Skip to main content

Real-Time Multimedia Transmission over Cognitive Radio Networks

  • Chapter
  • First Online:
Cognitive Radio Mobile Ad Hoc Networks
  • 970 Accesses

Abstract

Cognitive radio (CR) has been proposed as a promising solution to improve connectivity, self-adaptability, and efficiency of spectrum usage. When used in video applications, user-perceived video quality experienced by secondary users is a very important performance metric to evaluate the effectiveness of CR technologies. However, most current research only considers spectrum utilization and effectiveness at MAC and PHY layers, ignoring the system performance of upper layers. Therefore, in this chapter we aim to improve the user experience of secondary users for wireless video services over cognitive radio networks. We propose a quality-driven cross-layer optimized system to maximize the expected user-perceived video quality at the receiver end, under the constraint of packet delay bound. By formulating network functions such as encoder behavior, cognitive MAC scheduling, transmission, as well as modulation and coding into a distortion-delay optimization framework, important system parameters residing in different network layers are jointly optimized in a systematic way to achieve the best user-perceived video quality for secondary users in cognitive radio networks. Furthermore, the proposed problem is formulated into a MIN-MAX problem and solved by using dynamic programming. The performance enhancement of the proposed system is evaluated through extensive experiments based on H.264/AVC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Niyato and E. Hossain, “Cognitive radio for next-generation wireless networks: An approach to opportunistic channel selection in IEEE 802.11-based wireless mesh,” IEEE Wireless Commun., vol. 16, pp. 46–54, Feb 2009.

    Article  Google Scholar 

  2. S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, pp. 201–220, Feb 2005.

    Article  Google Scholar 

  3. R. Tandra, S. Mishra, and A. Sahai, “What is a spectrum hole and what does it take to recognize one?” Proceedings of the IEEE, Apr 2009.

    Google Scholar 

  4. H. Luo, D. Wu, S. Ci, A. Argyriou, and H. Wang, “Quality-driven TCP friendly rate control for real-time video streaming,” IEEE GlobeCom, Dec. 2008.

    Google Scholar 

  5. H. Luo, A. Argyriou, D. Wu, and S. Ci, “Joint source coding and network-supported distributed error control for video streaming in wireless multi-hop networks,” IEEE Transactions on Multimedia, vol. 11, no. 7, pp. 1362–1372, Nov 2009.

    Article  Google Scholar 

  6. D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA: MIT Press, 1991.

    Google Scholar 

  7. R. Gibbons, A Primer in Game Theory. Upper Saddle River, NJ: Prentice Hall, 1992.

    Google Scholar 

  8. M. Felegyhazi and J.-P. Hubaux, “Game theory in wireless networks: A tutorial,” EPFL technical report, LCA-REPORT-2006-002, Feb 2006.

    Google Scholar 

  9. H. Shiang and M. van der Schaar, “Queuing-based dynamic channel selection for heterogeneous multimedia applications over cognitive radio networks,” IEEE Transactions on Multimedia, vol. 10, no. 5, pp. 896–909, Aug 2008.

    Article  Google Scholar 

  10. Y. Chen, Y. Wu, B. Wang, and K. Liu, “An auction-based framework for multimedia streaming over cognitive radio networks,” ICASSP 2010, vol. 48, no. 2, pp. 2350–2353, Mar 2010.

    Google Scholar 

  11. Y. Yu, L. Wang, and Q. Yu, “Cross-layer architecture in cognitive ad hoc networks,” Commun. Mobile Comput., vol. 2, pp. 47–51, Jan 2009.

    Google Scholar 

  12. S. Ci and J. Sonnenberg, “A cognitive cross-layer architecture for next-generation tactical networks,” IEEE MILCOM, vol. 77, pp. 1–6, Oct 2007.

    Article  Google Scholar 

  13. C. Ghosh and D. P. Agrawal, “ROPAS: Cross-layer cognitive architecture for wireless mobile adhoc networks,” Cognitive Radio Oriented Wireless Networks Commun., pp. 514 – 518, Aug 2007.

    Google Scholar 

  14. C. Ghosh, B. Xie, and D. P. Agrawal, “ROPAS: Cross-layer cognitive architecture for mobile UWB networks,” IEEE International Conference on Mobile Adhoc and Sensor Systems, pp. 1–7, Pisa, Italy, Oct. 2007.

    Google Scholar 

  15. H. Su and X. Zhang, “Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,” IEEE J. Sel. Areas Commun., vol. 26, pp. 118–129, Jan. 2008.

    Article  Google Scholar 

  16. P. Mahonen, M. Petrova, J. Riihijarvi, and M. Wellens, “Cognitive wireless networks: Your network just became a teenager,” In Proceedings of IEEE INFOCOM, Barcelona, 2006.

    Google Scholar 

  17. “Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264ąłISO/IEC 14496-10 AVC),” ftp://ftp.imtc-files.org/jvt-experts/2003-03-Pattaya/JVT-G50r1.zip, May 2003.

  18. R. Zhang, S. L. Regunathan, and K. Rose, “Video coding with optimal inter/intra-mode switching for packet loss resilience,” IEEE J. Select. Areas Commun., vol. 18, no. 6, pp. 966–976, Jun 2000.

    Article  Google Scholar 

  19. D. Wu, T. Hou, W. Zhu, H.-J. Lee, T. Chiang, Y.-Q. Zhang, and H. J. Chao, “On end-to-end architecture for transporting MPEG-4 video over the Internet,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 923–941, Sep. 2000.

    Article  Google Scholar 

  20. G. Cote, S. Shirani, and F. Kossentini, “Optimal mode selection and synchronization for robust video communications over error prone networks,” IEEE J. Sel. Areas Commun., vol. 18, pp. 952–965, Jun 2000.

    Article  Google Scholar 

  21. A. Argyriou, “Real-time and rate-distortion optimized video streaming with TCP,” Elsevier Signal Process. Image Commun., vol. 22, pp. 374–388, Apr 2007.

    Article  Google Scholar 

  22. Q. Liu, S. Zhou, and G. Giannakis, “Cross-layer combining of adaptive modulation and coding with truncated arq over wireless links,” IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1746–1755, Sept 2004.

    Article  Google Scholar 

  23. H. Poor, An Introduction to Signal Detection and Estimation, 2nd ed. Springer, New York, NY, 1994.

    Book  MATH  Google Scholar 

  24. Y. Sung, L. Tong, and H. V. Poor, “Neyman-Pearson detection of Gauss-Markov signals in noise: Closed-form error exponent and properties,” IEEE Trans. Inf. Theory, vol. 52, pp. 1354–1365, Apr 2006.

    Article  MathSciNet  Google Scholar 

  25. S. Akin and M. C. Gursoy, “Effective capacity analysis of cognitive radio channels for quality of service provisioning,” CoRR, vol. abs/0906.3888, 2009.

    Google Scholar 

  26. H. Wang, S. Tsaftaris, and A. K. Katsaggelos, “Joint source-channel coding for wireless object-based video communications utilizing data hiding,” IEEE Trans. Image Process., vol. 15, no. 8, pp. 2158–2169, Sept 2008.

    Article  Google Scholar 

  27. T. Stockhammer, M. M. Hannuksela, and T. Wiegand, “H.264/AVC in wireless environments,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 657–673, Jul 2003.

    Article  Google Scholar 

  28. M. S. Alouini and A. J. Goldsmith, “Adaptive modulation over Nakagami fading channels,” Kluwer J. Wireless Commun., vol. 13, pp. 119–143, May 2000.

    Article  Google Scholar 

  29. A. Doufexi, S. Armour, M. Butler, A. Nix, D. Bull, J. McGeehan, and P. Karlsson, “A Comparison of the HIPERLAN/2 and IEEE 802.11a Wireless LAN Standards,” IEEE Commun. Magazine, vol. 40, pp. 172–180, May 2002.

    Article  Google Scholar 

  30. Z. Li, G. Schuster, and A. Katsaggelos, “MINMAX optimal video summarization,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 1245–1256, Oct 2005.

    Article  Google Scholar 

  31. G. M. Schuster and A. K. Katsaggelos, Rate-Distortion Based Video Compression: Optimal Video Frame Compression and Object Boundary Encoding. Norwell, MA: Kluwer, 1997.

    Google Scholar 

  32. A. Ortega and K. Ramchandran, “Rate-distortion methods for image and video compression,” Signal Process., vol. 15, pp. 23–50, Nov 1998.

    Article  Google Scholar 

  33. D. Wu, S. Ci, and H. Wang, “Cross-layer optimization for video summary transmission over wireless networks,” IEEE J. Sel. Areas Commun., vol. 25, no. 4, pp. 841–850, May 2007.

    Article  Google Scholar 

  34. Y. Andreopoulos, N. Mastronade, and M. van der Schaar, “Cross-layer optimized video streaming over wireless multi-hop mesh networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 11, pp. 2104–2115, Nov 2006.

    Article  Google Scholar 

  35. P. Pahalawatta, R. Berry, T. Pappas, and A. Katsaggelos, “Content-aware resource allocation and packet scheduling for video transmission over wireless networks,” IEEE J. Sel. Areas Commun., vol. 25, no. 4, pp. 749–759, May 2007.

    Article  Google Scholar 

  36. E. Maani, P. Pahalawatta, R. Berry, T. Pappas, and A. Katsaggelos, “Resource allocation for downlink multiuser video transmission over wireless lossy networks,” IEEE Trans. Image Process., vol. 17, no. 9, pp. 1663–1671, Sept 2008.

    Article  MathSciNet  Google Scholar 

  37. H. Luo, S. Ci, D. Wu, and H. Tang, “Cross-layer design for real-time video transmission in cognitive wireless networks,” IEEE INFOCOM 2010 Workshop on Cognitive Wireless Communications and Networking, San Diego, Mar 2010.

    Google Scholar 

  38. H. Luo, S. Ci, D. Wu, and H. Tang “Quality-driven cross-layer optimized video delivery over lte,” IEEE Commun., vol. 48, no. 2, pp. 102–109, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Ci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Luo, H., Ci, S., Wu, D., Feng, Z., Tang, H. (2011). Real-Time Multimedia Transmission over Cognitive Radio Networks. In: Yu, F. (eds) Cognitive Radio Mobile Ad Hoc Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6172-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6172-3_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6171-6

  • Online ISBN: 978-1-4419-6172-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics