Skip to main content

Contractile Characteristics of Sarcomeres Arranged in Series or Mechanically Isolated from Myofibrils

  • Chapter
  • First Online:
Muscle Biophysics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 682))

Abstract

The mechanisms of contraction are intrinsically connected to ­sarcomere mechanics during muscle activation and relaxation. This chapter presents two sets of experiments performed with (1) myofibrils, in which individual sarcomeres in series can be evaluated during contractions, and (2) mechanically isolated sarcomeres. When activated at optimal length (∼2.0–2.4 µm), myofibrils and sarcomeres produce similar forces. However, their dependence on length differs: sarcomeres in series in a myofibril are able to produce similar forces at distinct lengths, while isolated sarcomeres show a force–length relation that resembles that obtained in original studies performed with single muscle fibers. Although force in isolated sarcomeres is rapidly stabilized during activation, significant movements of A-band are present when the contraction is produced at optimal lengths, which leads to different dynamics in the two half-sarcomeres. A-band movements decrease linearly with increasing lengths between 2.6 and 3.6 µm. Myofibrils and sarcomeres represent reliable techniques to evaluate contractile mechanisms at the most basic level of muscle organization. However, they present different mechanical characteristics that must be taken into account when scientists evaluate mechanisms of contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayittey PN, Walker JS, Rice JJ, de Tombe PP (2009) Glass microneedles for force measurements: a finite-element analysis model. Pflugers Arch 457:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Bartoo ML, Popov VI, Fearn LA, Pollack GH (1993) Active tension generation in isolated skeletal myofibrils. J Muscle Res Cell Motil 14:498–510

    Article  PubMed  CAS  Google Scholar 

  • Bartoo ML, Linke WA, Pollack GH (1997) Basis of passive tension and stiffness in isolated rabbit myofibrils. Am J Physiol Cell Physiol 273:C266–C276

    CAS  Google Scholar 

  • Bergman RA (1983) Ultrastructural configuration of sarcomeres in passive and contracted frog sartorius muscle. Am J Anat 166:209–222

    Article  PubMed  CAS  Google Scholar 

  • de Tombe PP, Belus A, Piroddi N, Scellini B, Walker JS, Martin AF, Tesi C, Poggesi C (2007) Myofilament calcium sensitivity does not affect cross-bridge activation-relaxation kinetics. Am J Physiol Regul Integr Comp Physiol 292:R1129–R1136

    Article  PubMed  Google Scholar 

  • Edman KA (2005) Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers. J Exp Biol 208:1905–1913

    Article  PubMed  CAS  Google Scholar 

  • Edman KA, Flitney FW (1982) Laser diffraction studies of sarcomere dynamics during ‘isometric’ relaxation in isolated muscle fibres of the frog. J Physiol 329:1–20

    PubMed  CAS  Google Scholar 

  • Edman KA, Reggiani C (1984a) Absence of plateau of the sarcomere length-tension relation in frog muscle fibres. Acta Physiol Scand 122:213–216

    Article  PubMed  CAS  Google Scholar 

  • Edman KA, Reggiani C (1984b) Redistribution of sarcomere length during isometric contraction of frog muscle fibres and its relation to tension creep. J Physiol 351:169–198

    PubMed  CAS  Google Scholar 

  • Edman KA, Reggiani C (1987) The sarcomere length-tension relation determined in short segments of intact muscle fibres of the frog. J Physiol 385:709–732

    PubMed  CAS  Google Scholar 

  • Edman KA, Tsuchiya T (1996) Strain of passive elements during force enhancement by stretch in frog muscle fibres. J Physiol 490:191–205

    PubMed  CAS  Google Scholar 

  • Edman KA, Elzinga G, Noble MI (1982) Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol 80:769–784

    Article  PubMed  CAS  Google Scholar 

  • Edman KA, Caputo C, Lou F (1993) Depression of tetanic force induced by loaded shortening of frog muscle fibres. J Physiol 466:535–552

    PubMed  CAS  Google Scholar 

  • Eisenberg BR, Eisenberg RS (1982) The T-SR junction in contracting single skeletal muscle fibers. J Gen Physiol 79:1–19

    Article  PubMed  CAS  Google Scholar 

  • Elmubarak MH, Ranatunga KW (1984) Temperature sensitivity of tension development in a ­fast-twitch muscle of the rat. Muscle Nerve 7:298–303

    Article  PubMed  CAS  Google Scholar 

  • Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86:1114–1121

    Article  PubMed  CAS  Google Scholar 

  • Fukuda N, Sasaki D, Ishiwata S, Kurihara S (2001) Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank-Starling mechanism of the heart. Circulation 104:1639–1645

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  • Granzier HL, Pollack GH (1989) Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres. J Physiol 415:299–327

    PubMed  CAS  Google Scholar 

  • Horowits R, Podolsky RJ (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol 105:2217–2223

    Article  PubMed  CAS  Google Scholar 

  • Horowits R, Podolsky RJ (1988) Thick filament movement and isometric tension in activated skeletal muscle. Biophys J 54:165–171

    Article  PubMed  CAS  Google Scholar 

  • Horowits R, Kempner ES, Bisher ME, Podolsky RJ (1986) A physiological role for titin and ­nebulin in skeletal muscle. Nature 323:160–164

    Article  PubMed  CAS  Google Scholar 

  • Joumaa V, Leonard TR, Herzog W (2008a) Residual force enhancement in myofibrils and sarcomeres. Proc Biol Sci 275:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Joumaa V, Rassier DE, Leonard TR, Herzog W (2008b) The origin of passive force enhancement in skeletal muscle. Am J Physiol Cell Physiol 294:C74–C78

    Article  PubMed  CAS  Google Scholar 

  • Julian FJ, Morgan DL (1979a) Intersarcomere dynamics during fixed-end tetanic contractions of frog muscle fibres. J Physiol 293:365–378

    PubMed  CAS  Google Scholar 

  • Julian FJ, Morgan DL (1979b) The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres. J Physiol 293:379–392

    PubMed  CAS  Google Scholar 

  • Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H (2003) Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci U S A 100:13716–13721

    Article  PubMed  CAS  Google Scholar 

  • Martyn DA, Gordon AM (2001) Influence of length on force and activation-dependent changes in troponin c structure in skinned cardiac and fast skeletal muscle. Biophys J 80:2798–2808

    Article  PubMed  CAS  Google Scholar 

  • Page SG, Huxley HE (1963) Filament lengths in striated muscle. J Cell Biol 19:369–390

    Article  PubMed  CAS  Google Scholar 

  • Pavlov I, Novinger R, Rassier DE (2009a) The mechanical behavior of individual sarcomeres of myofibrils isolated from rabbit psoas muscle. Am J Physiol Cell Physiol 297:C1211–1219

    Article  PubMed  CAS  Google Scholar 

  • Pavlov I, Novinger, R, Rassier DE (2009b) Sarcomere dynamics in skeletal muscle myofibrils during isometric contractions. J Biomech 42:2808–2812

    Article  PubMed  Google Scholar 

  • Piroddi N, Belus A, Eiras S, Tesi C, van der Velden J, Poggesi C, Stienen GJ (2006) No direct effect of creatine phosphate on the cross-bridge cycle in cardiac myofibrils. Pflugers Arch 452:3–6

    Article  PubMed  CAS  Google Scholar 

  • Prado LG, Makarenko I, Andresen C, Kruger M, Opitz CA, Linke WA (2005) Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol 126:461–480

    Article  PubMed  CAS  Google Scholar 

  • Rassier DE (2008) Pre-power stroke cross bridges contribute to force during stretch of skeletal muscle myofibrils. Proc Biol Sci 275:2577–2586

    Article  PubMed  Google Scholar 

  • Rassier DE, Herzog W (2004) Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM. J Appl Physiol 97:1395–1400

    Article  PubMed  Google Scholar 

  • Rassier DE, Herzog W, Pollack GH (2003) Dynamics of individual sarcomeres during and after stretch in activated single myofibrils. Proc Biol Sci 270:1735–1740

    Article  PubMed  Google Scholar 

  • Reconditi M, Linari M, Lucii L, Stewart A, Sun YB, Boesecke P, Narayanan T, Fischetti RF, Irving T, Piazzesi G, Irving M, Lombardi V (2004) The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature 428:578–581

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto Y, Suzuki M, Ishiwata S (2008) Length-dependent activation and auto-oscillation in skeletal myofibrils at partial activation by Ca2+. Biochem Biophys Res Commun 366:233–238

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto Y, Suzuki M, Mikhailenko SV, Yasuda K, Ishiwata S (2009) Inter-sarcomere coordination in muscle revealed through individual sarcomere response to quick stretch. Proc Natl Acad Sci U S A 106:11954–11959

    Article  PubMed  CAS  Google Scholar 

  • Sokolov SY, Grinko AA, Tourovskaia AV, Reitz FB, Yakovenko O, Pollack GH, Blyakhman FA (2003) ‘Minimum average risk’ as a new peak-detection algorithm applied to myofibrillar dynamics. Comput Methods Programs Biomed 72:21–26

    Article  PubMed  Google Scholar 

  • Sosa H, Popp D, Ouyang G, Huxley HE (1994) Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths. Biophys J 67:283–292

    Article  PubMed  CAS  Google Scholar 

  • Stehle R, Kruger M, Pfitzer G (2002) Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid ca(2+) changes. Biophys J 83:2152–2161

    Article  PubMed  CAS  Google Scholar 

  • Stephenson DG, Williams DA (1982) Effects of sarcomere length on the force–pCa relation in fast- and slow-twitch skinned muscle fibres from the rat. J Physiol 333:637–653

    PubMed  CAS  Google Scholar 

  • Tameyasu T, Ishide N, Pollack GH (1982) Discrete sarcomere length distribution in skeletal muscle. Biophys J 37:489–492

    Article  PubMed  CAS  Google Scholar 

  • Telley IA, Denoth J, Stussi E, Pfitzer G, Stehle R (2006a) Half-sarcomere dynamics in myofibrils during activation and relaxation studied by tracking fluorescent markers. Biophys J 90:514–530

    Article  PubMed  CAS  Google Scholar 

  • Telley IA, Stehle R, Ranatunga KW, Pfitzer G, Stussi E, Denoth J (2006b) Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no ‘sarcomere popping’. J Physiol 573: 173–185

    Article  PubMed  CAS  Google Scholar 

  • ter Keurs HE, Iwazumi T, Pollack GH (1978) The sarcomere length-tension relation in skeletal muscle. J Gen Physiol 72:565–592

    Article  PubMed  Google Scholar 

  • ter Keurs HE, Luff AR, Luff SE (1984) Force–sarcomere-length relation and filament length in rat extensor digitorum muscle. Adv Exp Med Biol 170, 511–525

    Article  PubMed  Google Scholar 

  • Wang Y, Fuchs F (2001) Interfilament spacing, Ca2+ sensitivity, and Ca2+ binding in skinned bovine cardiac muscle. J Muscle Res Cell Motil 22:251–257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the “Canadian Institutes of Health Research” and the “Natural Sciences and Engineering Research Council” of Canada. Dilson Rassier is supported by Fonds de la Recherche en Santé du Quebec, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilson E. Rassier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rassier, D.E., Pavlov, I. (2010). Contractile Characteristics of Sarcomeres Arranged in Series or Mechanically Isolated from Myofibrils. In: Rassier, D. (eds) Muscle Biophysics. Advances in Experimental Medicine and Biology, vol 682. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6366-6_7

Download citation

Publish with us

Policies and ethics