Skip to main content

Structure of Neural Intermediate Filaments

  • Chapter
  • First Online:
Cytoskeleton of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 3))

Abstract

The basic structure of neural intermediate filament (IF) molecules is known, as are the modes of interaction that direct these molecules into highly specific and fully functional IF. It has been established that the IF molecule is a dimer and that its two constituent chains lie parallel to each other and in axial register. The molecule has a tripartite structure with a central, α-helical, coiled-coil–rich region (the rod domain) separating the head (the region N-terminal to the rod) from the tail (the region C-terminal to the rod). A regularity in the linear dispositions of the charged residues in the longest coiled-coil segments aids assembly through the formation of numerous intermolecular ionic interactions. By analogy with the well-defined surface lattice structure of trichocyte keratin (deduced from the extensive x-ray diffraction data available), the surface lattice structure of neural IF can also be deduced, primarily from the pattern of cross-links induced between molecules. Using scanning transmission electron microscopy (STEM) and cryo-tomographic data, the neural IF are likely to have a four-protofibril structure containing 32 chains in section. Assembly occurs through a rapid lateral aggregation of about eight tetramers to form a unit-length-filament (ULF), with each of these tetramers consisting of a half-staggered, antiparallel pair of molecules. Elongation occurs through the axial aggregation of ULF to form immature IF about 16 nm in diameter and many micrometers in length. Radial compaction then takes place resulting in close packing of the molecular filaments and the formation of IF with diameter in the range 8–12 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IF:

Intermediate filament

STEM:

Scanning transmission electron microscopy

DST:

Disulfosuccinimidyl tartrate

NF-L, NF-M, NF-H:

Neurofilament-light, -medium and -heavy chain respectively

References

  • Birkenberger L, Ip W (1990) Properties of the desmin tail domain: studies using synthetic peptides and antipeptide antibodies. J Cell Biol 111:2063–2075

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Cohen C, Parry DAD (1996) Heptad breaks in α-helical coiled coils: stutters and stammers. Proteins Struct Funct Genet 26:134–145

    Article  CAS  PubMed  Google Scholar 

  • Carden MJ, Eagles PAM (1983) Neurofilaments from ox spinal nerves: isolation, disassembly, reassembly and crosslinking properties. Biochem J 215:227–237

    CAS  PubMed  Google Scholar 

  • Crewther WG, Dowling LM, Steinert PM, Parry DAD (1983) Structure of intermediate filaments. Int J Biol Macromol 5:267–274

    Article  CAS  Google Scholar 

  • Crick FHC (1953) The packing of α-helices: simple coiled-coils. Acta Cryst 6:689–697

    Article  CAS  Google Scholar 

  • Dhe-Paganon S, Werner ED, Chi YI, Shoelson SE (2002) Structure of the globular tail of nuclear lamin. J Biol Chem 277:17381–17384

    Article  CAS  PubMed  Google Scholar 

  • Dong DL-Y, Xu Z-S, Chevrier MR, Cotter RJ, Cleveland DW, Hart GW (1993) Glycosylation of mammalian neurofilaments: localization of multiple O-linked N-acetylglucosamine moieties on neurofilament peptides L and M. J Biol Chem 268:16679–16687

    CAS  PubMed  Google Scholar 

  • Dowling LM, Parry DAD, Sparrow LG (1983) Structural homology between hard α-keratin and the intermediate filament proteins desmin and vimentin. Biosci Rep 3:73–78

    Article  CAS  PubMed  Google Scholar 

  • Eichner R, Rew P, Engel A, Aebi U (1985) Human epidermal keratin filaments: studies on their structure and assembly. Ann N Y Acad Sci 455:381–402

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, MacRae TP (1985) Intermediate filament structure. Biosci Rep 5:573–579

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, MacRae TP (1988) Surface lattice in α-keratin filaments. Int J Biol Macromol 10:178–184

    Article  CAS  Google Scholar 

  • Fraser RDB, Parry DAD (2005) The three-dimensional structure of trichocyte (hard α-) keratin intermediate filaments: features of the molecular packing deduced from the sites of induced crosslinks. J Struct Biol 151:171–181

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, Parry DAD (2007) Structural changes in the trichocyte intermediate filaments accompanying the transition from the reduced to the oxidized form. J Struct Biol 159:36–45

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, Steinert PM, Parry DAD (2003) Structural changes in trichocyte keratin intermediate filaments during keratinization. J Struct Biol 142:266–271

    Article  PubMed  Google Scholar 

  • Geisler N, Kaufmann E, Weber K (1982) Protein-chemical characterization of three structurally distinct domains along the protofilament unit of 10 nm filaments. Cell 30:277–286

    Article  CAS  PubMed  Google Scholar 

  • Giasson BI, Mushynski WE (1998) Intermediate filament disassembly in cultured dorsal root ganglion neurons is associated with amino-terminal head domain phosphorylation of specific subunits. J Neurochem 70:1869–1875

    Article  CAS  PubMed  Google Scholar 

  • Goldie KN, Wedig T, Mitra AK, Aebi U, Herrmann H, Hoenger A (2007) Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. J Struct Biol 158:378–385

    Article  CAS  PubMed  Google Scholar 

  • Hatzfeld M, Burba M (1994) Function of type I and type II keratin head domains: their role in dimer, tetramer and filament formation. J Cell Sci 107:1959–1972

    CAS  PubMed  Google Scholar 

  • Heins S, Aebi U (1994) Making heads and tails of intermediate filament assembly, dynamics and networks. Curr Opin Cell Biol 6:25–33

    Article  CAS  PubMed  Google Scholar 

  • Heins S, Wong P-C, Müller S, Goldie K, Cleveland DW, Aebi U (1993) The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J Cell Biol 123:1517–1533

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Aebi U (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 12:79–90

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu Rev Biochem 73:749–789

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Häner M, Brettel M, Ku NO, Aebi U (1999) Characterization of distinct early assembly units of different intermediate filament proteins. J Mol Biol 286:1403–1420

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Häner M, Brettel M, Müller SA, Goldie KN, Fedtke B, Lustig A, Franke WW, Aebi U (1996) Structure and assembly properties of the intermediate filament protein vimentin: the role of its head, rod and tail domains. J Mol Biol 264:933–953

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM (2003) Functional complexity of intermediate filament cytoskeletons: from structures to assembly to gene ablation. Int Rev Cytol 223:83–175

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Hofmann I, Franke WW (1992) Identification of a nonapeptide motif in the vimentin head domain involved in intermediate filament assembly. J Mol Biol 223:637–650

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Strelkov SV, Feja B, Rogers KR, Brettel M, Lustig A, Häner M, Parry DAD, Steinert PM, Burkhard P, Aebi U (2000) The intermediate filament protein consensus motif of segment 2B: its atomic structure and contribution to assembly. J Mol Biol 298:817–832

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Wedig T, Porter RM, Lane EB, Aebi U (2002) Characterization of early assembly intermediates of recombinant human keratins. J Struct Biol 137:82–96

    Article  CAS  PubMed  Google Scholar 

  • Huc C, Escurat M, Djabali K, Derer M, Landon F, Gros F, Portier MM (1989) Phosphorylation of peripherin, an intermediate filament protein, in mouse neuroblastoma NIE 115 cell line and in sympathetic neurons. Biochem Biophys Res Commun 160:772–779

    Article  CAS  PubMed  Google Scholar 

  • Ivaska J, Pallari H-M, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313:2050–2062

    Article  CAS  PubMed  Google Scholar 

  • Kemp M, Edwards B, Burgess M, Clarke WE, Nicholson G, Parry DAD, Davies KE (2009) Syncoilin isoform organization and differential expression in murine striated muscle. J Struct Biol 165:196–203

    Article  CAS  PubMed  Google Scholar 

  • Krimm I, Ostlund C, Gilquin B, Couprie J, Hossenlopp P, Mornon JP, Bonne G, Courvalin JC, Worman HJ, Zinn-Justin S (2002) The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10:811–823

    Article  CAS  PubMed  Google Scholar 

  • Lazarides E (1982) Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem 51:219–250

    Article  CAS  PubMed  Google Scholar 

  • Mücke N, Wedig T, Bürer A, Marekov LN, Steinert PM, Langowski J, Aebi U, Herrmann H (2004) Molecular and biophysical characterization of assembly-starter units of human vimentin. J Mol Biol 340:97–114

    Article  PubMed  Google Scholar 

  • Omary MB, Ku N-O, Tao G-F, Toivola DM, Liao J (2006) “Heads and tails” of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci 31:383–394

    Article  CAS  PubMed  Google Scholar 

  • Parry DAD (2005) Microdissection of the sequence and structure of intermediate filament chains. Adv Pro Chem 70:113–142

    Article  CAS  Google Scholar 

  • Parry DAD (2006) Hendecad repeat in segment 2A and linker L2 of intermediate filament chains implies the possibility of a right-handed coiled-coil structure. J Struct Biol 155:370–374

    Article  CAS  PubMed  Google Scholar 

  • Parry DAD, Crewther WG, Fraser RDB, MacRae TP (1977) Structure of α-keratin: structural implication of the amino acid sequences of the type I and type II chains segments. J Mol Biol 113:449–454

    Article  CAS  PubMed  Google Scholar 

  • Parry DAD, Marekov LN, Steinert PM (2001) Subfilamentous protofibril structures in fibrous proteins: cross-linking evidence for protofibrils in intermediate filaments. J Biol Chem 276:39253–39258

    Article  CAS  PubMed  Google Scholar 

  • Parry DAD, Marekov LN, Steinert PM, Smith TA (2002) A role for the 1A and L1 rod domain segments in head domain organization and function of intermediate filaments: structural analysis of trichocyte keratin. J Struct Biol 137:97–108

    Article  CAS  PubMed  Google Scholar 

  • Parry DAD, Steinert PM (1995) Intermediate filament structure. Springer, Heidelberg

    Google Scholar 

  • Parry DAD, Steinert PM (1999) Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Quart Rev Biophys 32:99–187

    Article  CAS  Google Scholar 

  • Parry DAD, Steven AC, Steinert PM (1985) The coiled-coil molecules of intermediate filaments consist of two parallel chains in exact axial register. Biochem Biophys Res Commun 127:1012–1018

    Article  CAS  PubMed  Google Scholar 

  • Parry DAD, Strelkov SV, Burkhard P, Aebi U, Herrmann H (2007) Towards a molecular description of intermediate filament structure and assembly. Exp Cell Res 313:2204–2216

    Article  CAS  PubMed  Google Scholar 

  • Quinlan RA, Franke WW (1983) Molecular interactions in intermediate-sized filaments revealed by chemical crosslinking: heteropolymers of vimentin and glial filament protein in cultured human glioma cells. Eur J Biochem 132:477–484

    Article  CAS  PubMed  Google Scholar 

  • Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313:2098–2109

    Article  CAS  PubMed  Google Scholar 

  • Smith TA, Parry DAD (2007) Sequence analyses of type I and type II chains in human hair and epithelial keratin intermediate filaments: promiscuous obligate heterodimers, type II template for molecule formation and a rationale for heterodimer formation. J Struct Biol 158:344–357

    Article  CAS  PubMed  Google Scholar 

  • Smith TA, Strelkov SV, Burkhard P, Aebi U, Parry DAD (2002) Sequence comparisons of intermediate filament chains: evidence of a unique functional/structural role for the coiled-coil segment 1A and linker L1. J Struct Biol 137:128–145

    Article  CAS  PubMed  Google Scholar 

  • Sparrow LG, Dowling LM, Loke VY, Strike PM (1989) Amino acid sequence in wool keratin IF proteins. In: Rogers GE, Reis PJ, Ward KA, Marshall RC (eds) The biology of wool and hair. Chapman and Hall, London, pp 145–155

    Google Scholar 

  • Steinert PM (1991a) Organization of coiled-coil molecules in native keratin 1/keratin 10 intermediate filaments: evidence for alternating rows of antiparallel in-register and antiparallel molecules. J Struct Biol 107:157–174

    Article  CAS  PubMed  Google Scholar 

  • Steinert PM (1991b) Analysis of the mechanism of assembly of mouse keratin 1/keratin 10 intermediate filaments in vitro suggests that intermediate filaments are built from multiple oligomeric units rather than a unique tetrameric building block. J Struct Biol 107:175–188

    Article  CAS  PubMed  Google Scholar 

  • Steinert PM, Marekov LN, Fraser RDB, Parry DAD (1993a) Keratin intermediate filament structure: crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. J Mol Biol 230:436–452

    Article  CAS  PubMed  Google Scholar 

  • Steinert PM, Marekov LN, Parry DAD (1993b) Conservation of the structure of keratin intermediate filaments: molecular mechanism by which different keratin molecules integrate into pre-existing keratin intermediate filaments during differentiation. Biochemistry 32:10046–10056

    Article  CAS  PubMed  Google Scholar 

  • Steinert PM, Marekov LN, Parry DAD (1993c) Diversity of intermediate filament structure. Evidence that the alignment of coiled-coil molecules in vimentin is different from that in keratin intermediate filaments. J Biol Chem 268:24916–24925

    CAS  PubMed  Google Scholar 

  • Steinert PM, Marekov LN, Parry DAD (1999a) Molecular parameters of type IV α-internexin and type IV – type III α-internexin-vimentin copolymer intermediate filaments. J Biol Chem 274:1657–1666

    Article  CAS  PubMed  Google Scholar 

  • Steinert PM, Chou YH, Prahlad V, Parry DAD, Marekov LN, Wu KC, Jang SI, Goldman RD (1999b) A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein: limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV α-internexin. J Biol Chem 274:9881–9890

    Google Scholar 

  • Steinert PM, Parry DAD (1993) The conserved H1 domain of the type II keratin 1 chains plays an essential role in the alignment of nearest neighbor molecules in mouse and human keratin 1/keratin 10 intermediate filaments at the two- to four-molecule level of structure. J Biol Chem 268:2878–2887

    CAS  PubMed  Google Scholar 

  • Steven AC, Wall JS, Hainfeld JF, Steinert PM (1982) Structure of fibroblastic intermediate filaments: analysis by scanning transmission electron microscopy. Proc Natl Acad Sci USA 79:3101–3105

    Article  CAS  PubMed  Google Scholar 

  • Strelkov SV, Burkhard P (2002) Analysis of α-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation. J Struct Biol 137:54–64

    Article  CAS  PubMed  Google Scholar 

  • Strelkov SV, Herrmann H, Geisler N, Lustig A, Ivaninskii S, Zimbelmann R, Burkhard P, Aebi U (2001) Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J Mol Biol 306:773–781

    Article  CAS  PubMed  Google Scholar 

  • Strelkov SV, Herrmann H, Geisler N, Wedig T, Zimbelmann R, Aebi U, Burkhard P (2002) Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in assembly. EMBO J 21:1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Strelkov SV, Schumacher J, Burkhard P, Aebi U, Herrmann H (2004) Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins. J Mol Biol 343:1067–1080

    Article  CAS  PubMed  Google Scholar 

  • Wais-Steider C, Eagles PAM, Gilbert DS, Hopkins JM (1983) Structural similarities and differences amongst neurofilaments. J Mol Biol 165:393–400

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Parry DAD, Jones LN, Idler WW, Marekov LN, Steinert PM (2000) In vitro assembly and structure of trichocyte keratin intermediate filaments: a novel role for stabilization by disulfide bonding. J Cell Biol 151:1459–1468

    Article  CAS  PubMed  Google Scholar 

  • Watts NR, Jones LN, Cheng N, Wall JS, Parry DAD, Steven AC (2002) Cryo-electron microscopy of trichocyte (hard α-keratin) intermediate filaments reveals a low-density core. J Struct Biol 137:109–118

    Article  CAS  PubMed  Google Scholar 

  • Woods EF, Inglis A (1984) Organization of the coiled-coils in the wool microfibril. Int J Biol Macromol 6:277–283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A.D. Parry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Parry, D.A. (2011). Structure of Neural Intermediate Filaments. In: Nixon, R., Yuan, A. (eds) Cytoskeleton of the Nervous System. Advances in Neurobiology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6787-9_7

Download citation

Publish with us

Policies and ethics