Skip to main content

Sensing and Actuation in MEMS

  • Chapter
  • First Online:
MEMS Linear and Nonlinear Statics and Dynamics

Part of the book series: Microsystems ((MICT,volume 20))

Abstract

There are number of common transduction methods in MEMS. Some transform a change of a physical quantity, such as pressure and temperature, into an electric signal that can be measured. These are called sensing or detection methods. They include piezoelectric, piezoresistive, and electrostatic methods. Also, comes under this category the so-called resonant sensors, which detect the change in the resonance frequencies of microstructures upon sensing. Other transduction methods convert an input energy into a motion of a microstructure. These are called actuation methods, which include electrothermal, electromagnetic, piezoelectric, and electrostatic. Among the transduction methods, electrostatic actuation and detection are considered the most common in MEMS. Hence, electrostatic transduction will be under extensive investigations in the upcoming chapters. Next, basic knowledge on the most common transduction methods in MEMS is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lange D, Brand O, Baltes H (2002) CMOS cantilever sensor systems: atomic-force microscopy and gas sensing applications, Springer, Berlin

    Google Scholar 

  2. Lerch P, Slimane C K, Romanowicz B, Renaud P (1996) Modelization and characterization of asymmetrical thermal micro-actuators. Journal of Micromechanics and Microengineering, 137:134-137

    Article  Google Scholar 

  3. Chi S P, Hsu W (1997) An electro-thermally and laterally driven polysilicon microactuator. Journal of Micromechanics and Microengineering, 7:7-13

    Article  Google Scholar 

  4. Corntois J H, Bright V M (1997) Applications for surface-micromachined polysilicon thermal actuators and arrays. Sensors and Actuators A, 58:9-25

    Google Scholar 

  5. Huang Q-A, Ka N, Lee S (1999) Analysis and design of polysilicon thermal flexure actuator. Journal of Micromechanics and Microengineering, 9:64-70

    Article  Google Scholar 

  6. Guckel H, Klein J, Christenson T, Skrobis K, Laudon M, Lovell E G (1992) Thermo-magnetic metal flexure actuators. In: Proceeding of Solid-State Sensor and Actuator Workshop, Hilton Head, pp. 73-75

    Google Scholar 

  7. Keller C G, Howe R T,(1995) Nickel-filled HEXSIL thermally actuated tweezers. In: Proceeding of the IEEE International Conference on Solid-State Sensors and Actuators (Transducers’ 95), Stockholm, Sweden, pp. 376-379

    Google Scholar 

  8. Noworolski J M, Klaassen E H, Logan J R, Peterson K E Maluf N I (1996) Process for in-plane and out-of-plane single-crystal-silicon thermal microactuators. Sensors and Actuators A, 55: 65-9

    Article  Google Scholar 

  9. Lott C D, McLain T W, Harb J N and Howell L L (2002) Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator. Sensors and Actuators A, 101:239-250

    Article  Google Scholar 

  10. Que L, Park J-S and Gianchandani Y B (2001) Bent-beam electrothermal actuators: I. Single beam and cascaded devices. Journal of Microelectromechanical Systems, 10:247-54

    Article  Google Scholar 

  11. Maloney J M, Schreiber D S, DeVoe D L (2004) Large-force electrothermal linear micromotors. Journal of Micromechanics and Microengineering, 14:226-234

    Article  Google Scholar 

  12. Cochran K R, Fan L, DeVoe D L (2005) High-power optical microswitch based on direct fiber actuation. Sensors and Actuators A: Physical, 119(2):512-519

    Article  Google Scholar 

  13. Sassen W P, Henneken V A, Tichem M, Sarro P M (2008) An improved in-plane thermal folded V-beam actuator for optical fiber Alignment. Journal of Micromechanics and Microengineering, 18:075033 (9pp)

    Article  Google Scholar 

  14. Chiao M, and Lin L (2000) Self-buckling of micromachined beams under resistive heating. Journal of Microelectromechanical Systems, 9(1):146-151

    Article  Google Scholar 

  15. Riethmuller W, Benecke W (1988) Thermally excited silicon microactuators. IEEE Transactions on Electron Devices, 35(6):758-763

    Article  Google Scholar 

  16. Chut W-H, Mehregany M, Mullen R L (1993) Analysis of tip deflection and force of a bimetallic cantilever microactuator. Journal of Micromechanics and Microengineering, 3:4-7

    Article  Google Scholar 

  17. Liu C (2006) Foundations of MEMS. Prentice Hall, New Jersey

    Google Scholar 

  18. Senturia S D (2001) Microsystem design. Springer, New York

    Google Scholar 

  19. Perumont A (2006) Mechatronics: dynamics of electromechanical and piezoelectric systems. Springer, Netherland

    Google Scholar 

  20. Cheng H-M, Ewe1 M T S, Chiu G T-C, Bashir R (2001) Modeling and control of piezoelectric cantilever beam micro-mirror and micro-laser arrays to reduce image banding in electrophotographic processes. Journal of Micromechanics and Microengineering, 11:487-498

    Google Scholar 

  21. Gerlach T, Wurmus H (1995) Working principle and performance of the dynamics miropump. Sensor and Actuators A, 50:135-140.

    Article  Google Scholar 

  22. Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chambers. Sensor and Actuators A, 46-47:549-556

    Google Scholar 

  23. Motamedi M E, Andrews A P, Brower E (1982) Accelerometer sensor using piezoelectric ZnO thin films. In Proceeding of the IEEE Ultrasononic Symposium, 1:303-307.

    Google Scholar 

  24. DeVoe D L, Pisano A P, Surface micromachined piezoelectric accelerometers (PiXLs). Journal of Microelectromechanical Systems, 10(2):180-186

    Google Scholar 

  25. Roundy S, Wright P K (2004) A piezoelectric vibration based generator for wireless electronics. Smart Material and Structures, 13:1131-1142

    Article  Google Scholar 

  26. Erturk A, Inman D J (2008) Issues in mathematical modeling of piezoelectric energy harvesters. Smart Materials and Structures, 17:065016(14pp).

    Article  Google Scholar 

  27. duToit N E, Wardle B L, Kim S-G (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectrics, 71:121-160

    Article  Google Scholar 

  28. Guyomar D, Aurelle N, Eyraud L (1997) Piezoelectric ceramics nonlinear behavior. Application to Langevin Transducer. Jounral of Physics III France, 7:1197-1208

    Article  Google Scholar 

  29. Wing Q-M, Zhang Q, Xu B, Liu R, Cross E (1999) Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. 86:3352-3360

    Google Scholar 

  30. Mahmoodi S N, Jalili N, Daqaq M F (2008) Modeling, nonlinear dynamics, and identification of a piezoelectrically actuated microcantilever sensor. IEEE/ASME Transactions on Mechatronics, 13(1):58-65

    Article  Google Scholar 

  31. Dick A J, Balachandran B, DeVoe D L, Mote C D Jr (2006) Parametric identification of piezoelectric microscale resonators. Journal of Micromechanics and Microengineering, 16:1593-1601

    Article  Google Scholar 

  32. Li H, Preidikman S, Balachandran B, Mote C D Jr (2006) Nonlinear free and forced oscillations of piezoelectric microresonators. Journal of Micromechanics and Microengineering, 16:356-367

    Article  Google Scholar 

  33. Cho I-J, Song T, Baek S-H, Yoon E (2005) A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Transactions on Microwave Theory and Techniques, 53(7):2450-2457

    Article  Google Scholar 

  34. Cao A, Kim J, Lin L (2007) Bi-directional electrothermal electromagnetic actuators. Journal of Micromechanics and Microengineering, 17:975-982

    Article  Google Scholar 

  35. Han J S, Ko J S, Kim Y T, Kwak B M (2002) Parametric study and optimization of a micro-optical switch with a laterally driven electromagnetic microactuator. Journal of Micromechanics and Microengineering, 12:939-947

    Article  Google Scholar 

  36. Park S, Hah D (2008) Pre-shaped buckled-beam actuators: theory and experiment. Sensors and Actuators A, 148:186-192

    Article  Google Scholar 

  37. Greywall D (1999) Micromechanical RF filters excited by the Lorentz force. Journal of Micromechanics and Microengineering, 9:78-84.

    Article  Google Scholar 

  38. Lobontiu N, Garcia E (2004) Mechanics of Microelectromechanical Systems. Springer, New York

    Google Scholar 

  39. Yufeng S, Wenyuan C, Feng C, Weiping Z (2006) Electro-magnetically actuated valveless micropump with two flexible diaphragms. International Journal of Advanced Manufacturing Technology, 30:215-220

    Article  Google Scholar 

  40. Chang H-T, Lee C-Y, Wen C-Y, Hong B-S (2007) Theoretical analysis and optimization of electromagnetic actuation in a valveless microimpedance pump. Microelectronics Journal, 38:791-799

    Article  Google Scholar 

  41. Lagorce L K, Brand O, Allen M G (2002) Magnetic microactuator based on polymer magnets. Journal of Microelectromechanical Systems, 8(1):2-9

    Article  Google Scholar 

  42. Cho H J, Ahn C H (2002) A bidirectional magnetic microactuator using electroplated permanent magnet arrays. Journal of Microelectromechanical Systems, 11(1):78-84

    Article  Google Scholar 

  43. De S K, Aluru N R (2006) A hybrid full-Lagrangian technique for the static and dynamic analysis of magnetostatic MEMS. Journal of Micromechanics and Microengineering, 16:2646-2658

    Article  Google Scholar 

  44. Mizuno M, Chetwynd D G (2003) Investigation of a resonance microgenerator. Journal of Micromechanics and Microengineering, 13:209-216

    Article  Google Scholar 

  45. Külah H, Najafi K (2008) Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sensors Journal, 8(3):261-268

    Article  Google Scholar 

  46. Pei-Hong Wanga, Xu-Han Dai, Dong-Ming Fang, Xiao-Lin Zha (2007) Design, fabrication and performance of a new vibration-based electromagnetic micro power generator. Microelectronics Journal 38:1175-1180

    Article  Google Scholar 

  47. Judy J, Muller R (1996) Magnetic microactuation of torsional polysilicon structures. Sensors and Actuators A, 53:392-397

    Article  Google Scholar 

  48. Niarchos D (2003) Magnetic MEMS: key issues and some applications. Sensors and Actuators A, 109:166-173

    Article  Google Scholar 

  49. Bao M (2005) Analysis and design principles of mems devices. Elsevier, Amsterdam

    Google Scholar 

  50. www.sensata.com (Sensata Technologies; Attleboro, MA)

    Google Scholar 

  51. Seeger J I, Boser B E (2003) Charge control of parallel-plate, electrostatic actuators and the tip-in instability. Journal of Microelectromechanical Systems, 12(5):656-671

    Article  Google Scholar 

  52. Pelesko J A, Bernstein D H (2002) Modeling MEMS and NEMS. CRC, Boca Raton

    Book  Google Scholar 

  53. Nathanson H C, Wickstrom R A (1965) A resonant-gate silicon surface transistor with high-Q band-pass properties. Applied Physics Letters, 7(4):84-86

    Article  Google Scholar 

  54. Nathanson H C, Newell W E, Wickstrom R A, Davis J R (1967) The resonant gate transistor. IEEE Transaction on Electron Devices, ED-14(3)

    Google Scholar 

  55. Ananthasuresh G K, Gupta R K, Senturia S D (1996) An approach to macromodeling of MEMS for nonlinear dynamic simulation. In Proceeding ASME International Conference of Mechanical Engineering Congress and Exposition (MEMS), Atlanta, GA, 401-407

    Google Scholar 

  56. Krylov S, Maimon R (2004) Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. ASME Journal of Vibrations and Acoustics, 126(3):332-342

    Article  Google Scholar 

  57. De S K, Aluru N R (2006) Complex Nonlinear oscillations in electrostatically actuated microstructures. Journal of Microelectromechanical Systems, 15:355-369

    Article  Google Scholar 

  58. Lenci S, Rega G (2006) Control of pull-in dynamics in a nonlinear thermoelasticelectrically actuated microbeam. Journal of Micromechanics and Microengineering, 16:390-401

    Article  Google Scholar 

  59. Luo A C, Wang F Y (2004) Nonlinear dynamics of a Micro-electro-mechanical system with time-varying capacitors. Journal of Vibration and Acoustics, 126:77-83

    Article  Google Scholar 

  60. Elata D, Bamberger H (2006) On the dynamic pull-in of electrostatic actuators with multiple degrees of freedom and multiple voltage sources. Journal of Microelectromechanical Systems, 15:131-140

    Article  Google Scholar 

  61. Fargas-Marques A, Casals-Terre J, Shkel A M (2007) Resonant pull-in condition in parallel-plate electrostatic actuators. Journal of Microelectromechanical Systems, 16(5):1044-1053

    Article  Google Scholar 

  62. Seeger J I, Boser B E (2002) Parallel-plate driven oscillations and resonant pull-in. In: Proceeding of the Solid-State Sensor, Actuator and Microsystems Workshop, pp. 313-316

    Google Scholar 

  63. Nayfeh A H, Younis M I, Abdel-Rahman E M (2007) Dynamic pull-in phenomenon in MEMS resonators. Journal of Nonlinear Dynamics, 48:153-163

    Article  MATH  Google Scholar 

  64. Alsaleem F, Younis M I, Ouakad H (2009) On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. Journal of Micromechanics and Microengineering, 19:045013(1-14)

    Article  Google Scholar 

  65. Tilmans H A, Raedt W D, Beyne E (2003) MEMS for wireless communications: from RF-MEMS components to RF-MEMS-SIP. Journal of Micromechanics and Microengineering, 13:139-163

    Article  Google Scholar 

  66. Rebeiz G M (2003) RF MEMS: Theory, design, and technology. Wiley, New York

    Book  Google Scholar 

  67. Varadan V M, Vinoy K J, Jose K A (2003) RF MEMS and their applications, Wiley, New York

    Google Scholar 

  68. http://www.dlp.com (Texas Instruments; Dallas, Texas)

    Google Scholar 

  69. Jaecklin V P, Linder C, de Rooij N F (1994) Line-addressable tensional micromirrors for light modulator arrays. Sensors and Actuators A, 41-42:324-329

    Google Scholar 

  70. Zhang X M, Chau F S, Quan C, Lam Y L, Liu A Q (2001) A study of the static characteristics of a torsional micromirror. Sensors and Actuators A, 90:73-81

    Article  Google Scholar 

  71. Degani O, Socher E, Lipson A, Leitner T, Setter D J, Kaldor S, Nemirovsky Y (1998) Pull-in study of an electrostatic torsion microactuator, Journal of Microelectromechanical Systems, 7(4): 373-379

    Article  Google Scholar 

  72. O. Degani, Y. Nemirovsky, “Design Considerations of Rectangular Electrostatic Torsion Actuators Based on New Analytical Pull-in Expressions,” Journal of Microelectromechanical Systems, 11(1):20-26

    Google Scholar 

  73. Goodenough F (1991) Airbags boom when IC accelerometers sees 50 G. Electronic Design, 39:45-56

    Google Scholar 

  74. Kim C J, Pisano A P, Muller R S, Lim M G (1990) Polysilicon microgripper. In proceeding of the IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, Island, SC, pp 48-51

    Google Scholar 

  75. Tang W C, Nguyen T C, Howe R T (1989) Laterally driven polysilicon resonant microstructures. Sensors Actuators A, 20:25-32

    Article  Google Scholar 

  76. Tang W C, Nguyen T C, Judy M W, Howe R T (1990) Electrostatic-comb drive of lateral polysilicon resonators. Sensors Actuators A, 21-23:328-331

    Google Scholar 

  77. Lin L, Nguyen C T-C, Howe R T, Pisano A P (1992) Microelectromechanical filers for signal processing. In Proceeding of the IEEE Micro-Electro-Mechanical Systems, Travemunde, Germany, 226-231

    Google Scholar 

  78. Hirano T, Furuhata T, Gabriel K J, Fujita H (1992) Design, fabrication, and operation of submicron gap comb-drive microactuators. Journal of Microelectromechanical Systems, 1(1):52-59

    Article  Google Scholar 

  79. Legtenberg R, Groeneveld A W, Elwenspoek M (1996) Comb-drive actuators for large displacements. Journal of Micromechanics and Microengineering, 6:320-329

    Article  Google Scholar 

  80. Jaecklint V P, Lindert C, de Rooij N F, Moret J M (1992) Micromechanical comb actuators with low driving voltage. Journal of Micromechanics and Microengineering, 2:250-255

    Article  Google Scholar 

  81. Kim J, Christensen D, Lin L (2005) Monolithic 2-D Scanning Mirror Using Self-Aligned Angular Vertical Comb Drives. IEEE Photonics Technology Letters, 17(11):2307-2309

    Article  Google Scholar 

  82. Xie H, Pan Y, Fedder G K (2003) A CMOS-MEMS mirror with curled hinge comb drives. Journal of Microelectromechanical Systems, 12(4):450-457

    Article  Google Scholar 

  83. Zhang W, Turner K L (2005) Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors and Actuators A, 122:23-30

    Article  Google Scholar 

  84. Kovacs G T (1998) Micromachined transcucers sourcebook. McGraw-Hill, New York

    Google Scholar 

  85. Younis M I, Miles R, Jordy D (2006) Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces. Journal of Micromechanics and Microengineering, 16:2463-2474

    Article  Google Scholar 

  86. Langdon R M (1985) Resonator sensors-a review. Journal of Physics E: Scientific Instruments, 18:103-115

    Article  Google Scholar 

  87. Elwenspoek M, Wiegerink R (2001) Mechanical microsensors. Springer, Verlag.

    Google Scholar 

  88. Stemme G (1991) Resonant silicon sensors. Journal of Micromechanics and Microengineering, 1:113-125

    Article  Google Scholar 

  89. Tilmans H A, Elwespoek M, Fluitman J H (1992) Micro resonant force gauges. Sensors and Actuators A, 30:35-53

    Article  Google Scholar 

  90. Tilmans H A, Legtenberg R (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators. Part II. Theory and performance. Sensors and Actuators A, 45:67-84

    Article  Google Scholar 

  91. Zook J D, Burns D W, Guckel H, Sniegowski R L, Engelstad R L, Feng Z (1992) Characteristics of polysilicon resonant microbeams. Sensors and Actuators A, 35:290-294

    Article  Google Scholar 

  92. Howe R T, Muller U S (1986) Resonant microbridge vapor sensor. IEEE Trans. Electron Devices, ED-33:499-506

    Article  Google Scholar 

  93. Thundat T, Wachter E A, Sharp S L, Warmack R J (1995) Detection of mercury vapor using resonating micro-cantilevers. Applied Physical Letters, 66:1695-1697

    Article  Google Scholar 

  94. Ilic B, Czaplewski D, Zalalutdinov M, Craighead H G, Neuzil P, Campagnolo C, Batt C (2001) Single cell detection with micromechanical oscillators. Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures), 19:2825-2828

    Article  Google Scholar 

  95. Waggoner P S, Craighead H G (2007) Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a Chip, 7:1238-1255, doi:10.1039/b707401h

    Article  Google Scholar 

  96. Chiu H-Y, Hung P, Postma H W, Bockrath M (2008) Atomic-scale mass sensing using carbon nanotube resonators. Nano Letters, 8(12):4342-4346

    Article  Google Scholar 

  97. Burnes D W, Zook J D, Horning R D, Herb W R, Guckel H (1995) Sealed-cavity resonant microbeam pressure sensor. Sensors and Actuators A, 48:179-186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Younis Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Younis, M.I. (2011). Sensing and Actuation in MEMS. In: MEMS Linear and Nonlinear Statics and Dynamics. Microsystems, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6020-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6020-7_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6019-1

  • Online ISBN: 978-1-4419-6020-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics