Skip to main content

Imaging the Dynamics of Mammalian Neocortical Population Activity In Vivo

  • Chapter
  • First Online:
Membrane Potential Imaging in the Nervous System
  • 817 Accesses

Abstract

Neural computations underlying sensory perception, cognition, and motor control are performed by populations of neurons at different anatomical and temporal scales. Few techniques are currently available for exploring dynamics of local and large range populations. Voltage-sensitive dye imaging (VSDI) reveals neural population activity in areas ranging from a few tens of microns to a couple of centimeters, or two areas up to ∼10 cm apart. VSDI provides a sub-millisecond temporal resolution, and a spatial resolution of about 50 µm. The dye signal emphasizes subthreshold synaptic potentials. VSDI has been applied in the mouse, rat, gerbil, ferret, tree shrew, cat, and monkey cortices, in order to explore lateral spread of retinotopic or somatotopic activation, the dynamic spatiotemporal pattern resulting from sensory activation, including the somatosensory, olfactory, auditory, and visual modalities, as well as motor preparation and the properties of spontaneously occurring population activity. In this chapter we focus on VSDI in vivo and review the results obtained mostly in the visual system in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arieli A, Shoham D, Hildesheim R, Grinvald A (1995) Coherent spatio-temporal pattern of on-going activity revealed by real time optical imaging coupled with single unit recording in the cat visual cortex. J Neurophysiol 73:2072–2093.

    PubMed  CAS  Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871.

    Article  PubMed  CAS  Google Scholar 

  • Arieli A, Grinvald A (2002) Combined optical imaging and targeted electrophysiological manipulations in anesthetized and behaving animals. J Neurosci Methods 116:15–28.

    Article  PubMed  Google Scholar 

  • Arieli A, Grinvald A, Slovin H (2002) Dural substitute for longterm imaging of cortical activity in behaving monkeys and its clinical implications. J Neurosci Methods 114:119–133.

    Article  PubMed  Google Scholar 

  • Berger T, Borgdorff AJ et al. (2007) Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. J Neurophysiol 97:3751–3762.

    Article  PubMed  CAS  Google Scholar 

  • Bringuier V, Chavane F, Glaeser L, Frégnac Y (1998) Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283:695–699.

    Article  Google Scholar 

  • Cacciatore TW, Brodfuehrer PD et al. (1999) Identification of neural circuits by imaging coherent electrical activity with FRET-based dyes. Neuron 23:449–459.

    Article  PubMed  CAS  Google Scholar 

  • Chavane F, Sharon D et al. (2010) Long-range horizontal spread of orien­tation selectivity in V1 is controlled by intracortical cooperatively. Submitted.

    Google Scholar 

  • Cohen LB, Lesher S (1986) Optical monitoring of membrane potential:methods of multisite optical measurement. Soc Gen Physiol Ser 40:71–99.

    PubMed  CAS  Google Scholar 

  • Ferezou I, Bolea S, Petersen CCH (2006) Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50:617–629.

    Article  PubMed  CAS  Google Scholar 

  • Ferezou I, Haiss F et al. (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56:907–923.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Anglister L, Freeman JA, Hildesheim R, Manker A (1984) Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature 308:848–850.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Frostig RD, Lieke E, Hildesheim R (1988) Optical imaging of neuronal activity. Physiol Rev 68:1285–1366.

    PubMed  CAS  Google Scholar 

  • Grinvald A, Frostig RD et al. (1989) Optical Imaging of Activity in the Visual Cortex. In Lam D, Glibert CD (eds), MIT Press, Cambridge, USA.

    Google Scholar 

  • Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14:2545–2568.

    PubMed  CAS  Google Scholar 

  • Grinvald A, Shoham D et al. (1999) In-vivo optical imaging of cortical architecture and dynamics. In Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, New York.

    Google Scholar 

  • Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885.

    Article  PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York.

    Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interactions and functional architecture in the cat’s visual cortex. J Physiol 160:106–154.

    PubMed  CAS  Google Scholar 

  • Jancke D, Chavane F, Grinvald A (2004) Imaging cortical correlates of a visual illusion. Nature 428:424–427.

    Article  Google Scholar 

  • Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously occurring cortical representations of visual attributes. Nature 425:954–956.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn B, Fromherz P (2003) Anellated hemicyanine dyes in neuron membrane: molecular stark effect and optical voltage recording. J Phys Chem B 107:7903–7913.

    Article  CAS  Google Scholar 

  • Kuhn B, Fromherz P, Denk W (2004) High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J 87:631–639.

    Article  PubMed  CAS  Google Scholar 

  • Loew LM (1987) Optical measurement of electrical activity. CRC press, Boca Raton (FL), USA.

    Google Scholar 

  • Millard AC, Jin L, Lewis A, Loew LM (2003) Direct measurement of the voltage sensitivity of second-harmonic generation from a membrane dye in patch-clamped cells. Opt Lett 28:1221–1223.

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Llopis J et al. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:834–835.

    Article  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434.

    PubMed  CAS  Google Scholar 

  • Nemet BA, Nikolenko V, Yuste R (2004) Second harmonic imaging of membrane potential of neurons with retinal. J Biomed Opt 9:873–881.

    Article  PubMed  Google Scholar 

  • Omer DB, Grinvald A (2004) The dynamics of evoked and ongoing activity in the behaving monkey. Rev Neurosci 19:S50.

    Google Scholar 

  • Omer DB, Rom L, Grivald A (2008) The dynamics of ongoing activity in awake and anesthetized monkey are significantly different. Soc. Neurosci. USA, Book of Abstracts.

    Google Scholar 

  • Orbach HS, Cohen LB (1983) Simultaneous optical monitoring of activity from many areas of the salamander olfactory bulb. A new method for studying functional organization in the vertebrate CNS. J Neurosci 3:2251–2262.

    PubMed  CAS  Google Scholar 

  • Orbach HS, Cohen LB, Grinvald A (1985) Optical mapping of electrical activity in rat somatosensory and visual cortex. J Neurosci 5:1886–1895.

    PubMed  CAS  Google Scholar 

  • Petersen CCH, Grinvald A, Sakmann B (2003a) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23:1298–1309.

    PubMed  CAS  Google Scholar 

  • Petersen CCH, Hahn TTG, Mehta M, Grinvald A, Sakmann B (2003b) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci U S A 100:13638–13643.

    Article  PubMed  CAS  Google Scholar 

  • Ratzlaff EH, Grinvald A (1991) A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci Methods 36:127–137.

    Article  PubMed  CAS  Google Scholar 

  • Rector DM, Rogers RF, George JS (1999) A focusing image probe for assessing neural activity in vivo. J Neurosci Methods 91:135–145.

    Article  PubMed  CAS  Google Scholar 

  • Ringach DL (2003) Neuroscience: states of mind. Nature 425(6961):912–913.

    Article  PubMed  CAS  Google Scholar 

  • Ross WN, Reichardt LF (1979) Species-specific effects on the optical signals of voltage sensitive dyes. J Membr Biol 48:343–356.

    Article  PubMed  CAS  Google Scholar 

  • Salzberg BM, Davila HV, Cohen LB (1973) Optical recording of impulses in individual neurons of an invertebrate central nervous system. Nature 246:508–509.

    Article  PubMed  CAS  Google Scholar 

  • Sharon D, Grinvald A (2002) Dynamics and constancy in cortical spatiotemporal patterns of orientation processing. Science 295:512–515.

    Article  PubMed  CAS  Google Scholar 

  • Sharon D, Jancke D, Chavane F, Na’aman S, Grinvald A (2007) Cortical response field dynamics in cat visual cortex. Cereb Cortex 17:2866–2877.

    Article  PubMed  Google Scholar 

  • Shoham D, Glaser DE et al. (1999) Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24:791–802.

    Article  PubMed  CAS  Google Scholar 

  • Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741.

    Article  PubMed  CAS  Google Scholar 

  • Spors H, Grinvald A (2002) Temporal dynamics of odor representations and coding by the mammalian olfactory bulb. Neuron 34:1–20.

    Article  Google Scholar 

  • Sterkin A, Lampl I, Ferster D, Grinvald A, Arieli A (1998) Real time optical imaging in cat visual cortex exhibits high similarity to intracellular activity. Neurosci Lett 51:S41.

    Google Scholar 

  • Tasaki I, Watanabe A, Sandlin R, Carnay L (1968) Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci U S A 61:883–888.

    Article  PubMed  CAS  Google Scholar 

  • Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) The spontaneous activity of single cortical neurons depends on the underlying global functional architecture. Science 286:1943–1946.

    Article  PubMed  CAS  Google Scholar 

  • Waggoner AS, Grinvald A (1977). Mechanisms of rapid optical changes of potential sensitive dyes. Ann N Y Acad Sci 303:217–241.

    PubMed  CAS  Google Scholar 

  • Waggoner AS (1979) Dye indicators of membrane potential. Annu Rev Biophys Bioeng 8:47–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grinvald, A., Omer, D., Naaman, S., Sharon, D. (2010). Imaging the Dynamics of Mammalian Neocortical Population Activity In Vivo. In: Canepari, M., Zecevic, D. (eds) Membrane Potential Imaging in the Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6558-5_9

Download citation

Publish with us

Policies and ethics