Skip to main content

Tetraspanins and Cancer Metastasis

  • Chapter
  • First Online:
The Tumor Microenvironment

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Metastasis formation is the final result of a cascade of events that primary tumor cells pass through by changing their phenotype and the crosstalk with the tumor environment. Molecules involved in this process are besides others tetraspanins, which surprisingly can either inhibit or promote metastasis formation. These opposing activities are supposed to rely on the special feature of tetraspanins that mostly act via modulating the activity of a multitude of associating molecules. Tetraspanins assemble a web between themselves and other associating molecules in special glycolipid-enriched membrane microdomains, which function as signaling platform, but are also prone for internalization. Internalization of tetraspanins and associated molecules by itself can contribute to promotion or inhibition of tumor progression. Notably, the internalized tetraspanin web is abundantly recovered in exosomes, small vesicles that derive from internalized membrane microdomains. Thus, it appears reasonable to assume that exosomal tetraspanins are of major importance for the crosstalk between the metastasizing tumor cell, the tumor stroma, the vessel endothelium, and the premetastatic organ. I will briefly introduce the structure of tetraspanins and their presently known main functional activities as a starting point to appreciate the contribution of selective tetraspanins in metastasis promotion and inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abache T, Le Naour F, Planchon S et al (2007) The transferrin receptor and the tetraspanin web molecules CD9, CD81, and CD9P-1 are differentially sorted into exosomes after TPA treatment of K562 cells. J Cell Biochem 102:650–664

    PubMed  CAS  Google Scholar 

  • Adachi M, Taki T, Ieki Y et al (1996) Correlation of KAI1/CD82 gene expression with good prognosis in patients with non-small cell lung cancer. Cancer Res 56:1751–1755

    PubMed  CAS  Google Scholar 

  • Adachi M, Taki T, Huang C et al (1998) Reduced integrin alpha3 expression as a factor of poor prognosis of patients with adenocarcinoma of the lung. J Clin Oncol 16:1060–1067

    PubMed  CAS  Google Scholar 

  • Admyre C, Johansson SM, Paulie S et al (2006) Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol 36:1772–1781

    PubMed  CAS  Google Scholar 

  • Aharon A, Brenner B (2009) Microparticles, thrombosis and cancer. Best Pract Res Clin Haematol 22:61–69

    PubMed  CAS  Google Scholar 

  • Ahmad A, Hart IR (1997) Mechanisms of metastasis. Crit Rev Oncol Hematol 26:163–173

    PubMed  CAS  Google Scholar 

  • Albini A, Mirisola V, Pfeffer U (2008) Metastasis signatures: genes regulating tumor-microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev 27:75–83

    PubMed  CAS  Google Scholar 

  • Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8:2014–2018

    PubMed  CAS  Google Scholar 

  • AndrĂ© F, Schartz NE, Chaput N et al (2002) Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine 20 Suppl 4:A28–A31

    Google Scholar 

  • AndrĂ© M, Le Caer JP, Greco C et al (2006) Proteomic analysis of the tetraspanin web using LC-ESI-MS/MS and MALDI-FTICR-MS. Proteomics 6:1437–1449

    PubMed  Google Scholar 

  • Ang J, Lijovic M, Ashman LK et al (2004) CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev 13:1717–1721

    PubMed  CAS  Google Scholar 

  • ArdĂłn-Alonso M, Yañez-MĂł M, Barreiro O et al (2006) Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion. J Immunol 177:5129–5137

    Google Scholar 

  • Arduise C, Abache T, Li L et al (2008) Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol 181:7002–7013

    PubMed  CAS  Google Scholar 

  • Bahi A, Boyer F, Kolira M et al (2005) In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour. J Neurochem 92:1243–1255

    PubMed  CAS  Google Scholar 

  • Baldwin G, Novitskaya V, Sadej R et al (2008) Tetraspanin CD151 regulates glycosylation of (alpha)3(beta)1 integrin. J Biol Chem 283:35445–35454

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Zhan R, Chaudhuri A et al (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938

    PubMed  CAS  Google Scholar 

  • Bari R, Zhang YH, Zhang F et al (2009) Transmembrane interactions are needed for KAI1/CD82-mediated suppression of cancer invasion and metastasis. Am J Pathol 174:647–660

    PubMed  CAS  Google Scholar 

  • Barreiro O, Yáñez-MĂł M, Sala-ValdĂ©s M et al (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105:2852–2861

    PubMed  CAS  Google Scholar 

  • Bass R, Werner F, Odintsova E et al (2005) Regulation of urokinase receptor proteolytic function by the tetraspanin CD82. J Biol Chem 280:14811–14818

    PubMed  CAS  Google Scholar 

  • Belting M, Wittrup A (2008) J Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. Cell Biol 183:1187–1191

    CAS  Google Scholar 

  • Berckmans RJ, Neiuwland R, Böing AN et al (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 85:639–646

    PubMed  CAS  Google Scholar 

  • Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114:4143–4151

    PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8:89–96

    PubMed  CAS  Google Scholar 

  • Berditchevski F, Bazzoni G, Hemler ME (1995) Specific association of CD63 with the VLA-3 and VLA-6 integrins. J Biol Chem 270:17784–17790

    PubMed  CAS  Google Scholar 

  • Berditchevski F, Tolias KF, Wong K et al (1997) A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem 272:2595–2598

    PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E, Sawada S et al (2002) Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277:36991–37000

    PubMed  CAS  Google Scholar 

  • BĂ©rubĂ© NG, Speevak MD, Chevrette M (1994) Suppression of tumorigenicity of human prostate cancer cells by introduction of human chromosome del(12)(q13). Cancer Res 54:3077–3081

    PubMed  Google Scholar 

  • Bienstock RJ, Barrett JC (2001) KAI1, a prostate metastasis suppressor: prediction of solvated structure and interactions with binding partners; integrins, cadherins, and cell-surface receptor proteins. Mol Carcinog 32:139–153

    PubMed  CAS  Google Scholar 

  • Bijlmakers MJ, Marsh M (2003) The on-off story of protein palmitoylation. Trends Cell Biol 13:32–42

    PubMed  CAS  Google Scholar 

  • Birchmeier C, Birchmeier W, Gherardi E et al (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    PubMed  CAS  Google Scholar 

  • Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23

    PubMed  CAS  Google Scholar 

  • Boismenu R, Rhein M, Fischer WH et al (1996) A role for CD81 in early T cell development. Science 271:198–200

    PubMed  CAS  Google Scholar 

  • Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58:1189–1205

    PubMed  CAS  Google Scholar 

  • Boukerche H, Su ZZ, Emdad L et al (2005) mda-9/Syntenin: a positive regulator of melanoma metastasis. Cancer Res 65:10901–10911

    PubMed  CAS  Google Scholar 

  • Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749

    PubMed  CAS  Google Scholar 

  • Bredel M, Bredel C, Juric D et al (2005) Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 65:8679–8689

    PubMed  CAS  Google Scholar 

  • Briese J, Schulte HM, Sajin M et al (2008) Correlations between reduced expression of the metastasis suppressor gene KAI-1 and accumulation of p53 in uterine carcinomas and sarcomas. Virchows Arch 453:89–96

    PubMed  CAS  Google Scholar 

  • Burghoff S, Ding Z, Gödecke S et al (2008) Horizontal gene transfer from human endothelial cells to rat cardiomyocytes after intracoronary transplantation. Cardiovasc Res 77:534–543

    PubMed  CAS  Google Scholar 

  • Cannon KS, Cresswell P (2001) Quality control of transmembrane domain assembly in the tetraspanin CD82. EMBO J 20:2443–2453

    PubMed  CAS  Google Scholar 

  • Caswell P, Norman J (2008) Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol 18:257–263

    PubMed  CAS  Google Scholar 

  • Charrin S, Le Naour F, Oualid M et al (2001) The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J Biol Chem 276:14329–14337

    PubMed  CAS  Google Scholar 

  • Charrin S, ManiĂ© S, Oualid M et al (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516:139–144

    PubMed  CAS  Google Scholar 

  • Charrin S, ManiĂ© S, Thiele C et al (2003) A physical and functional link between cholesterol and tetraspanins. Eur J Immunol 33:2479–2489

    PubMed  CAS  Google Scholar 

  • Chen Z, Mustafa T, Trojanowicz B et al (2004) CD82, and CD63 in thyroid cancer. Int J Mol Med 14:517–527

    PubMed  CAS  Google Scholar 

  • Cherukuri A, Carter RH, Brooks S et al (2004) B cell signaling is regulated by induced palmitoylation of CD81. J Biol Chem 279:31973–31982

    PubMed  CAS  Google Scholar 

  • Claas C, Herrmann K, Matzku S et al (1996) Developmentally regulated expression of metastasis-associated antigens in the rat. Cell Growth Differ 7:663–678

    PubMed  CAS  Google Scholar 

  • Claas C, Seiter S, Claas A et al (1998) Association between the rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy. J Cell Biol 141:267–280

    PubMed  CAS  Google Scholar 

  • Claas C, Stipp CS, Hemler ME (2001) Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J Biol Chem 276:7974–7984

    PubMed  CAS  Google Scholar 

  • Claas C, Wahl J, Orlicky DJ et al (2005) The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J 389:99–110

    PubMed  CAS  Google Scholar 

  • Clark KL, Oelke A, Johnson ME et al (2004) CD81 associates with 14–3–3 in a redox-regulated palmitoylation-dependent manner. J Biol Chem 279:19401–19406

    PubMed  CAS  Google Scholar 

  • Coombs GS, Covey TM, Virshup DM (2008) Wnt signaling in development, disease and translational medicine. Curr Drug Targets 9:513–531

    PubMed  CAS  Google Scholar 

  • Craft JA, Marsh NA (2003) Increased generation of platelet-derived microparticles following percutaneous transluminal coronary angioplasty. Blood Coagul Fibrinolysis 14:719–728

    PubMed  Google Scholar 

  • De Bruyne E, Andersen TL, De Raeve H et al (2006) Endothelial cell-driven regulation of CD9 or motility-related protein-1 expression in multiple myeloma cells within the murine 5T33MM model and myeloma patients. Leukemia 20:1870–1879

    PubMed  CAS  Google Scholar 

  • De Cicco M (2004) The prothrombotic state in cancer: pathogenic mechanisms. Crit Rev Oncol Hematol 50:187–196

    PubMed  Google Scholar 

  • Defilippi P, Di Stefano P, Cabodi S (2006) p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol 16:257–263

    PubMed  CAS  Google Scholar 

  • de Gassart A, GĂ©minard C, Hoekstra D et al (2004) Exosome secretion: the art of reutilizing nonrecycled proteins? Traffic 5:896–903

    PubMed  CAS  Google Scholar 

  • Denzer K, Kleijmeer MJ, Heijnen HF et al (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113:3365–3374

    PubMed  CAS  Google Scholar 

  • de Parseval A, Lerner DL, Borrow P et al (1997) Blocking of feline immunodeficiency virus infection by a monoclonal antibody to CD9 is via inhibition of virus release rather than interference with receptor binding. J Virol 71:5742–5749

    PubMed  CAS  Google Scholar 

  • Deregibus MC, Cantaluppi V, Calogero R et al (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448

    PubMed  CAS  Google Scholar 

  • Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34

    PubMed  CAS  Google Scholar 

  • Dev KK (2004) Making protein interactions druggable: targeting PDZ domains. Nat Rev Drug Discov 3:1047–1056

    PubMed  CAS  Google Scholar 

  • Devaux PF, Morris R (2004) Transmembrane asymmetry and lateral domains in biological membranes. Traffic 5:241–246

    PubMed  CAS  Google Scholar 

  • Dong JT, Lamb PW, Rinker-Schaeffer CW et al (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886

    PubMed  CAS  Google Scholar 

  • Dong LM, Potter JD, White E et al (2008) Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 299:2423–2436

    PubMed  CAS  Google Scholar 

  • Drapkin R, Crum CP, Hecht JL (2004) Expression of candidate tumor markers in ovarian carcinoma and benign ovary: evidence for a link between epithelial phenotype and neoplasia. Hum Pathol 35:1014–1021

    PubMed  CAS  Google Scholar 

  • Drucker L, Tohami T, Tartakover-Matalon S et al (2006) Promoter hypermethylation of tetraspanin members contributes to their silencing in myeloma cell lines. Carcinogenesis 27: 197–204

    PubMed  CAS  Google Scholar 

  • Duffield A, Kamsteeg EJ, Brown AN et al (2003) The tetraspanin CD63 enhances the internalization of the H,K-ATPase beta-subunit. Proc Natl Acad Sci USA 100:15560–15565

    PubMed  CAS  Google Scholar 

  • Eble JA, Haier J (2006) Integrins in cancer treatment. Curr Cancer Drug Targets 6:89–105

    PubMed  CAS  Google Scholar 

  • Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289

    PubMed  CAS  Google Scholar 

  • Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    PubMed  CAS  Google Scholar 

  • Escola JM, Kleijmeer MJ, Stoorvogel W et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273:20121–20127

    PubMed  CAS  Google Scholar 

  • Fan H, Derynck R (1999) Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. EMBO J 18:6962–6972

    PubMed  CAS  Google Scholar 

  • Fang Y, Wu N, Gan X et al (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5:e158

    Google Scholar 

  • Farhadieh RD, Smee R, Ow K et al (2004) Down-regulation of KAI1/CD82 protein expression in oral cancer correlates with reduced disease free survival and overall patient survival. Cancer Lett 213:91–98

    PubMed  CAS  Google Scholar 

  • Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421

    PubMed  CAS  Google Scholar 

  • Fitter S, Tetaz TJ, Berndt MC et al (1995) Molecular cloning of cDNA encoding a novel platelet-endothelial cell tetra-span antigen, PETA-3. Blood 86:1348–1355

    PubMed  CAS  Google Scholar 

  • Flaumenhaft R (2006) Formation and fate of platelet microparticles. Blood Cells Mol Dis 36:182–187

    PubMed  CAS  Google Scholar 

  • Fomina AF, Deerinck TJ, Ellisman MH (2003) Regulation of membrane trafficking and subcellular organization of endocytic compartments revealed with FM1–43 in resting and activated human T cells. Exp Cell Res 291:150–166

    PubMed  CAS  Google Scholar 

  • Fraley TS, Tran TC, Corgan AM et al (2003) Phosphoinositide binding inhibits alpha-actinin bundling activity. J Biol Chem 278:24039–24045

    PubMed  CAS  Google Scholar 

  • Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    PubMed  CAS  Google Scholar 

  • Funakoshi T, Tachibana I, Hoshida Y et al (2003) Expression of tetraspanins in human lung cancer cells: frequent downregulation of CD9 and its contribution to cell motility in small cell lung cancer. Oncogene 22:674–687

    PubMed  CAS  Google Scholar 

  • Furuya M, Kato H, Nishimura N et al (2005) Down-regulation of CD9 in human ovarian carcinoma cell might contribute to peritoneal dissemination: morphologic alteration and reduced expression of beta1 integrin subsets. Cancer Res 65:2617–2625

    PubMed  CAS  Google Scholar 

  • Fuss H, Dubitzky W, Downes CS et al (2008) SRC family kinases and receptors: analysis of three activation mechanisms by dynamic systems modeling. Biophys J 94:1995–2006

    PubMed  CAS  Google Scholar 

  • Gao AC, Lou W, Dong JT et al (2003) Defining regulatory elements in the human KAI1 (CD 82) metastasis suppressor gene. Prostate 57:256–260

    PubMed  CAS  Google Scholar 

  • Garcia E, Nikolic DS, Piguet V (2008a) HIV-1 replication in dendritic cells occurs through a tetraspanin-containing compartment enriched in AP-3. Traffic 9:200–214

    PubMed  CAS  Google Scholar 

  • Garcia-España A, Chung PJ, Sarkar IN et al (2008) Appearance of new tetraspanin genes during vertebrate evolution. Genomics 91:326–334

    PubMed  Google Scholar 

  • Gassmann P, Enns A, Haier J (2004) Role of tumor cell adhesion and migration in organ-specific metastasis formation. Onkologie 27:577–582

    PubMed  CAS  Google Scholar 

  • Geary SM, Cambareri AC, Sincock PM et al (2001) Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies. Tissue Antigens 58:141–153

    PubMed  CAS  Google Scholar 

  • Gensert JM, Baranova OV, Weinstein DE et al (2007) CD81, a cell cycle regulator, is a novel target for histone deacetylase inhibition in glioma cells. Neurobiol Dis 26:671–680

    PubMed  CAS  Google Scholar 

  • Gesierich S (2006) Das Tetraspanin CO-029/D6.1A in Membrankomplexen und Exosomen: Einfluss auf Tumorprogression und Angiogenese. Dissertation, University of Karlsruhe, Germany

    Google Scholar 

  • Gesierich S, Paret C, Hildebrand D et al (2005) Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res 11:2840–2852

    PubMed  CAS  Google Scholar 

  • Gesierich S, Berezovskiy I, Ryschich E et al (2006) Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 66:7083–7094

    PubMed  CAS  Google Scholar 

  • Gibbings DJ, Ciaudo C, Erhardt M et al (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149

    PubMed  CAS  Google Scholar 

  • Goschnick MW, Lau LM, Wee JL et al (2006) Impaired “outside-in” integrin alphaIIbbeta3 signaling and thrombus stability in TSSC6-deficient mice. Blood 108:1911–1918

    PubMed  CAS  Google Scholar 

  • Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5:317–323

    PubMed  CAS  Google Scholar 

  • Guo J, Wenk MR, Pellegrini L et al (2003) Phosphatidylinositol 4-kinase type IIalpha is responsible for the phosphatidylinositol 4-kinase activity associated with synaptic vesicles. Proc Natl Acad Sci USA 100:3995–4000

    PubMed  CAS  Google Scholar 

  • Guo XZ, Xu JH, Liu MP et al (2005) KAI1 inhibits anchorage-dependent and -independent pancreatic cancer cell growth. Oncol Rep 14:59–63

    PubMed  CAS  Google Scholar 

  • Hakomori SI (2010) Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett 584:1901–1906

    PubMed  CAS  Google Scholar 

  • Hammond C, Denzin LK, Pan M et al (1998) The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules. J Immunol 161:3282–3291

    PubMed  CAS  Google Scholar 

  • Hao S, Ye Z, Li F et al (2006) Epigenetic transfer of metastatic activity by uptake of highly metastatic B16 melanoma cell-released exosomes. Exp Oncol 28:126–131

    PubMed  CAS  Google Scholar 

  • Hasegawa H, Watanabe H, Nomura T et al (1997) Molecular cloning and expression of mouse homologue of SFA-1/PETA-3 (CD151), a member of the transmembrane 4 superfamily. Biochim Biophys Acta 1353:125–130

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Furuya M, Kasuya Y et al (2007) CD151 dynamics in carcinoma-stroma interaction: integrin expression, adhesion strength and proteolytic activity. Lab Invest 87:882–892

    PubMed  CAS  Google Scholar 

  • Hashida H, Takabayashi A, Tokuhara T et al (2003) Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer 89:158–167

    PubMed  CAS  Google Scholar 

  • Hashimoto A, Tarner IH, Bohle RM et al (2007) Analysis of vascular gene expression in arthritic synovium by laser-mediated microdissection. Arthritis Rheum 56:1094–1105

    PubMed  CAS  Google Scholar 

  • He B, Liu L, Cook GA et al (2005) Tetraspanin CD82 attenuates cellular morphogenesis through down-regulating integrin alpha6-mediated cell adhesion. J Biol Chem 280:3346–3354

    PubMed  CAS  Google Scholar 

  • Helle F, Dubuisson J (2008) Hepatitis C virus entry into host cells. Cell Mol Life Sci 65:100–112

    PubMed  CAS  Google Scholar 

  • Hemler ME (2001) Specific tetraspanin functions. J Cell Biol 155:1103–1107

    PubMed  CAS  Google Scholar 

  • Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422

    PubMed  CAS  Google Scholar 

  • Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    PubMed  CAS  Google Scholar 

  • Hemler ME (2008) Targeting of tetraspanin proteins – potential benefits and strategies. Nat Rev Drug Discov 7:747–758

    PubMed  CAS  Google Scholar 

  • Hemler ME, Mannion BA, Berditchevski F (1996) Association of TM4SF proteins with integrins: relevance to cancer. Biochim Biophys Acta 1287:67–71

    PubMed  Google Scholar 

  • Herlevsen M, Schmidt DS, Miyazaki K et al (2003) The association of the tetraspanin D6.1A with the alpha6beta4 integrin supports cell motility and liver metastasis formation. J Cell Sci 116:4373–4390

    PubMed  CAS  Google Scholar 

  • Herrlich A, Klinman E, Fu J et al (2008) Ectodomain cleavage of the EGF ligands HB-EGF, neuregulin1-{beta}, and TGF-{alpha} is specifically triggered by different stimuli and involves different PKC isoenzymes. FASEB J 22:4281–4295

    PubMed  CAS  Google Scholar 

  • Higashiyama M, Taki T, Ieki Y et al (1995) Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in non-small cell lung cancer. Cancer Res 55:6040–6044

    PubMed  CAS  Google Scholar 

  • Higashiyama M, Doi O, Kodama K et al (1997) Immunohistochemically detected expression of motility-related protein-1 (MRP-1/CD9) in lung adenocarcinoma and its relation to prognosis. Int J Cancer 74:205–211

    PubMed  CAS  Google Scholar 

  • Hirst J, Bright NA, Rous B et al (1999) Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 10:2787–2802

    PubMed  CAS  Google Scholar 

  • Hlubek F, Spaderna S, Schmalhofer O et al (2007) Wnt/FZD signaling and colorectal cancer morphogenesis. Front Biosci 12:458–470

    PubMed  CAS  Google Scholar 

  • Hong IK, Kim YM, Jeoung DI et al (2005) Tetraspanin CD9 induces MMP-2 expression by activating p38 MAPK, JNK and c-Jun pathways in human melanoma cells. Exp Mol Med 37:230–239

    PubMed  CAS  Google Scholar 

  • Hong IK, Jin YJ, Byun HJ et al (2006) Homophilic interactions of Tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem 281:24279–24292

    PubMed  CAS  Google Scholar 

  • HorejsĂ­ V, Vlcek C (1991) Novel structurally distinct family of leucocyte surface glycoproteins including CD9, CD37, CD53 and CD63. FEBS Lett 288:1–4

    PubMed  Google Scholar 

  • Hori H, Yano S, Koufuji K et al (2004) CD9 expression in gastric cancer and its significance. J Surg Res 117:208–215

    PubMed  CAS  Google Scholar 

  • Horváth G, Serru V, Clay D et al (1998) CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82. J Biol Chem 273:30537–30543

    PubMed  Google Scholar 

  • Hotta H, Ross AH, Huebner K et al (1998) Molecular cloning and characterization of an antigen associated with early stages of melanoma tumor progression. Cancer Res 48:2955–2962

    Google Scholar 

  • Houle CD, Ding XY, Foley JF et al (2002) Loss of expression and altered localization of KAI1 and CD9 protein are associated with epithelial ovarian cancer progression. Gynecol Oncol 86:69–78

    PubMed  Google Scholar 

  • Huang CI, Kohno N, Ogawa E et al (1998) Correlation of reduction in MRP-1/CD9 and KAI1/CD82 expression with recurrences in breast cancer patients. Am J Pathol 153:973–983

    PubMed  CAS  Google Scholar 

  • Huang CL, Liu D, Masuya D et al (2004) MRP-1/CD9 gene transduction downregulates Wnt signal pathways. Oncogene 23:7475–7483

    PubMed  CAS  Google Scholar 

  • Huang H, Groth J, Sossey-Alaoui K et al (2005) Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors. Clin Cancer Res 11:4357–4364

    PubMed  CAS  Google Scholar 

  • Huang CL, Ueno M, Liu D et al (2006) MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2. Oncogene 25:6480–6488

    PubMed  CAS  Google Scholar 

  • Huang H, Sossey-Alaoui K, Beachy SH et al (2007) The tetraspanin superfamily member NET-6 is a new tumor suppressor gene. J Cancer Res Clin Oncol 133:761–769

    PubMed  CAS  Google Scholar 

  • Huerta S, Harris DM, Jazirehi A et al (2003) Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced apoptosis. Int J Oncol 22:663–670

    PubMed  CAS  Google Scholar 

  • Hurley JH, Emr SD (2006) The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35:277–298

    PubMed  CAS  Google Scholar 

  • Ichikawa T, Ichikawa Y, Isaacs JT (1991) Genetic factors and suppression of metastatic ability of prostatic cancer. Cancer Res 51:3788–3792

    PubMed  CAS  Google Scholar 

  • Iero M, Valenti R, Huber V et al (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88

    PubMed  CAS  Google Scholar 

  • Ikeyama S, Koyama M, Yamaoko M et al (1993) Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 177:1231–1237

    PubMed  CAS  Google Scholar 

  • Imai T, Yoshie O (1993) C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type 1 are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in T cells. J Immunol 151:6470–6481

    PubMed  CAS  Google Scholar 

  • Imhof I, Gasper WJ, Derynck R (2008) Association of tetraspanin CD9 with transmembrane TGF{alpha} confers alterations in cell-surface presentation of TGF{alpha} and cytoskeletal organization. J Cell Sci 121:2265–2274

    PubMed  CAS  Google Scholar 

  • Inoue G, Horiike N, Michitaka K et al (2001) The CD81 expression in liver in hepatocellular carcinoma. Int J Mol Med 7:67–71

    PubMed  CAS  Google Scholar 

  • Ishitani T, Kishida S, Hyodo-Miura J et al (2003) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin ­signaling. Mol Cell Biol 23:131–139

    PubMed  CAS  Google Scholar 

  • Israels SJ, McMillan-Ward EM (2005) CD63 modulates spreading and tyrosine phosphorylation of platelets on immobilized fibrinogen. Thromb Haemost 93:311–318

    PubMed  CAS  Google Scholar 

  • Jackson P, Millar D, Kingsley E et al (2000) Methylation of a CpG island within the promoter region of the KAI1 metastasis suppressor gene is not responsible for down-regulation of KAI1 expression in invasive cancers or cancer cell lines. Cancer Lett 157:169–176

    PubMed  CAS  Google Scholar 

  • Jackson P, Marreiros A, Russell PJ (2005) KAI1 tetraspanin and metastasis suppressor. Int J Biochem Cell Biol 37:530–534

    PubMed  CAS  Google Scholar 

  • Jackson P, Rowe A, Grimm MO (2007) An alternatively spliced KAI1 mRNA is expressed at low levels in human bladder cancers and bladder cancer cell lines and is not associated with invasive behaviour. Oncol Rep 18:1357–1363

    PubMed  CAS  Google Scholar 

  • Jang HI, Lee H (2003) A decrease in the expression of CD63 tetraspanin protein elevates invasive potential of human melanoma cells. Exp Mol Med 35:317–323

    PubMed  CAS  Google Scholar 

  • Janmey PA, Lindberg U (2004) Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 5:658–666

    PubMed  CAS  Google Scholar 

  • Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113: 752–760

    PubMed  CAS  Google Scholar 

  • Janvier K, Bonifacino JS (2005) Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins. Mol Biol Cell 16:4231–4242

    PubMed  CAS  Google Scholar 

  • Johnson JL, Winterwood N, DeMali KA et al (2009) Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J Cell Sci 122:2263–2273

    PubMed  CAS  Google Scholar 

  • Johnstone RM (2006) Exosomes biological significance: A concise review. Blood Cells Mol Dis 36:315–321

    PubMed  CAS  Google Scholar 

  • Jung KK, Liu XW, Chirco R et al (2006) Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J 25:3934–3942

    PubMed  CAS  Google Scholar 

  • Jung T, Castellana D, Klingbeil P et al (2009) CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 11:1093–1105

    PubMed  CAS  Google Scholar 

  • Kaji K, Oda S, Shikano T et al (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24:279–282

    PubMed  CAS  Google Scholar 

  • Kanetaka K, Sakamoto M, Yamamoto Y et al (2001) Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol 35:637–642

    PubMed  CAS  Google Scholar 

  • Kanetaka K, Sakamoto M, Yamamoto Y et al (2003) Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis of liver cancer cells. J Gastroenterol Hepatol 18:1309–1314

    PubMed  CAS  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    PubMed  CAS  Google Scholar 

  • Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093

    PubMed  CAS  Google Scholar 

  • Karamatic Crew V, Burton N, Kagan A et al (2004) CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104:2217–2223

    PubMed  Google Scholar 

  • Kawashima M, Doh-ura K, Mekada E et al (2002) CD9 expression in solid non-neuroepithelial tumors and infiltrative astrocytic tumors. J Histochem Cytochem 50:1195–1203

    PubMed  CAS  Google Scholar 

  • Keller S, Sanderson MP, Stoeck A et al (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108

    PubMed  CAS  Google Scholar 

  • Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739

    PubMed  CAS  Google Scholar 

  • Kessels H, BĂ©guin S, Andree H et al (1994) Measurement of thrombin generation in whole blood – the effect of heparin and aspirin. Thromb Haemost 72:78–83

    PubMed  CAS  Google Scholar 

  • Kim JH, Kim B, Cai L et al (2005) Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes. Nature 434:921–926

    PubMed  CAS  Google Scholar 

  • Kitani S, Berenstein E, Mergenhagen S et al (1991) A cell surface glycoprotein of rat basophilic leukemia cells close to the high affinity IgE receptor (Fc epsilon RI). Similarity to human melanoma differentiation antigen ME491. J Biol Chem 266:1903–1909

    PubMed  CAS  Google Scholar 

  • Kohno M, Hasegawa H, Miyake M et al (2002) CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer 97:336–343

    PubMed  CAS  Google Scholar 

  • Kolesnikova TV, Kazarov AR, Lemieux ME et al (2009) Glioblastoma inhibition by cell surface immunoglobulin protein EWI-2, in vitro and in vivo. Neoplasia 11:77–86

    PubMed  CAS  Google Scholar 

  • Koo TH, Lee JJ, Kim EM et al (2002) Syntenin is overexpressed and promotes cell migration in metastatic human breast and gastric cancer cell lines. Oncogene 21:4080–4088

    PubMed  CAS  Google Scholar 

  • Kovalenko OV, Yang X, Kolesnikova TV et al (2004) Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem J 377:407–417

    PubMed  CAS  Google Scholar 

  • Kovalenko OV, Metcalf DG, DeGrado WF et al (2005) Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol 5:11

    PubMed  Google Scholar 

  • Kovalenko OV, Yang XH, Hemler ME (2007) A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9. Mol Cell Proteomics 6:1855–1867

    PubMed  CAS  Google Scholar 

  • Kuhn S, Koch M, NĂĽbel T et al (2007) A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res 5:553–567

    PubMed  CAS  Google Scholar 

  • Kusukawa J, Ryu F, Kameyama T et al (2001) Reduced expression of CD9 in oral squamous cell carcinoma: CD9 expression inversely related to high prevalence of lymph node metastasis. J Oral Pathol 30:73–79

    CAS  Google Scholar 

  • Kwon MS, Shin SH, Yim SH et al (2007) CD63 as a biomarker for predicting the clinical outcomes in adenocarcinoma of lung. Lung Cancer 57:46–53

    PubMed  Google Scholar 

  • Ladwein M, Pape UF, Schmidt DS et al (2005) The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Exp Cell Res 309:345–357

    PubMed  CAS  Google Scholar 

  • Lagaudrière-Gesbert C, Lebel-Binay S, Wiertz E et al (1997) The tetraspanin protein CD82 associates with both free HLA class I heavy chain and heterodimeric beta 2-microglobulin complexes. J Immunol 158:2790–2797

    PubMed  Google Scholar 

  • Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18:199–209

    PubMed  CAS  Google Scholar 

  • Lan RF, Liu ZX, Liu XC et al (2005) CD151 promotes neovascularization and improves blood perfusion in a rat hind-limb ischemia model. J Endovasc Ther 12:469–478

    PubMed  Google Scholar 

  • Latysheva N, Muratov G, Rajesh S et al (2006) Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol Cell Biol 26:7707–7718

    PubMed  CAS  Google Scholar 

  • Lau LM, Wee JL, Wright MD et al (2004) The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood 104:2368–2375

    PubMed  CAS  Google Scholar 

  • Lazo PA (2007) Functional implications of tetraspanin proteins in cancer biology. Cancer Sci 98:1666–1677

    PubMed  CAS  Google Scholar 

  • Leavey PJ, Timmons C, Frawley W et al (2006) KAI-1 expression in pediatric high-grade osteosarcoma. Pediatr Dev Pathol 9:219–224

    PubMed  CAS  Google Scholar 

  • Lee JH, Seo YW, Park SR et al (2003) Expression of a splice variant of KAI1, a tumor metastasis suppressor gene, influences tumor invasion and progression. Cancer Res 63:7247–7255

    PubMed  CAS  Google Scholar 

  • Lee JH, Park SR, Chay KO et al (2004) KAI1 COOH-terminal interacting tetraspanin (KITENIN), a member of the tetraspanin family, interacts with KAI1, a tumor metastasis suppressor, and enhances metastasis of cancer. Cancer Res 64:4235–4243

    PubMed  CAS  Google Scholar 

  • Lekishvili T, Fromm E, Mujoomdar M et al (2008) The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility. J Cell Sci 121:685–694

    PubMed  CAS  Google Scholar 

  • Le Naour F, Zöller M (2008) The tumor antigen EpCAM: tetraspanins and the tight junction protein claudin-7, new partners, new functions. Front Biosci 13:5847–5865

    PubMed  CAS  Google Scholar 

  • Le Naour F, AndrĂ© M, Boucheix C, Rubinstein E (2006) Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics 6:6447–6454

    PubMed  CAS  Google Scholar 

  • Levy S, Shoham T (2005a) Protein-protein interactions in the tetraspanin web. Physiology (Bethesda) 20:218–224

    CAS  Google Scholar 

  • Levy S, Shoham T (2005b) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5:136–148

    PubMed  CAS  Google Scholar 

  • Levy S, Todd SC, Maecker HT (1998) CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol 16:89–109

    PubMed  CAS  Google Scholar 

  • Lewis TB, Robison JE, Bastien R et al (2005) Molecular classification of melanoma using real-time quantitative reverse transcriptase-polymerase chain reaction. Cancer 104:1678–1686

    PubMed  CAS  Google Scholar 

  • Li Q, Li L, Shi W et al (2006) Mechanism of action differences in the antitumor effects of transmembrane and secretory tumor necrosis factor-alpha in vitro and in vivo. Cancer Immunol Immunother 55:1470–1479

    PubMed  CAS  Google Scholar 

  • Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8:74–84

    PubMed  CAS  Google Scholar 

  • Lishner M, Zismanov V, Tohami T et al (2008) Tetraspanins affect myeloma cell fate via Akt signaling and FoxO activation. Cell Signal 20:2309–2316

    PubMed  CAS  Google Scholar 

  • Little KD, Hemler ME, Stipp CS (2004) Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell 15:2375–2387

    PubMed  CAS  Google Scholar 

  • Liu WM, Zhang XA (2006) KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 240:183–194

    PubMed  CAS  Google Scholar 

  • Liu FS, Dong JT, Chen JT et al (2000) Frequent down-regulation and lack of mutation of the KAI1 metastasis suppressor gene in epithelial ovarian carcinoma. Gynecol Oncol 78:10–15

    PubMed  CAS  Google Scholar 

  • Liu L, He B, Liu WM et al (2007) Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J Biol Chem 282:31631–31642

    PubMed  CAS  Google Scholar 

  • Loewen CJ, Moritz OL, Tam BM et al (2003) The role of subunit assembly in peripherin-2 targeting to rod photoreceptor disk membranes and retinitis pigmentosa. Mol Biol Cell 14:3400–3413

    PubMed  CAS  Google Scholar 

  • Lombardi DP, Geradts J, Foley JF et al (1999) Loss of KAI1 expression in the progression of colorectal cancer. Cancer Res 59:5724–5731

    PubMed  CAS  Google Scholar 

  • Longo N, Yáñez-MĂł M, Mittelbrunn M et al (2001) Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood 98:3717–3726

    PubMed  CAS  Google Scholar 

  • Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442

    PubMed  CAS  Google Scholar 

  • Malik FA, Sanders AJ, Jiang WG (2009) KAI-1/CD82, the molecule and clinical implication in cancer and cancer metastasis. Histol Histopathol 24:519–530

    PubMed  CAS  Google Scholar 

  • Malinda KM (2009) In vivo matrigel migration and angiogenesis assay. Methods Mol Biol 467:287–294

    PubMed  CAS  Google Scholar 

  • Mannion BA, Berditchevski F, Kraeft SK et al (1996) Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J Immunol 157:2039–2047

    PubMed  CAS  Google Scholar 

  • Marhaba R, Zöller M (2004) CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol 35:211–231

    PubMed  CAS  Google Scholar 

  • Marken JS, Schieven GL, Hellström I et al (1992) Cloning and expression of the tumor-associated antigen L6. Proc Natl Acad Sci USA 89:3503–3507

    PubMed  CAS  Google Scholar 

  • Marks MS, Ohno H, Kirchnausen T et al (1997) Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores. Trends Cell Biol 7:124–128

    PubMed  CAS  Google Scholar 

  • Marreiros A, Czolij R, Yardley G et al (2003) Identification of regulatory regions within the KAI1 promoter: a role for binding of AP1, AP2 and p53. Gene 302:155–164

    PubMed  CAS  Google Scholar 

  • Marreiros A, Dudgeon K, Dao V et al (2005) KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene 24:637–649

    PubMed  CAS  Google Scholar 

  • Martin F, Roth DM, Jans DA et al (2005) Tetraspanins in viral infections: a fundamental role in viral biology? J Virol 79:10839–10851

    PubMed  CAS  Google Scholar 

  • Mathivanan S, Lim JW, Tauro BJ et al (2010) Proteomic analysis of A33-immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9:197–208

    PubMed  CAS  Google Scholar 

  • Matzku S, Wenzel A, Liu S et al (1989) Antigenic differences between metastatic and nonmetastatic BSp73 rat tumor variants characterized by monoclonal antibodies. Cancer Res 49:1294–1299

    PubMed  CAS  Google Scholar 

  • Mazzocca A, Liotta F, Carloni V (2008) Tetraspanin CD81-regulated cell motility plays a critical role in intrahepatic metastasis of hepatocellular carcinoma. Gastroenterology 135: 244–256

    PubMed  CAS  Google Scholar 

  • Mhawech P, Herrmann F, Coassin M et al (2003) Motility-related protein 1 (MRP-1/CD9) expression in urothelial bladder carcinoma and its relation to tumor recurrence and progression. Cancer 98:1649–1657

    PubMed  CAS  Google Scholar 

  • Mhawech P, Dulguerov P, Tschanz E et al (2004) Motility-related protein-1 (MRP-1/CD9) expression can predict disease-free survival in patients with squamous cell carcinoma of the head and neck. Br J Cancer 90:471–475

    PubMed  CAS  Google Scholar 

  • Mimori K, Kataoka A, Yoshinaga K et al (2005) Identification of molecular markers for metastasis-related genes in primary breast cancer cells. Clin Exp Metastasis 22:59–67

    PubMed  CAS  Google Scholar 

  • Mitsuzuka K, Handa K, Satoh M et al (2005) A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 280:35545–35553

    PubMed  CAS  Google Scholar 

  • Miura Y, Kainuma M, Jiang H et al (2004) Reversion of the Jun-induced oncogenic phenotype by enhanced synthesis of sialosyllactosylceramide (GM3 ganglioside). Proc Natl Acad Sci USA 101:16204–16209

    PubMed  CAS  Google Scholar 

  • Miyake M, Adachi M, Huang C et al (1999) A novel molecular staging protocol for non-small cell lung cancer. Oncogene 18:2397–2404

    PubMed  CAS  Google Scholar 

  • Miyamoto S, Maruyama A, Okugawa K et al (2001) Loss of motility-related protein 1 (MRP1/CD9) and integrin alpha3 expression in endometrial cancers. Cancer 92:542–548

    PubMed  CAS  Google Scholar 

  • Miyazaki T, MĂĽller U, Campbell KS (1997) Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J 16:4217–4225

    PubMed  CAS  Google Scholar 

  • Miyazaki T, Kato H, Shitara Y et al (2000) Mutation and expression of the metastasis suppressor gene KAI1 in esophageal squamous cell carcinoma. Cancer 89:955–962

    PubMed  CAS  Google Scholar 

  • Mohan A, Nalini V, Mallikarjuna K et al (2007) Expression of motility-related protein MRP1/CD9, N-cadherin, E-cadherin, alpha-catenin and beta-catenin in retinoblastoma. Exp Eye Res 84:781–789

    PubMed  CAS  Google Scholar 

  • Molina S, Castet V, Pichard-Garcia L et al (2008) Serum-derived hepatitis C virus infection of primary human hepatocytes is tetraspanin CD81 dependent. J Virol 82:569–574

    PubMed  CAS  Google Scholar 

  • Morel O, Hugel B, Jesel L et al (2004) Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-IIIa antagonists. J Thromb Haemost 2:1118–1126

    PubMed  CAS  Google Scholar 

  • Mori M, Mimori K, Shiraishi T et al (1998) Motility related protein 1 (MRP1/CD9) expression in colon cancer. Clin Cancer Res 4:1507–1510

    PubMed  CAS  Google Scholar 

  • Moss ML, Bartsch JW (2004) Therapeutic benefits from targeting of ADAM family members. Biochemistry 43:7227–7235

    PubMed  CAS  Google Scholar 

  • Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564

    PubMed  CAS  Google Scholar 

  • Murayama Y, Miyagawa J, Oritani K et al (2004) CD9-mediated activation of the p46 Shc isoform leads to apoptosis in cancer cells. J Cell Sci 117:3379–3388

    PubMed  CAS  Google Scholar 

  • Murayama Y, Shinomura Y, Oritani K et al (2008) The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol 216:135–143

    PubMed  CAS  Google Scholar 

  • Nakamura K, Mitamura T, Takahashi T et al (2000) Importance of the major extracellular domain of CD9 and the epidermal growth factor (EGF)-like domain of heparin-binding EGF-like growth factor for up-regulation of binding and activity. J Biol Chem 275:18284–18290

    PubMed  CAS  Google Scholar 

  • Nakatsu F, Ohno H (2003) Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct Funct 28:419–429

    PubMed  CAS  Google Scholar 

  • Nakazawa Y, Sato S, Naito M et al (2008) Tetraspanin family member CD9 inhibits Aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood 112:1730–1739

    PubMed  CAS  Google Scholar 

  • Nazarenko I, Rana S, Baumann A et al (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70:1668–1678

    PubMed  CAS  Google Scholar 

  • Ng T, Shima D, Squire A et al (1999) PKCalpha regulates beta1 integrin-dependent cell motility through association and control of integrin traffic. EMBO J 18:3909–3923

    PubMed  CAS  Google Scholar 

  • Nichols TC, Guthridge JM, Karp DR et al (1998) Gamma-glutamyl transpeptidase, an ecto-enzyme regulator of intracellular redox potential, is a component of TM4 signal transduction complexes. Eur J Immunol 28:4123–4129

    PubMed  CAS  Google Scholar 

  • NĂĽbel T, Preobraschenski J, Tuncay H et al (2009) Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res 7:285–299

    PubMed  Google Scholar 

  • Odintsova E, Sugiura T, Berditchevski F (2000) Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. Curr Biol 10:1009–1012

    PubMed  CAS  Google Scholar 

  • Odintsova E, Voortman J, Gilbert E et al (2003) Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 116:4557–4566

    PubMed  CAS  Google Scholar 

  • Odintsova E, Butters TD, Monti E et al (2006) Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem J 400:315–325

    PubMed  CAS  Google Scholar 

  • Ono M, Handa K, Withers DA et al (1999) Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res 59:2335–2339

    PubMed  CAS  Google Scholar 

  • Oren R, Takahashi S, Doss C et al (1990) TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol 10:4007–4015

    PubMed  CAS  Google Scholar 

  • Ovalle S, GutiĂ©rrez-LĂłpez MD, Olmo N et al (2007) The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int J Cancer 121:2140–2152

    PubMed  CAS  Google Scholar 

  • Pan BT, Teng K, Wu C et al (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948

    PubMed  CAS  Google Scholar 

  • Pap E, Pállinger E, PásztĂłi M, Falus A (2009) Highlights of a new type of intercellular communication: microvesicle-based information transfer. Inflamm Res 58:1–8

    PubMed  CAS  Google Scholar 

  • Peer D, Park EJ, Morishita Y et al (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319:627–630

    PubMed  CAS  Google Scholar 

  • Percherancier Y, Planchenault T, Valenzuela-Fernandez A et al (2001) Palmitoylation-dependent control of degradation, life span, and membrane expression of the CCR5 receptor. J Biol Chem 276:31936–31944

    PubMed  CAS  Google Scholar 

  • Phillips KK, White AE, Hicks DJ et al (1998) Correlation between reduction of metastasis in the MDA-MB-435 model system and increased expression of the Kai-1 protein. Mol. Carcinog 21:111–120

    PubMed  CAS  Google Scholar 

  • Pileri P, Uematsu Y, Campagnoli S et al (1998) Binding of hepatitis C virus to CD81. Science 282:938–941

    PubMed  CAS  Google Scholar 

  • Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315:1584–1592

    PubMed  CAS  Google Scholar 

  • Potolicchio I, Carven GJ, Xu X et al (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243

    PubMed  CAS  Google Scholar 

  • Press OW, Eary JF, Badger CC et al (1989) Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol 7:1027–1038

    PubMed  CAS  Google Scholar 

  • Prince S, Carreira S, Vance KW et al (2004) Tbx2 directly represses the expression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res 64:1669–1674

    PubMed  CAS  Google Scholar 

  • Protzel C, Kakies C, Kleist B et al (2008) Down-regulation of the metastasis suppressor protein KAI1/CD82 correlates with occurrence of metastasis, prognosis and presence of HPV DNA in human penile squamous cell carcinoma. Virchows Arch 452:369–375

    PubMed  CAS  Google Scholar 

  • Radford KJ, Mallesch J, Hersey P (1995) Suppression of human melanoma cell growth and metastasis by the melanoma-associated antigen CD63 (ME491). Int J Cancer 62:631–635

    PubMed  CAS  Google Scholar 

  • Radford KJ, Thorne RF, Hersey P (1996) CD63 associates with transmembrane 4 superfamily members, CD9 and CD81, and with beta 1 integrins in human melanoma. Biochem Biophys Res Commun 222:13–18

    PubMed  CAS  Google Scholar 

  • Ratajczak J, Miekus K, Kucia M et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    PubMed  CAS  Google Scholar 

  • Razmara M, Hu H, Masquelier M et al (2007) Glycoprotein IIb/IIIa blockade inhibits platelet aminophospholipid exposure by potentiating translocase and attenuating scramblase activity. Cell Mol Life Sci 64:999–1008

    PubMed  CAS  Google Scholar 

  • Ribatti D, Nico B, Crivellato E et al (2007) The history of the angiogenic switch concept. Leukemia 21:44–52

    PubMed  CAS  Google Scholar 

  • Rocha-Perugini V, Lavie M, Delgrange D et al (2009) The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry. BMC Microbiol 9:111

    PubMed  Google Scholar 

  • Rous BA, Reaves BJ, Ihrke G et al (2002) Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol Biol Cell 13:1071–1082

    PubMed  CAS  Google Scholar 

  • Rowe A, Jackson P (2006) Expression of KITENIN, a KAI1/CD82 binding protein and metastasis enhancer, in bladder cancer cell lines: relationship to KAI1/CD82 levels and invasive behaviour. Oncol Rep 16:1267–1272

    PubMed  CAS  Google Scholar 

  • Rubinstein E, Le Naour F, Lagaudrière-Gesbert C et al (1996) CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 26:2657–2665

    PubMed  CAS  Google Scholar 

  • Rubinstein E, Ziyyat A, Wolf JP et al (2006) The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol 17:254–263

    PubMed  CAS  Google Scholar 

  • Sachs N, Kreft M, van den Bergh Weerman MA et al (2006) Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol 175:33–39

    PubMed  CAS  Google Scholar 

  • Saito Y, Tachibana I, Takeda Y et al (2006) Absence of CD9 enhances adhesion-dependent morphologic differentiation, survival, and matrix metalloproteinase-2 production in small cell lung cancer cells. Cancer Res 66:9557–9565

    PubMed  CAS  Google Scholar 

  • Sala-ValdĂ©s M, Ursa A, Charrin S et al (2006) EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281:19665–19675

    PubMed  Google Scholar 

  • Sauer G, Kurzeder C, Grundmann R et al (2003a) Expression of tetraspanin adaptor proteins below defined threshold values is associated with in vitro invasiveness of mammary carcinoma cells. Oncol Rep 10:405–410

    PubMed  CAS  Google Scholar 

  • Sauer G, Windisch J, Kurzeder C et al (2003b) Progression of cervical carcinomas is associated with down-regulation of CD9 but strong local re-expression at sites of transendothelial invasion. Clin Cancer Res 9:6426–6431

    PubMed  CAS  Google Scholar 

  • Sawada S, Yoshimoto M, Odintsova E et al (2003) The tetraspanin CD151 functions as a negative regulator in the adhesion-dependent activation of Ras. J Biol Chem 278:26323–26326

    PubMed  CAS  Google Scholar 

  • Schindl M, Birner P, Bachtiary B et al (2000) The impact of expression of the metastasis suppressor protein KAI1 on prognosis in invasive squamous cell cervical cancer. Anticancer Res 20:4551–4555

    PubMed  CAS  Google Scholar 

  • Schmidt DS, Klingbeil P, Schnölzer M et al (2004) CD44 variant isoforms associate with tetraspanins and EpCAM. Exp Cell Res 297:329–347

    PubMed  CAS  Google Scholar 

  • Schöniger-Hekele M, Hänel S, Wrba F et al (2005) Hepatocellular carcinoma – survival and clinical characteristics in relation to various histologic molecular markers in Western patients. Liver Int 25:62–69

    PubMed  Google Scholar 

  • Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881

    PubMed  CAS  Google Scholar 

  • Seigneuret M (2006) Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J 90:212–227

    PubMed  CAS  Google Scholar 

  • Seigneuret M, Delaguillaumie A, Lagaudrière-Gesbert C et al (2001) Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 276:40055–40064

    PubMed  CAS  Google Scholar 

  • Sela BA, Steplewski Z, Koprowski H (1989) Colon carcinoma-associated glycoproteins recognized by monoclonal antibodies CO-029 and GA22–2. Hybridoma 8:481–491

    PubMed  CAS  Google Scholar 

  • Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17:767–777

    PubMed  CAS  Google Scholar 

  • Serru V, Le Naour F, Billard M et al (1999) Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem J 340:103–111

    PubMed  CAS  Google Scholar 

  • Sharma C, Yang XH, Hemler ME (2008) DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol Biol Cell 19:3415–3425

    PubMed  CAS  Google Scholar 

  • Shet AS, Aras O, Gupta K et al (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102:2678–2683

    PubMed  CAS  Google Scholar 

  • Shi W, Fan H, Shum L et al (2000) The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation. J Cell Biol 148:591–602

    PubMed  CAS  Google Scholar 

  • Shinohara T, Nishimura N, Hanibuchi M et al (2001) Transduction of KAI1/CD82 cDNA promotes hematogenous spread of human lung-cancer cells in natural killer cell-depleted SCID mice. Int J Cancer 94:16–23

    PubMed  CAS  Google Scholar 

  • Shiomi T, Inoki I, Kataoka F et al (2005) Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest 85:1489–1506

    PubMed  CAS  Google Scholar 

  • Sierko E, Wojtukiewicz MZ (2007) Inhibition of platelet function: does it offer a chance of better cancer progression control? Semin Thromb Hemost 33:712–721

    PubMed  CAS  Google Scholar 

  • Sigala S, Faraoni I, Botticini D et al (1999) Suppression of telomerase, reexpression of KAI1, and abrogation of tumorigenicity by nerve growth factor in prostate cancer cell lines. Clin Cancer Res 5:1211–1218

    PubMed  CAS  Google Scholar 

  • Silvie O, Rubinstein E, Franetich JF et al (2003) Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9:93–96

    PubMed  CAS  Google Scholar 

  • Simons M, Raposo G (2009) Exosomes – vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    PubMed  CAS  Google Scholar 

  • Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099

    PubMed  CAS  Google Scholar 

  • Simpson RJ, Lim JW, Moritz RL et al (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283

    PubMed  CAS  Google Scholar 

  • Sincock PM, Mayrhofer G, Ashman LK (1997) Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9, CD63, and alpha5beta1 integrin. J Histochem Cytochem 45:515–525

    PubMed  CAS  Google Scholar 

  • Sincock PM, Fitter S, Parton RG et al (1999) PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 112:833–844

    PubMed  CAS  Google Scholar 

  • Singethan K, MĂĽller N, Schubert S et al (2008) CD9 clustering and formation of microvilli zippers between contacting cells regulates virus-induced cell fusion. Traffic 9:924–235

    PubMed  CAS  Google Scholar 

  • Skubitz KM, Campbell KD, Iida J et al (1996) CD63 associates with tyrosine kinase activity and CD11/CD18, and transmits an activation signal in neutrophils. J Immunol 157:3617–3626

    PubMed  CAS  Google Scholar 

  • Smalheiser NR (2007) Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2:35

    PubMed  Google Scholar 

  • Son BH, Choi JS, Lee JH (2005) Prognostic values of KAI1 and survivin expression in an infiltrating ductal carcinoma of the breast. Pathology 37:131–136

    PubMed  CAS  Google Scholar 

  • Sood SL (2009) Cancer-associated thrombosis. Curr Opin Hematol 16:378–385

    PubMed  Google Scholar 

  • Sordat I, Decraene C, Silvestre T et al (2002) Complementary DNA arrays identify CD63 tetraspanin and alpha3 integrin chain as differentially expressed in low and high metastatic human colon carcinoma cells. Lab Invest 82:1715–1724

    PubMed  CAS  Google Scholar 

  • Spoden G, Freitag K, Husmann M et al (2008) Clathrin- and caveolin-independent entry of human papillomavirus type 16 – involvement of tetraspanin-enriched microdomains (TEMs). PLoS One 3:e3313

    PubMed  Google Scholar 

  • Sridhar SC, Miranti CK (2006) Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases. Oncogene 25:2367–2378

    PubMed  CAS  Google Scholar 

  • Stafford LJ, Vaidya KS, Welch DR (2008) Metastasis suppressors genes in cancer. Int J Biochem Cell Biol 40:874–891

    PubMed  CAS  Google Scholar 

  • Staflin K, Zuchner T, Honeth G et al (2009) Identification of proteins involved in neural progenitor cell targeting of gliomas. BMC Cancer 9:206

    PubMed  Google Scholar 

  • Stahl PD, Barbieri MA (2002) Multivesicular bodies and multivesicular endosomes: the “ins and outs” of endosomal traffic. Sci STKE 2002(141):PE32

    PubMed  Google Scholar 

  • Steeg PS (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3:55–63

    PubMed  CAS  Google Scholar 

  • Sterk LM, Geuijen CA, Oomen LC et al (2000) The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 149:969–982

    PubMed  CAS  Google Scholar 

  • Stipp CS, Kolesnikova TV, Hemler ME (2001a) EWI-2 is a major CD9 and CD81 partner and member of a novel Ig protein subfamily. J Biol Chem 276:40545–40554

    PubMed  CAS  Google Scholar 

  • Stipp CS, Orlicky D, Hemler ME (2001b) FPRP, a major, highly stoichiometric, highly specific CD81- and CD9-associated protein. J Biol Chem 276:4853–4862

    PubMed  CAS  Google Scholar 

  • Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28:106–112

    PubMed  CAS  Google Scholar 

  • Stoeck A, Keller S, Riedle S et al (2006) A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J 393:609–618

    PubMed  CAS  Google Scholar 

  • Stoorvogel W, Kleijmeer MJ, Geuze HJ et al (2002) The biogenesis and functions of exosomes. Traffic 3:321–330

    PubMed  CAS  Google Scholar 

  • Stracke ML, Liotta LA (1992) Multi-step cascade of tumor cell metastasis. In Vivo 6:309–316

    PubMed  CAS  Google Scholar 

  • Subra C, Laulagnier K, Perret B et al (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89:205–212

    PubMed  CAS  Google Scholar 

  • Suzuki-Inoue K, Fuller GL, GarcĂ­a A et al (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107:542–549

    PubMed  CAS  Google Scholar 

  • Szala S, Kasai Y, Steplewski Z et al (1990) Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens. Proc Natl Acad Sci USA 87:6833–6837

    PubMed  CAS  Google Scholar 

  • SzöllĂłsi J, HorejsĂ­ V, Bene L et al (1996) Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J Immunol 157:2939–2946

    PubMed  Google Scholar 

  • Tagawa K, Arihiro K, Takeshima Y et al (1999) Down-regulation of KAI1 messenger RNA expression is not associated with loss of heterozygosity of the KAI1 gene region in lung adenocarcinoma. Jpn J Cancer Res 90:970–976

    PubMed  CAS  Google Scholar 

  • Takahashi M, Sugiura T, Abe M et al (2007) Regulation of c-Met signaling by the tetraspanin KAI-1/CD82 affects cancer cell migration. Int J Cancer 121:1919–1929

    PubMed  CAS  Google Scholar 

  • Takaoka A, Hinoda Y, Satoh S et al (1998) Suppression of invasive properties of colon cancer cells by a metastasis suppressor KAI1 gene. Oncogene 16:1443–1453

    PubMed  CAS  Google Scholar 

  • Takeda T, Hattori N, Tokuhara T et al (2007a) Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res 67:1744–1749

    PubMed  CAS  Google Scholar 

  • Takeda Y, Kazarov AR, Butterfield CE et al (2007b) Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109:1524–1532

    PubMed  CAS  Google Scholar 

  • Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48

    PubMed  CAS  Google Scholar 

  • Takino T, Miyamori H, Kawaguchi N et al (2003) Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase. Biochem Biophys Res Commun 304:160–166

    PubMed  CAS  Google Scholar 

  • Tanaka F, Hori N, Sato K (2002) Identification of differentially expressed genes in rat hepatoma cell lines using subtraction and microarray. J Biochem 131:39–44

    PubMed  CAS  Google Scholar 

  • Tarasova NI, Rice WG, Michejda CJ (1999) Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interactions. J Biol Chem 274:34911–34915

    PubMed  CAS  Google Scholar 

  • Telese F, Bruni P, Donizetti A et al (2005) Transcription regulation by the adaptor protein Fe65 and the nucleosome assembly factor SET. EMBO Rep 6:77–82

    PubMed  CAS  Google Scholar 

  • Testa JE, Brooks PC, Lin JM et al (1999) Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res 59:3812–3820

    PubMed  CAS  Google Scholar 

  • Todeschini RA, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433

    Google Scholar 

  • Todeschini AR, Dos Santos JN, Handa K et al (2008) Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. Proc Natl Acad Sci USA 105:1925–1930

    PubMed  CAS  Google Scholar 

  • Tohami T, Drucker L, Shapiro H et al (2007) Overexpression of tetraspanins affects multiple myeloma cell survival and invasive potential. FASEB J 21:691–699

    PubMed  CAS  Google Scholar 

  • Tokuhara T, Hasegawa H, Hattori N et al (2001) Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res 7:4109–4114

    PubMed  CAS  Google Scholar 

  • Tonoli H, Barrett JC (2005) CD82 metastasis suppressor gene: a potential target for new therapeutics? Trends Mol Med 11:563–570

    PubMed  CAS  Google Scholar 

  • Tsai YC, Mendoza A, Mariano JM et al (2007) The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med 13:1504–1509

    PubMed  CAS  Google Scholar 

  • Tsitsikov EN, Gutierrez-Ramos JC, Geha RS (1997) Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci USA 94:10844–10849

    PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (2000) The structure and function of claudins, cell adhesion molecules at tight junctions. Ann N Y Acad Sci 915:129–135

    PubMed  CAS  Google Scholar 

  • Tsukita S, Yonemura S (1999) Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem 274:34507–34510

    PubMed  CAS  Google Scholar 

  • Tsutsumi S, Shimura T, Morinaga N et al (2005) Loss of KAI1 expression in gastric cancer. Hepatogastroenterology 52:281–284

    PubMed  CAS  Google Scholar 

  • Ueda T, Ichikawa T, Tamaru J et al (1996) Expression of the KAI1 protein in benign prostatic hyperplasia and prostate cancer. Am J Pathol 149:1435–1440

    PubMed  CAS  Google Scholar 

  • Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    PubMed  CAS  Google Scholar 

  • van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21

    PubMed  CAS  Google Scholar 

  • Walker JW (2008) Protein scaffolds, lipid domains and substrate recognition in protein kinase C function: implications for rational drug design. Handb Exp Pharmacol 186:185–203

    PubMed  CAS  Google Scholar 

  • Wang JC, BĂ©gin LR, BĂ©rubĂ© NG et al (2007a) Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res 13:2354–2361

    PubMed  CAS  Google Scholar 

  • Wang XQ, Yan Q, Sun P et al (2007b) Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-1, and ganglioside. Cancer Res 67:9986–9995

    PubMed  CAS  Google Scholar 

  • Wells A, Grandis JR (2003) Phospholipase C-gamma1 in tumor progression. Clin Exp Metastasis 20:285–290

    PubMed  CAS  Google Scholar 

  • White A, Lamb PW, Barrett JC (1998) Frequent downregulation of the KAI1(CD82) metastasis suppressor protein in human cancer cell lines. Oncogene 16:3143–3149

    PubMed  CAS  Google Scholar 

  • Wieckowski E, Whiteside TL (2006) Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 36:247–254

    PubMed  CAS  Google Scholar 

  • Winterwood NE, Varzavand A, Meland MN et al (2006) A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell 17:2707–2721

    PubMed  CAS  Google Scholar 

  • Wright MD, Geary SM, Fitter S et al (2004a) Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 24:5978–5988

    PubMed  CAS  Google Scholar 

  • Wright MD, Moseley GW, van Spriel AB (2004b) Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens 64:533–542

    PubMed  CAS  Google Scholar 

  • Wu Q, Ji Y, Zhang MQ, Chen YQ et al (2003) Role of tumor metastasis suppressor gene KAI1 in digestive tract carcinomas and cancer cells. Cell Tissue Res 314:237–249

    PubMed  CAS  Google Scholar 

  • Xiao Z, Blonder J, Zhou M et al (2009) Proteomic analysis of extracellular matrix and vesicles. J Proteomics 72:34–45

    PubMed  CAS  Google Scholar 

  • Xu L, Hynes RO (2007) GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle 6:160–165

    PubMed  CAS  Google Scholar 

  • Yalaoui S, ZougbĂ©dĂ© S, Charrin S et al (2008) Hepatocyte permissiveness to Plasmodium infection is conveyed by a short and structurally conserved region of the CD81 large extracellular domain. PLoS Pathog 4:e1000010

    PubMed  Google Scholar 

  • Yamamoto H, Vibitketkumnuen A, Adachi Y et al (2004) Association of matrilysin-2 (MMP-26) expression with tumor progression and activation of MMP-9 in esophageal squamous cell carcinoma. Carcinogenesis 25:2353–2360

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Grubisic K, Oelgeschläger M (2007) Xenopus Tetraspanin-1 regulates gastrulation movements and neural differentiation in the early Xenopus embryo. Differentiation 75:235–245

    PubMed  CAS  Google Scholar 

  • Yamane H, Tachibana I, Takeda Y et al (2005) Propionibacterium acnes-induced hepatic granuloma formation is impaired in mice lacking tetraspanin CD9. J Pathol 206:486–492

    PubMed  CAS  Google Scholar 

  • Yanez-Mo M, Barreiro O, Gonzalo P et al (2008) MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood 112:3217–3226

    PubMed  CAS  Google Scholar 

  • Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    PubMed  CAS  Google Scholar 

  • Yang X, Welch DR, Phillips KK et al (1997) KAI1, a putative marker for metastatic potential in human breast cancer. Cancer Lett 119:149–155

    PubMed  CAS  Google Scholar 

  • Yang X, Claas C, Kraeft SK et al (2002) Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 13:767–781

    PubMed  CAS  Google Scholar 

  • Yang X, Kovalenko OV, Tang W et al (2004) Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J Cell Biol 167:1231–1240

    PubMed  CAS  Google Scholar 

  • Yang XH, Kovalenko OV, Kolesnikova TV et al (2006) Contrasting effects of EWI proteins, integrins, and protein palmitoylation on cell surface CD9 organization. J Biol Chem 281:12976–12985

    PubMed  CAS  Google Scholar 

  • Yang XH, Richardson AL, Torres-Arzayus MI et al (2008) CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res 68:3204–3213

    PubMed  CAS  Google Scholar 

  • Yates AJ, Rampersaud A (1998) Sphingolipids as receptor modulators. An overview. Ann N Y Acad Sci 845:57–71

    PubMed  CAS  Google Scholar 

  • Yauch RL, Hemler ME (2000) Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase. Biochem J 351:629–637

    PubMed  CAS  Google Scholar 

  • Yauch RL, Berditchevski F, Harler MB et al (1998) Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell 9:2751–2765

    PubMed  CAS  Google Scholar 

  • Yauch RL, Kazarov AR, Desai B et al (2000) Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem 275:9230–9238

    PubMed  CAS  Google Scholar 

  • Yoshida T, Kawano Y, Sato K et al (2008) A CD63 mutant inhibits T-cell tropic human immunodeficiency virus type 1 entry by disrupting CXCR4 trafficking to the plasma membrane. Traffic 9:540–558

    PubMed  CAS  Google Scholar 

  • You Z, Saims D, Chen S et al (2002) Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. J Cell Biol 157:429–440

    PubMed  CAS  Google Scholar 

  • Yunta M, Lazo PA (2003) Tetraspanin proteins as organisers of membrane microdomains and signalling complexes. Cell Signal 15:559–564

    PubMed  CAS  Google Scholar 

  • Zakharova L, Svetlova M, Fomina AF (2007) T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol 212:174–181

    PubMed  CAS  Google Scholar 

  • Zhang X, Xu W (2008) Aminopeptidase N (APN/CD13) as a target for anti-cancer agent design. Curr Med Chem 15:2850–2865

    PubMed  CAS  Google Scholar 

  • Zhang XA, Bontrager AL, Hemler ME (2001) Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem 276:25005–25013

    PubMed  CAS  Google Scholar 

  • Zhang XA, Kazarov AR, Yang X et al (2002) Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis. Mol Biol Cell 13:1–11

    PubMed  Google Scholar 

  • Zhang XA, He B, Zhou B et al (2003a) Requirement of the p130CAS-Crk coupling for metastasis suppressor KAI1/CD82-mediated inhibition of cell migration. J Biol Chem 278:27319–27328

    PubMed  CAS  Google Scholar 

  • Zhang XA, Lane WS, Charrin S et al (2003b) EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells. Cancer Res 63:2665–2674

    PubMed  CAS  Google Scholar 

  • Zhao X, Lapalombella R, Joshi T et al (2007) Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. Blood 110:2569–2577

    PubMed  CAS  Google Scholar 

  • Zheng ZZ, Liu ZX (2007) Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates CD151-induced endothelial cell proliferation and cell migration. Int J Biochem Cell Biol 39:340–348

    PubMed  CAS  Google Scholar 

  • Zhijun X, Shulan Z, Zhuo Z (2007) Expression and significance of the protein and mRNA of metastasis suppressor gene ME491/CD63 and integrin alpha5 in ovarian cancer tissues. Eur J Gynaecol Oncol 28:179–183

    PubMed  CAS  Google Scholar 

  • Zhou B, Liu L, Reddivari M et al (2004) The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res 64:7455–7463

    PubMed  CAS  Google Scholar 

  • Zhou Z, Ran YL, Hu H et al (2008) TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin Exp Metastasis 25:537–548

    PubMed  CAS  Google Scholar 

  • Zhu GZ, Miller BJ, Boucheix C et al (2002) Residues SFQ (173–175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129:1995–2002

    PubMed  CAS  Google Scholar 

  • Zijlstra A, Lewis J, Degryse B et al (2008) The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13:221–234

    PubMed  CAS  Google Scholar 

  • Zöller M (2006) Gastrointestinal tumors: metastasis and tetraspanins. Z Gastroenterol 44:573–586

    PubMed  Google Scholar 

  • Zöller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9:40–55

    PubMed  Google Scholar 

  • Zvieriev V, Wang JC, Chevrette M (2005) Over-expression of CD9 does not affect in vivo tumorigenic or metastatic properties of human prostate cancer cells. Biochem Biophys Res Commun 337:498–504

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (grant ZO 40/12-1), the Deutsche Krebshilfe, and the Tumorzentrum Heidelberg/Mannheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Zöller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zöller, M. (2010). Tetraspanins and Cancer Metastasis. In: Bagley, R. (eds) The Tumor Microenvironment. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6615-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6615-5_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6614-8

  • Online ISBN: 978-1-4419-6615-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics