Skip to main content

SCAMP-3: A Vision Chip with SIMD Current-Mode Analogue Processor Array

  • Chapter
  • First Online:
Focal-Plane Sensor-Processor Chips

Abstract

In this chapter, the architecture, design and implementation of a vision chip with general-purpose programmable pixel-parallel cellular processor array, operating in single instruction multiple data (SIMD) mode is presented. The SIMD concurrent processor architecture is ideally suited to implementing low-level image processing algorithms. The datapath components (registers, I/O, arithmetic unit) of the processing elements of the array are built using switched-current circuits. The combination of a straightforward SIMD programming model, with digital microprocessor-like control and analogue datapath, produces an easy-to-use, flexible system, with high-degree of programmability, and efficient, low-power, small-footprint, circuit implementation. The SCAMP-3 chip integrates 128 ×128 pixel-processors and a flexible read-out circuitry, while the control system is fully digital, and currently implemented off-chip. The device implements low-level image processing algorithms on the focal plane, with a peak performance of more than 20 GOPS, and power consumption below 240mW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Moini, Vision chips, Kluwer, Boston, 2000

    Book  Google Scholar 

  2. A.A. Stocker, Analog integrated 2-D optical flow sensor, Analog Integrated Circuits and Signal Processing, vol 46(2), pp 121–138, Springer, Heidelberg, February 2006

    Google Scholar 

  3. V. Gruev and R. Etienne-Cummings, Implementation of steerable spatiotemporal image filters on the focal plane, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 49(4), 233–244, April 2002

    Article  Google Scholar 

  4. R.P. Kleihorst et al., X et al: A low-power high-performance smart camera processor, IEEE International Symposium on Circuits and Systems, ISCAS 2001, May 2001

    Google Scholar 

  5. L. Lindgren et al., A multiresolution 100-GOPS 4-Gpixels/s programmable smart vision sensor for multisense imaging. IEEE Journal of Solid-State Circuits, 40(6), 1350–1359, 2005

    Article  Google Scholar 

  6. S. Kyo and S. Okazaki, IMAPCAR: A 100 GOPS in-vehicle vision processor based on 128 Ring connected four-way VLIW processing element, Journal of Signal Processing Systems, doi:10.1007/s11265–008–0297–0, Springer, Heidelberg, November 2008

    Google Scholar 

  7. J.E. Eklund, C. Svensson, and A. Åström, VLSI implementation of a focal plane image processor – A realisation of the near-sensor image processing concept, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol 4(3), pp 322–335, September 1996

    Google Scholar 

  8. F. Paillet, D. Mercier, and T.M. Bernard, Making the most of 15kλ2 silicon area for a digital retina, Proc. SPIE, vol 3410, Advanced Focal Plane Arrays and Electronic Cameras, AFPAEC’98, 1998

    Google Scholar 

  9. M. Ishikawa, K. Ogawa, T. Komuro, and I. Ishii, A CMOS vision chip with SIMD processing element array for 1ms image processing, Proc. International Solid State Circuits Conference, ISSCC’99, TP 12.2, 1999

    Google Scholar 

  10. J.C. Gealow and C.G. Sodini, A pixel-parallel image processor using logic pitch-matched to dynamic memory, IEEE Journal of Solid-State Circuits, 34(6), 831–839, June 1999

    Article  Google Scholar 

  11. M. Wei et al., A programmable SIMD vision chip for real-time vision applications. IEEE Journal of Solid-State Circuits, 43(6), 1470–1479, 2008

    Article  Google Scholar 

  12. A. Lopich and P. Dudek, ASPA: Focal plane digital processor array with asynchronous processing capabilities, IEEE International Symposium on Circuits and Systems, ISCAS 2008, pp 1592–1596, May 2008

    Google Scholar 

  13. A. Lopich and P. Dudek, An 80 ×80 general-purpose digital vision chip in 0.18μm CMOS technology, IEEE International Symposium on Circuits and Systems, ISCAS 2010, pp 4257–4260, May 2010

    Google Scholar 

  14. P. Dudek, A. Lopich, and V. Gruev, A pixel-parallel cellular processor array in a stacked three-layer 3D silicon-on-insulator technology, European Conference on Circuit Theory and Design, ECCTD 2009, pp 193–197, August 2009

    Article  Google Scholar 

  15. A. Dupret, J.O. Klein, and A. Nshare, A DSP-like analogue processing unit for smart image sensors, International Journal of Circuit Theory and Applications, 30, 595–609, 2002

    Article  MATH  Google Scholar 

  16. G. Liñán, S. Espejo, R. Domínguez-Castro, and A. Rodríguez-Vázquez, Architectural and basic circuit considerations for a flexible 128 ×128 mixed-signal SIMD vision chip, Analog Integrated Circuit and Signal Processing, vol 33, pp 179–190, 2002

    Article  Google Scholar 

  17. M. Laiho, J. Poikonen, P. Virta, and A. Paasio, A 64 ×64 cell mixed-mode array processor prototyping system, Cellular Neural Networks and Their Applications, 2008. CNNA 2008, July 2008

    Google Scholar 

  18. J. von Neumann, A system of 29 states with a general transition rule, A.W. Burks (Ed.), Theory of Self-reproducing Automata, University of Illinois, IL, 1966

    Google Scholar 

  19. S.H. Unger, A computer oriented to spatial problems, Proc. IRE, vol 46, pp 1744–1750, 1958

    Article  Google Scholar 

  20. G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, R.A. Stokes, The ILLIAC IV computer, IEEE Transactions on Computers, 17(8), 746–757, August 1968

    Article  MATH  Google Scholar 

  21. M.J.B. Duff, Review of the CLIP image processing system, Proc. National Computer Conference, pp 1055–1060, 1978

    Google Scholar 

  22. S.F. Reddaway, The DAP approach, Infotech State of the Art Report on Supercomputers, 2, 309–329, 1979

    Google Scholar 

  23. K.E. Batcher, Design of a massively parallel processor, IEEE Transactions on Computers, 29(9), 837–840, September 1980

    Article  Google Scholar 

  24. D. Hillis, The connection machine, MIT, Cambridge, MA, 1985

    Google Scholar 

  25. P. Dudek, A flexible global readout architecture for an analogue SIMD vision chip, IEEE International Symposium on Circuits and Systems, ISCAS 2003, Bangkok, Thailand, vol III, pp 782–785, May 2003

    Google Scholar 

  26. D.R.W. Barr, S.J. Carey, A. Lopich, and P. Dudek, A control system for a cellular processor array, IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA 2006, Istanbul, pp 176–181, August 2006

    Google Scholar 

  27. P. Dudek and P.J. Hicks, A CMOS general-purpose sampled-data analogue processing element, IEEE Transactions on Circuits and Systems – II: Analog and Digital Signal Processing, 47(5), 467–473, May 2000

    Google Scholar 

  28. P. Dudek and P.J. Hicks, A general-purpose processor-per-pixel analog SIMD vision chip, IEEE Transactions on Circuits and Systems – I, 52(1), 13–20, January 2005

    Google Scholar 

  29. C. Toumazou, J.B. Hughes, and N.C. Battersby (Eds.), Switched-currents: An analogue technique for digital technology, Peter Peregrinus, London, 1993

    Google Scholar 

  30. J.B. Hughes and K.W. Moulding, S2I: A switched-current technique for high performance, Electronics Letters, 29(16), 1400–1401, August 1993

    Article  Google Scholar 

  31. J.-S. Wang and C.-L. Wey, Accurate CMOS switched-current divider circuits, Proc. ISCAS’98, vol I, pp 53–56, May 1998

    Google Scholar 

  32. P. Dudek, Adaptive sensing and image processing with a general-purpose pixel-parallel sensor/processor array integrated circuit, International Workshop on Computer Architectures for Machine Perception and Sensing, CAMPS 2006, pp 18–23, September 2006

    Google Scholar 

  33. P. Dudek and S.J. Carey, A general-purpose 128 ×128 SIMD processor array with integrated image sensor, Electronics Letters, 42(12), 678–679, June 2006

    Article  Google Scholar 

  34. M. Huelse, D.R.W. Barr, and P. Dudek, Cellular automata and non-static image processing for embodied robot systems on a massively parallel processor array, Automata-2008, Theory and Applications of Cellular Automata, pp 504–513, Luniver Press, 2008

    Google Scholar 

  35. P. Dudek and D.L. Vilarino, A cellular active contours algorithm based on region evolution, IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA 2006, pp 269–274, Istanbul, August 2006

    Google Scholar 

  36. D. Hillier and P. Dudek, Implementing the grayscale wave metric on a cellular array processor chip, IEEE Workshop on Cellular Neural Networks and their Applications, CNNA 2008, pp 120–124, July 2008

    Google Scholar 

  37. C. Alonso-Montes, D.L. Vilariño, P. Dudek, and M.G. Penedo, Fast retinal vessel tree extraction: A pixel parallel approach, International Journal of Circuit Theory and Applications, 36(5–6), 641–651, July–September 2008

    Google Scholar 

  38. S. Mandal, B. Shi, and P. Dudek, Binocular disparity calculation on a massively-parallel analog vision processor, IEEE Workshop on Cellular Nanoscale Networks and Applications, CNNA 2010, Berkeley, pp 285–289, February 2010

    Google Scholar 

  39. D.R.W. Barr, P. Dudek, J. Chambers, and K. Gurney, Implementation of multi-layer leaky integrator networks on a cellular processor array, International Joint Conference on Neural Networks, IJCNN 2007, Orlando, FL, August 2007

    Google Scholar 

Download references

Acknowledgement

This work has been supported by the EPSRC; grant numbers: EP/D503213 and EP/D029759. The author thanks Dr Stephen Carey and Dr David Barr for their contributions to testing and system development for the SCAMP-3 device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Dudek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dudek, P. (2011). SCAMP-3: A Vision Chip with SIMD Current-Mode Analogue Processor Array. In: Zarándy, Á. (eds) Focal-Plane Sensor-Processor Chips. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6475-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6475-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6474-8

  • Online ISBN: 978-1-4419-6475-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics