholar 

  30. Pentikainen V, Erkkila K, Dunkel L. Fas regulates germ cell apoptosis in the human testis in vitro. Am J Physiol. 1999;276:310–6.

    Google Scholar 

  31. Tesarik J, Martinez F, Rienzi L, Iacobelli M, Ubaldi F, Mendoza C, et al. In-vitro effects of FSH and testosterone withdrawal on caspase activation and DNA fragmentation in different cell types of human seminiferous epithelium. Hum Reprod. 2002;17:1811–9.

    Article  PubMed  CAS  Google Scholar 

  32. Kodaira K, Takahashi R, Hirabayashi M, Suzuki T, Obinata M, Ueda M. Overexpression of c-myc induces apoptosis at the prophase of meiosis of rat primary spermatocytes. Mol Reprod Dev. 1996;45:403–10.

    Article  PubMed  CAS  Google Scholar 

  33. Nantel F, Monaco L, Foulkes N, Masquilier D, LeMeur M, Henriksen K, et al. Spermiogenesis deficiency and germ cell apoptosis in CREM-mutant mice. Nature. 1996;380:159–62.

    Article  PubMed  CAS  Google Scholar 

  34. Weinbauer G, Nieschlag E. The role of testosterone in spermatogenesis. In: Nieschlag E, Behre H, editors. Testosterone: action, deficiency, substitution. 2nd ed. New York: Springer; 1998. p. 143–68.

    Chapter  Google Scholar 

  35. Sandlow J, Feng H, Zheng L, Sandra A. Migration and ultrastructural localization of the c-kit receptor protein in spermatogenic cells and spermatozoa of the mouse. J Urol. 1999;161:1676–80.

    Article  PubMed  CAS  Google Scholar 

  36. Feng H, Sandlow J, Sparks A, Sandra A, Zheng L. Decreased expression of the c-kit receptor is associated with increased apoptosis in subfertile human testes. Fertil Steril. 1999;71:85–9.

    Article  PubMed  CAS  Google Scholar 

  37. Blanco-Rodriguez J. A matter of death and life: the significance of germ cell death during spermatogenesis. Int J Androl. 1998;21:236–48.

    Article  PubMed  CAS  Google Scholar 

  38. Tramontano F, Malanga M, Farina B, Jones R, Quesada P. Heat stress reduces poly(ADPR)polymerase expression in rat testis. Mol Hum Reprod. 2000;6:575–81.

    Article  PubMed  CAS  Google Scholar 

  39. Henriksen K, Hakovirta H, Parvinen M. Testosterone inhibits and induces apoptosis in rat seminiferous tubules in a stage-specific manner: in situ quantification in squash preparations after administration of ethane dimethane sulfonate. Endocrinology. 1995;136:3285–9321.

    Article  PubMed  CAS  Google Scholar 

  40. Yazawa H, Sasagawa I, Nakada T. Apoptosis of testicular germ cells induced by exogenous glucocorticoid in rats. Hum Reprod. 2000;15:1917–20.

    Article  PubMed  CAS  Google Scholar 

  41. Sinha-Hikim A, Wang C, Leung A, Swerdloff R. Involvement of apoptosis in the induction of germ cell degeneration in adult rats after gonadotropin-releasing hormone antagonist treatment. Endocrinology. 1995;136:2770–5.

    Article  Google Scholar 

  42. Billig H, Furuta I, Rivier C, Tapanainen J, Parvinen M, Hsueh A. Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology. 1995;136:5–12.

    Article  PubMed  CAS  Google Scholar 

  43. Johnson L. Spermatogenesis and aging in the human. J Androl. 1986;7:331–54.

    PubMed  CAS  Google Scholar 

  44. Wang C, Sinha-Hikim A, Lue Y, Baravarian S, Swerdloff R. Reproductive ageing in the Brown Norway rat is characterized by accelerated germ cell apoptosis and is not altered by luteinizing hormone replacement. J Androl. 1999;20:509–18.

    PubMed  CAS  Google Scholar 

  45. Kimura M, Itoh N, Takagi S, Sasao T, Takahashi A, Masumori N, et al. Balance of apoptosis and proliferation of germ cells related to spermatogenesis in aged men. J Androl. 2003;24:185–91.

    PubMed  Google Scholar 

  46. Ku J, Shim H, Kim S, et al. The role of apoptosis in the pathogenesis of varicocele. BJU Int. 2005;96:1092–9.

    Article  PubMed  CAS  Google Scholar 

  47. Baccetti B, Collodel G, Piomboni P. Apoptosis in human ejaculated sperm cells (notulae seminologicae 9). J Submicrosc Cytol Pathol. 1996;28:587–96.

    PubMed  CAS  Google Scholar 

  48. Saleh R, Agarwal A, Sharma R, Said T, Sikka S, Thomas A. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80:1431–6.

    Article  PubMed  Google Scholar 

  49. Bertolla R, Cedenho A, Hassun Filho P, Lima S, Ortiz V, Srougi M. Sperm nuclear DNA fragmentation in adolescents with varicocele. Fertil Steril. 2006;85:625–8.

    Article  PubMed  CAS  Google Scholar 

  50. Fujisawa M, Ishikawa T. Soluble forms of Fas and Fas ligand concentrations in the seminal plasma of infertile men with varicocele. J Urol. 2003;170:2363–5.

    Article  PubMed  CAS  Google Scholar 

  51. Chen C, Lee S, Chen D, Chien H, Chen I, Chu Y, et al. Apoptosis and kinematics of ejaculated spermatozoa in patients with varicocele. J Androl. 2004;25:348–53.

    PubMed  Google Scholar 

  52. Hendin B, Kolettis P, Sharma R, Thomas A, Agarwal A. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol. 1999;161:1831–4.

    Article  PubMed  CAS  Google Scholar 

  53. Simsek F, Turkeri L, Cevik I, Bircan K, Akdas A. Role of apoptosis in testicular tissue damage caused by varicocele. Arch Esp Urol. 1998;51:947–50.

    PubMed  CAS  Google Scholar 

  54. Hurley I, Cooper G, Napolitano B, Gilbert B, Marmar J, Benoff S. High testicular cadmium (Cd2+) levels in varicocele-associated infertility (VAI). Andrologia. 2000;32:190–6.

    Google Scholar 

  55. Benoff S, Millan C, Hurley I, Napolitano B, Marmar J. Bilateral increased apoptosis and bilateral accumulation of cadmium in infertile men with left varicocele. Hum Reprod. 2004;19:616–27.

    Article  PubMed  CAS  Google Scholar 

  56. Fujisawa M, Hiramine C, Tanaka H, Okada H, Arakawa S, Kamidono S. Decrease in apoptosis of germ cells in the testes of infertile men with varicocele. World J Urol. 1999;17:296–300.

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka H, Fujisawa M, Tanaka H, Okada H, Kamidono S. Apoptosis-related proteins in the testes of infertile men with varicocele. BJU Int. 2002;89:905–9.

    Article  PubMed  Google Scholar 

  58. O’Donnell L, McLachlan R, Wreford N, de Kretser D, Robertson D. Testosterone withdrawal promotes stage-specific detachment of round spermatids from the rat seminiferous epithelium. Biol Reprod. 1996;55:895–901.

    Article  PubMed  Google Scholar 

  59. Eskild W, Hansson V. Vitamin A functions in the reproductive organs. In: Blomhoff R, editor. Vitamin A in health and disease. New York: Marcel Dekker; 1994. p. 531–59.

    Google Scholar 

  60. Akmal K, Dufour J, Kim K. Retinoic acid receptor gene expression in the rat testis: potential role during the prophase of meiosis and in the transition from round to elongating spermatids. Biol Reprod. 1997;56:549–56.

    Article  PubMed  CAS  Google Scholar 

  61. Kastner P, Mark M, Leid M, Gansmuller A, Chin W, Grondona J, et al. Abnormal spermatogenesis in RXR mutant mice. Genes Dev. 1996;10:80–92.

    Article  PubMed  CAS  Google Scholar 

  62. Roest H, van Klaveren J, de Wit J, van Grup C, Kohen M, Vermey M, et al. Inactivation of the HR6B ubiquitin-­conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell. 1996;86:799–810.

    Article  PubMed  CAS  Google Scholar 

  63. Sassone-Corsi P. Transcriptional checkpoints determining the fate of male germ cells. Cell. 1997;88(2):163–6.

    Article  PubMed  CAS  Google Scholar 

  64. Lin W, Lamb D, Wheeler T, Abrams J, Lipshultz L, Kim E. Apoptotic frequency is increased in spermatogenic maturation arrest and the hypospermatogenic states. J Urol. 1997;158(5):1791–3.

    Article  PubMed  CAS  Google Scholar 

  65. Amer M, Soliman E, El-Sadek M, Mendoza C, Tesarik J. Is complete spermiogenesis failure a good indication for spermatid conception? Lancet. 1997;350:116–22.

    Article  PubMed  CAS  Google Scholar 

  66. van Engeland M, Kuijpers H, Ramaekers F, Reutelingsperger C, Schutte B. Plasma membrane alterations and cytoskeletal changes in apoptosis. Exp Cell Res. 1997;235:421–30.

    Article  PubMed  Google Scholar 

  67. Tesarik J, Greco E, Cohen-Bacrie P, Mendoza C. Germ cell apoptosis in men with complete and incomplete spermiogenesis failure. Mol Hum Reprod. 1998;4(8):757–62.

    Article  PubMed  CAS  Google Scholar 

  68. Tesarik J, Ubaldi F, Rienzi L, Martinez F, Jacobelli M, Mendoza C, et al. Caspase-dependent and independent DNA fragmentation in Sertoli and germ cells from men with primary testicular failure: relationship with histological diagnosis. Hum Reprod. 2004;19(2):254–61.

    Article  PubMed  Google Scholar 

  69. Inaba Y, Fujisawa M, Okada H, Arakawa S, Kamidod S. The apoptotic changes of testicular germ cells in the obstructive azoospermia models of prepubertal and adult rats. Invest Urol. 1998;160(2):540–4.

    CAS  Google Scholar 

  70. Flickinger C, Herr J, Baran M, Howards S. Testicular development and the formation of spermatic granulomas of the epididymis after obstruction of the vas deferens in immature rats. J Urol. 1995;154:1539–44.

    Article  PubMed  CAS  Google Scholar 

  71. Hirsch I, Choi H. Quantitative testicular biopsy in congenital and acquired genital obstruction. J Urol. 1990;143:311–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan M. El-Fakahany MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

El-Fakahany, H.M., Sakkas, D. (2011). Abortive Apoptosis and Sperm Chromatin Damage. In: Zini, A., Agarwal, A. (eds) Sperm Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6857-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6857-9_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1781-2

  • Online ISBN: 978-1-4419-6857-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics