Skip to main content

The Impact of Retroactivity on the Behavior of Biomolecular Systems

A Review of Recent Results

  • Chapter
  • First Online:
Design and Analysis of Biomolecular Circuits

Abstract

Modularity is a powerful property for analyzing the behavior of a system on the basis of the behavior of its components. According to this property, any two components maintain their behavior unchanged upon interconnection. Is modularity a natural property of biomolecular networks? In this review, we summarize recent theoretical and experimental results that demonstrate that the answer to this question is negative. Just as in many electrical, mechanical, and hydraulic systems, impedance-like effects, called retroactivity, arise at the interconnection of biomolecular systems and alter the behavior of connected components. Here, we illustrate the effects of retroactivity on the static characteristics and on the dynamic input/output response of biomolecular systems by employing a mixture of control theoretic tools, mathematical biology, and experimental techniques on reconstituted systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon U (2007) An introduction to systems biology. Design principles of biological circuits. Chapman & Hall

    Google Scholar 

  2. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:1–14

    Article  Google Scholar 

  3. Asthagiri AR, Lauffenburger DA (2000) Bioengineering models of cell signaling. Annu Rev Biomed Eng 2:31–53

    Article  Google Scholar 

  4. Atkinson MR, Savageau MA, Meyers JT, Ninfa AJ (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113(5):597–607

    Google Scholar 

  5. C\(\acute{\text{ a}}\)rdenas ML, Cornish-Bowden A (1989) Characteristics necessary for an interconvertible enzyme cascade to generate a highly sensitive response to an effector. Biochem J 257(2):339–345

    Google Scholar 

  6. Del Vecchio D, Jayanthi S (2008) Retroactivity attenuation in transcriptional networks: design and analysis of an insulation device. In: Proceedings conference on decision and control. Cancun pp 774–780

    Google Scholar 

  7. Del Vecchio D, Ninfa AJ, Sontag ED (2008) Modular cell biology: retroactivity and insulation. Nature/EMBO Mol Syst Biol 4:161

    Google Scholar 

  8. Del Vecchio D, Ninfa AJ, Sontag ED (2008) A systems theory with retroactivity: application to transcriptional modules. In: Proceedings of American control conference. Seattle, WA pp 1368–1373

    Google Scholar 

  9. Elowitz MB, Liebler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  Google Scholar 

  10. Fell D (1997) Understanding the control of metabolism. Portland Press Ltd, London

    Google Scholar 

  11. Gardiner CW (1996) Handbook of stochastic methods: for physics, chemistry and the natural sciences. Springer Berlin, Heidelberg, New York

    Google Scholar 

  12. Gardner TS, Cantor CR, Collins JJ (2000) Construction of the genetic toggle switch in Escherichia Coli. Nature 403(6767):339–342

    Google Scholar 

  13. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78(11):6840–6844

    Article  MathSciNet  Google Scholar 

  14. Goldbeter A, Koshland DE Jr (1984) Ultrasensitivity in biochemical systems controlled by covalent modification. interplay between zero-order and multistep effects. J Biol Chem 259(23):14441–14447

    Google Scholar 

  15. Gomez-Uribe C, Verghese GC, Mirny LA (2007) Operating regimes of signaling cycles: statics, dynamics, and noise filtering. PLoS Comput Biol 3(12):2487–2497

    Article  MathSciNet  Google Scholar 

  16. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:47–52

    Article  Google Scholar 

  17. Heinrich R, Neel BG, Rapoport TA (2002) Mathematical models of protein kinase signal transduction. Mol Cell 9:957–970

    Article  Google Scholar 

  18. Jayanthi S, Del Vecchio D (2009) On the compromise between retroactivity attenuation and noise amplification in gene regulatory networks. In: Proceedings conference on decision and control. Shangai, China, pp 4565–4571

    Google Scholar 

  19. Jayanthi S, Del Vecchio D (2010) Retroactivity attenuation in biomolecular systems based on timescale separation. IEEE Trans Automatic Control, DOI: 10.1109/TAC.2010.2069631

    MATH  Google Scholar 

  20. Jiang P, Ninfa AJ (2007) Escherichia coli  PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylylate energy charge in vitro. Biochemistry 46:12979–12996

    Article  Google Scholar 

  21. Jiang P, Mayo AE, Ninfa AJ (2007) Escherichia coli glutamine synthetase adenylyltransferase (ATase, EC 2.7.7.49): kinetic characterization of regulation by PII, PII-UMP, glutamine, and alpha-ketoglutarate. Biochemistry 46(13):4133–46

    Google Scholar 

  22. Kholodenko BN (2006) Cell signaling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    Article  Google Scholar 

  23. Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA 99(20):12841–12846

    Article  Google Scholar 

  24. Kirschner MW, Gerhart JC (2005) The plausibility of life: resolving Darwin’s Dilemma. Yale University Press, New Haven and London

    Google Scholar 

  25. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems biology in practice. Wiley, Weinheim

    Book  Google Scholar 

  26. Kokotovic P, Khalil HK, O’Reilly J (1999) Singular perturbation methods in control. SIAM

    Google Scholar 

  27. Kremling A, Saez-Rodriguez J (2007) Systems biology - An engineering perspective. J Biotechnol 129:329–351

    Article  Google Scholar 

  28. Krstić M, Kanellakopoulos I, Kokotović PV (1995) Nonlinear and Adaptive Control Design. Wiley, New York

    Google Scholar 

  29. Lauffenburger DA (May 2000) Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci USA 97(10):5031–5033

    Article  Google Scholar 

  30. Mason O, Verwoerd M (Apr 2006) Graph theory and networks in biology. Technical report. http://arxiv.org/abs/q-bio.MN/0604006

  31. Michel AN, Miller RK (1977) Qualitative Analysis of Large Scale Dynamical Systems. Academic Press, New York

    MATH  Google Scholar 

  32. Moylan PJ, Hill DJ (1978) Stability criteria for large-scale systems. IEEE Trans Automat Contr 23(2):143–149

    Article  MathSciNet  MATH  Google Scholar 

  33. Ninfa AJ, Jiang P (2005) PII signal transduction proteins: sensors of α-ketoglutarate that regulate nitrogen metabolism. Curr Opinion Microbiol 8:168–173

    Article  Google Scholar 

  34. Paulsson J (2004) Summing up the noise in gene networks. Nature 427:415–418

    Article  Google Scholar 

  35. Papin JA, Reed JL, Palsson BO (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci 29:641–647

    Article  Google Scholar 

  36. Pioszak AA, Jiang P, Ninfa AJ (2000) The Escherichia coli PII signal transduction protein regulates the activities of the two-component system transmitter protein NRII by direct interaction with the kinase domain of the transmitter module. Biochemistry 39(44):13450–13461

    Article  Google Scholar 

  37. Polderman JW, Willems JC (2007) Introduction to Mathematical Systems Theory. A Behavioral Approach, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  38. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation at the single-cell level. Science 307(5717):1962–1965, DOI: 10.1126/science.1106914

    Article  Google Scholar 

  39. Rubinfeld H, Seger R (2005) The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 31(2):151–174

    Article  Google Scholar 

  40. Sauro HM (2004) The computational versatility of proteomic signaling networks. Curr Proteomics 1(1):67–81

    Article  Google Scholar 

  41. Saez-Rodriguez J, Kremling A, Gilles ED (2005) Dissecting the puzzle of life: modularization of signal transduction networks. Comput Chem Eng 29:619–629

    Article  Google Scholar 

  42. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    Google Scholar 

  43. Sepulchre R, Janković M, Kokotović P (1997) Constructive nonlinear control. Springer-Verlag, New York

    MATH  Google Scholar 

  44. Snel B, Bork P, Huynen MA (2002) The identification of functional modules from the genomic association of genes. Proc Natl Acad Sci USA 99(9):5890–5895

    Article  Google Scholar 

  45. Sontag ED (1998) Mathematical control theory. Springer-Verlag, New York

    MATH  Google Scholar 

  46. Sontag ED (2007) Input to state stability: Basic concepts and results. In: Nistri P, Stefani G (eds) Nonlinear and optimal control theory. Springer-Verlag, Berlin, pp 163–220

    Google Scholar 

  47. Stadtman ER, Chock PB (1977) Superiority of interconvertible enzyme cascades in metabolic regulation: analysis of monocyclic systems. Proc Natl Acad Sci USA 74(7):2761–2765

    Article  Google Scholar 

  48. Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA pp 8614–8619

    Google Scholar 

  49. van der Schaft AJ (2000) 2-gain and passivity techniques in nonlinear control, 2nd edn. Springer-Verlag, Berlin

    MATH  Google Scholar 

  50. van Kampen NG (2007) Stochastic processes in physics and chemistry, 3rd edn. Elsevier, North Holland

    Google Scholar 

  51. Ventura AC, Jiang P, van Wassenhove L, Del Vecchio D, Merajver SD, Ninfa AJ (2010) Signaling properties of a covalent modification cycle are altered by a downstream target. Proc Natl Acad Sci USA 107(22):10032–10037

    Article  Google Scholar 

  52. Ventura AC, Jiang P, van Wassenhove L, Ninfa AJ, Merajver SD, Del Vecchio D (2010) The impact of retroactivity on the input/output characteristic of a signaling component. In: Dynamic systems and control conference (in press)

    Google Scholar 

  53. Vidyasagar M (1981) Input-Output analysis of large scale interconnected systems. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  54. Šiljak DD (1978) Large-Scale systems: stability and structure. Dover, New York

    MATH  Google Scholar 

  55. Willems J (1972) Dissipative dynamical systems, Part I: General theory. Arch Ration Mech An 45:321–351

    Article  MathSciNet  MATH  Google Scholar 

  56. Willems JC (1972) Dissipative dynamical systems Part I: General theory; Part II: Linear systems with quadratic supply rates. Arch Ration Mech An 45:321–393

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domitilla Del Vecchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Del Vecchio, D. (2011). The Impact of Retroactivity on the Behavior of Biomolecular Systems. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds) Design and Analysis of Biomolecular Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6766-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6766-4_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6765-7

  • Online ISBN: 978-1-4419-6766-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics