Skip to main content

Vector Transmission Heterogeneity and the Population Dynamics and Control of Lymphatic Filariasis

  • Chapter
Modelling Parasite Transmission and Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 673))

Abstract

Along-standing gap in lymphatic filariasis epidemiology is quantifying the potential effect that heterogeneous infection processes occurring in the major mosquito vector genera may have on parasite transmission and control. Although previous studies have focussed on examining the forms of the density dependent mechanisms regulating larval infection in various mosquito genera, there has been little work done thus far in investigating how such differential processes might interact with density-dependent processes occurring in other stages of the parasite life cycle to influence overall transmission dynamics between areas exposed to different transmitting vector populations. Here, we explore the impact that differences in vector genus-related larval infection dynamics may have on filariasis transmission and control using newly derived parasite transmission models incorporating the forms of the density-dependent processes regulating larval infection in the two major vectors transmitting filariasis, viz. culicine and anopheline mosquitoes. The key finding in this work is that filarial infection thresholds, system resilience, transmission dynamics and parasite response to control efforts, can all be influenced by the prevailing transmitting mosquito genus. In particular, we show that infection thresholds may be raised, system resilience to perturbations lowered and effects of repeated mass treatments in eliminating infection enhanced in anopheline filariasis compared to culicine filariasis, as a direct result of the occurrence and action of multiple positive density-dependent mechanisms influencing infection in this vector-parasite system, such as the “facilitation” function regulating larval infection dynamics in the vector and the inverse probability function governing adult worm mating in the host. These findings indicate that anopheline filariasis may be easier to eradicate than culicine filariasis for a given precontrol infection level, although the actual intensity of interventions required to achieve eradication may in fact be similar to that for culicine filariasis because of the higher infection levels generated as a result of the “facilitation” process in Anopheles transmission areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dietz K. Density-dependence in parasite transmission dynamics. Parasitol Today 1988; 4:91–97.

    Article  CAS  PubMed  Google Scholar 

  2. Dye C, Williams BG. Nonlinearities in the dynamics of indirectly-transmitted infections (or, does having a vector make a difference?). In: Grenfell BT, Dobson AP, eds. Ecology of Infectious Diseases in Natural Populations. Cambridge, UK: Cambridge University Press, 1995:260–279.

    Chapter  Google Scholar 

  3. Pichon G. Relations mathematiques entre le nombre des microfilaires ingerees et le nombre de parasites chez differents vecteurs naturels ou experimentaux de filarioses. Cah ORSTOM ser Entomol Med Parasitol 1974; 12:199–216.

    Google Scholar 

  4. Southgate BA, Bryan JH. Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 4. Facilitation, limitation, proportionality and their epidemiological significance. Trans R Soc Trop Med Hyg 1992; 86:523–530.

    Article  CAS  PubMed  Google Scholar 

  5. Dye C. Does facilitation imply a threshold for the eradication of lymphatic filariasis? Parasitol Today 1992; 8:109–110.

    Article  CAS  PubMed  Google Scholar 

  6. Wada Y, Kimura E, Takagi M et al. Facilitation in Anopheles and spontaneous disappearance of filariasis: has the concept been verified with sufficient evidence? Trop Med Parasitol 1995; 46:27–30.

    CAS  PubMed  Google Scholar 

  7. Pichon G. Limitation and facilitation in the vectors and other aspects of the dynamics of filarial transmission: the need for vector control against Anopheles-transmitted filariasis. Ann Trop Med Parasitol 2002; 96(Suppl 2):S143–152.

    Article  Google Scholar 

  8. Snow LC, Bockarie MJ, Michael E. Transmission dynamics of lymphatic filariasis: vector-specific density dependence in the development of Wuchereria bancrofti infective larvae in mosquitoes. Med Vet Entomol 2006; 20:261–272.

    Article  CAS  PubMed  Google Scholar 

  9. Michael E, Malecela-Lazaro MN, Kabali C et al. Mathematical models and lymphatic filariasis control: endpoints and optimal interventions. Trends Parasitol 2006; 22:226–233.

    Article  PubMed  Google Scholar 

  10. Michael E, Malecela-Lazaro MN, Kazura JW. Epidemiological modelling for monitoring and evaluation of lymphatic filariasis control. Adv Parasitol 2007; 65:191–237.

    Article  PubMed  Google Scholar 

  11. Basanez MG, Remme JH, Alley ES et al. Density-dependent processes in the transmission of human onchocerciasis: relationship between the numbers of microfilariae ingested and successful larval development in the simuliid vector. Parasitology 1995; 110:409–427.

    Article  PubMed  Google Scholar 

  12. Michael E, Bundy DA. Herd immunity to filarial infection is a function of vector biting rate. Proc R Soc Lond B Biol Sci 1998; 265:855–860.

    Article  CAS  Google Scholar 

  13. Duerr HP, Dietz K, Eichner M. Determinants of the eradicability of filarial infections: a conceptual approach. Trends Parasitol 2005; 21:88–96.

    Article  PubMed  Google Scholar 

  14. Berec L, Angulo E, Courchamp F. Multiple Allee effects and population management. Trends Ecol Evol 2006; 22:185–191.

    Article  PubMed  Google Scholar 

  15. Gambhir M, Michael E. Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis. PLoS One 2008; in press.

    Google Scholar 

  16. WHO. Global programme to eliminate lymphatic filariasis. Wkly Epidemiol Rec 2007; 82:361–380.

    Google Scholar 

  17. Michael E, Bundy DA, Grenfell BT. Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology 1996; 112:409–428.

    Article  PubMed  Google Scholar 

  18. Michael E, Bundy DA. Global mapping of lymphatic filariasis. Parasitol Today 1997; 13:472–476.

    Article  CAS  PubMed  Google Scholar 

  19. Sasa M. Human Filariasis. Tokyo: University of Tokyo Press, 1976.

    Google Scholar 

  20. WHO. Lymphatic filariasis: progrogress of disability prevention activities. Wkly Epidemiol Rec 2004; 47:417–424.

    Google Scholar 

  21. WHO. World Health Report. Geneva, Switzerland: World Health Organization, 1995.

    Google Scholar 

  22. Ottesen EA. The filariases and tropical eosinophilia. In: Warren KS, Mahmood AAF, eds. Tropical and Geographical Medicine. New York: McGraw-Hill Inc., 1990:407–429.

    Google Scholar 

  23. Vanamail P, Subramanian S, Das PK et al. Estimation of age-specific rates of acquisition and loss of Wuchereria bancrofti infection. Trans R Soc Trop Med Hyg 1989; 83:689–693.

    Article  CAS  PubMed  Google Scholar 

  24. Michael E. The population dynamics and epidemiology of lymphatic filariasis. In: Nutman TB, ed. Lymphatic Filariasis. London: Imperial College Press, 2000:41–81.

    Chapter  Google Scholar 

  25. Bates DM, Watts DG. Nonlinear Regression Analysis and its Applications. New York: John Wiley and Sons, 1988.

    Book  Google Scholar 

  26. Brown D, Rotheray P. Models in Biology: Mathematics, Statistics and Computing. Chichester, England: John Wiley and Sons, 1993.

    Google Scholar 

  27. Juliano SA. Nonlinear curve fitting. Predation and functional response curves. In: Scheiner SM, Gurevitch J, eds. Design and Analysis of Ecological Experiments. 2nd Edition ed. Oxford, UK: Oxford University Press, 2001:178–196.

    Google Scholar 

  28. Subramanian S, Krishnamoorthy K, Ramaiah KD et al. The relationship between microfilarial load in the human host and uptake and development of Wuchereria bancrofti microfilariae by Culex quinquefasciatus: a study under natural conditions. Parasitology 1998; 116:243–255.

    Article  PubMed  Google Scholar 

  29. Plaisier AP, Subramanian S, Das PK et al. The LYMFASIM simulation program for modeling lymphatic filariasis and its control. Methods Inf Med 1998; 37:97–108.

    CAS  PubMed  Google Scholar 

  30. Norman RA, Chan MS, Srividya A et al. EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiol Infect 2000; 124:529–541.

    Article  CAS  PubMed  Google Scholar 

  31. Snow LC, Michael E. Transmission dynamics of lymphatic filariasis: density-dependence in the uptake of Wuchereria bancrofti microfilariae by vector mosquitoes. Med Vet Entomol 2002; 16:409–423.

    Article  CAS  PubMed  Google Scholar 

  32. Bryan JH, Southgate BA. Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 2. Damage to ingested microfilariae by mosquito foregut armatures and development of filarial larvae in mosquitoes. Trans R Soc Trop Med Hyg 1988; 82:138–145.

    Article  CAS  PubMed  Google Scholar 

  33. Chan MS, Srividya A, Norman RA et al. Epifil: a dynamic model of infection and disease in lymphatic filariasis. Am J Trop Med Hyg 1998; 59:606–614.

    CAS  PubMed  Google Scholar 

  34. Michael E, Malecela-Lazaro MN, Simonsen PE et al. Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis 2004; 4:223–234.

    Article  PubMed  Google Scholar 

  35. Michael E, Ramaiah KD, Hoti SL et al. Quantifying mosquito biting patterns on humans by DNA fingerprinting of bloodmeals. Am J Trop Med Hyg 2001; 65:722–728.

    CAS  PubMed  Google Scholar 

  36. May RM. Togetherness among Schistosomes: its effects on the dynamics of the infection. Math Biosciences 1977; 35:301–343.

    Article  Google Scholar 

  37. May RM. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 1977; 269:471–477.

    Article  Google Scholar 

  38. May R. Stability and Complexicity in Model Ecosystems. Princeton: Princeton University Press, 1973.

    Google Scholar 

  39. Wang YH, Gutierrez AP. An assessment of the use of stability analyses in population ecology. Journal of Animal Ecology 1980; 49:435–452.

    Article  Google Scholar 

  40. Lande R, Engen S, Saether B-E. Stochastic Population Dynamics in Ecology and Conservation. Oxford: Oxford University Press, 2003.

    Book  Google Scholar 

  41. Avise JC. Molecular Markers, Natural History and Evolution. Sunderland, Massachusetts: Sinauer Associates, Inc. Publishers, 2004.

    Google Scholar 

  42. Freeland JR. Molecular Ecology. Chichester, England: John Wiley and Sons Ltd., 2005.

    Google Scholar 

  43. King CL. Transmission intensity and human immune responses to lymphatic filariasis. Parasite Immunol 2001; 23:363–371.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Michael, E., Gambhir, M. (2010). Vector Transmission Heterogeneity and the Population Dynamics and Control of Lymphatic Filariasis. In: Michael, E., Spear, R.C. (eds) Modelling Parasite Transmission and Control. Advances in Experimental Medicine and Biology, vol 673. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6064-1_2

Download citation

Publish with us

Policies and ethics