Skip to main content

Multiple-Access Interference

  • Chapter
  • First Online:
Classical, Semi-classical and Quantum Noise

Abstract

Dramatic growth rates in capacity demands in wireless and other broadband systems have resulted in a rise in the use of communication networks in which multiple users share common communication resources. A significant consequence of this trend is the increasing presence of multiple-access interference (MAI), which arises in communication systems employing non-orthogonal multiplexing, that is, in multiple-access systems. This issue arises naturally, for example, in code-division multiple-access (CDMA) communication systems using nonorthogonal spreading codes. It also arises in orthogonally multiplexed wireless channels, such as time-division multiple-access (TDMA) and orthogonal frequency division multiple-access (OFDMA) channels, due to effects such as multipath or nonideal frequency channelization, and in wireline channels such as those arising in digital subscriber line (DSL) systems or powerline communications (PLCs) in which crosstalk and other types of interference are major impairments. MAI also arises in optical wave-division multiplexing (WDM) systems due to mode interactions caused by nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The relationship between p, q and (k, i), (ℓ, j) is

    $$k = {[p - 1]}_{K},\ i = \left \lfloor \frac{p - 1} {K} \right \rfloor,\ \mathcal{l} = {[q - 1]}_{K},\ \ \mathrm{and}\ \ j = \left \lfloor \frac{q - 1} {K} \right \rfloor,$$
    (12.9)

    where [ ⋅]K denotes reduction modulo K. 

  2. 2.

    The dynamic programming solutions arising in both the classical and semiclassical models are both special cases of a more general dynamic programming model developed in [25].

  3. 3.

    Detection when the states defining the various hypotheses are uncertain is treated in [9].

References

  1. Brady D, Verdú S (1991) A semiclassical analysis of optical code division multiple access. IEEE Trans Commun 39(1):85–93

    Article  Google Scholar 

  2. Brandt-Pearce M, Aazhang B (1994) Performance analysis of single-user and multiuser detectors for optical code-division multiple-access communication systems. IEEE Trans Commun 42(2-4):434–444

    Google Scholar 

  3. Brandt-Pearce M, Aazhang B (1994) Multiuser detection for optical code-division multiple-access systems. IEEE Trans Commun 42(2-4):1801–1810

    Article  Google Scholar 

  4. Bross SI, Burnashev M, Shamai S (2001) Error exponents for the two-user Poisson multiple-access channel. IEEE Trans Inform Theor 46(5):1999–2016

    Article  MathSciNet  Google Scholar 

  5. Concha JI, Poor HV (2004) Multiaccess quantum channels. IEEE Trans Inform Theor 50(5):725–747

    Article  MathSciNet  Google Scholar 

  6. Concha JI, Poor HV (2001) Least-squares detectors in quantum channels. Proceedings of the 39th Annual Allerton Conference on Communication, Control and Computing, University of Illinois at Urbana-Champaign, Monticello, IL, October 3–5

    Google Scholar 

  7. Concha JI, Poor HV (2002) An optimality property of the square-root measurement for mixed states. Proceedings of the Sixth International Conference on Quantum Communication, Measurement and Computing, MIT, Cambridge, MA, July 22–26

    Google Scholar 

  8. Dai H et al. (2007) Multi-user Receiver Design. In: Bilgieri E, et al. (eds), MIMO wireless communications, Chap. 6. Cambridge University Press, Cambridge, UK, pp. 230–292

    Google Scholar 

  9. Elron N, Eldar YC (2005) Quantum detection with uncertain states. Phys Rev A 72(3):032338

    Article  Google Scholar 

  10. Helstrom CW (1976) Quantum detection and estimation theory. Academic, New York

    MATH  Google Scholar 

  11. Honig M (ed) (2009) Advances in multiuser detection. Wiley, New York

    Google Scholar 

  12. Karabulut GZ, Kurt T, Yongacoglu A (2005) Optical CDMA detection by basis selection. J Lightwave Technol 23(11):3708–3715

    Article  Google Scholar 

  13. Lapidoth A, Shamai S (1998) The Poisson multiple-access channel. IEEE Trans Inform Theor 44:488–501

    Article  MathSciNet  Google Scholar 

  14. Middleton D (1977) Statistical-physical models of electromagnetic interference. IEEE Trans Electromagn C EMC-19(3):106–127

    Article  Google Scholar 

  15. Motahari AS, Nasiri-Kenari M (2004) Multiuser detection for optical CDMA networks based on expectation-maximization algorithm. IEEE Trans Commun 52(4):652–660

    Article  Google Scholar 

  16. Nelson LB, Poor HV (1995) Performance of multiuser detection for optical CDMA - Part I: Error probabilities. IEEE Trans Commun 43:2803–2811

    Article  Google Scholar 

  17. Poor HV (1994) An introduction to signal detection and estimation, 2nd edn. Springer, New York

    Book  Google Scholar 

  18. Poor HV (2002) Dynamic programming in digital communications: Viterbi decoding to turbo multiuser detection. J Optim Theor Appl 115(3):629–657

    Article  MathSciNet  Google Scholar 

  19. Poor HV, Tanda M (1999) Multiuser detection in impulsive channels. Annales des Telecommun 54(7–8):392–400

    Google Scholar 

  20. Poor HV, Tanda M (2002) Multiuser detection in flat fading non-Gaussian channels. IEEE Trans Commun 50(11):1769–1777

    Article  Google Scholar 

  21. Seyfe B, Sharafat AR (2005) Signed-rank nonparametric multiuser detection in non-Gaussian channels. IEEE Trans Inform Theor 51(4):1478–1486

    Article  MathSciNet  Google Scholar 

  22. Seyfe B, Sharafat AR (2006) Nonparametric multiuser detection in non-Gaussian channels. IEEE Trans Signal Process 54(1):22–33

    Article  Google Scholar 

  23. Verdú S (1986) Multiple-access channels with point-process observations: Optimum demodulation. IEEE Trans Inform Theor IT-32:642–651

    Article  MathSciNet  Google Scholar 

  24. Verdú S (1998) Multiuser detection. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  25. Verdú S, Poor HV (1987) Abstract dynamic programming models under commutativity conditions. SIAM J Contr Optim 25(4):990–1006

    Article  MathSciNet  Google Scholar 

  26. Wang X, Poor HV (1999) Robust multiuser detection in non-Gaussian channels. IEEE Trans Signal Process 47(2):289–305

    Article  Google Scholar 

  27. Wang X, Poor HV (2004) Wireless communication systems: Advanced techniques for signal reception. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  28. Yao YW, Poor HV (2004) Blind detection of synchronous CDMA in non-Gaussian channels. IEEE Trans Signal Process 52(1):271–279

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was prepared under the support of the National Science Foundation under Grant CNS-09-05398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Vincent Poor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Poor, H.V. (2012). Multiple-Access Interference. In: Cohen, L., Poor, H., Scully, M. (eds) Classical, Semi-classical and Quantum Noise. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6624-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6624-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6623-0

  • Online ISBN: 978-1-4419-6624-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics