Skip to main content

MEMS, Their Features, and Modeling Challenges

  • Chapter
  • First Online:
MEMS Linear and Nonlinear Statics and Dynamics

Part of the book series: Microsystems ((MICT,volume 20))

Abstract

MEMS are devices and systems of distinguished properties and unique characteristics. In this chapter, we attempt to shed light on the main aspects of this technology and its desirable features. Then, we discuss the main challenges that face MEMS engineers in modeling and simulating the static and dynamic behavior of these systems. After that, we give an overview for some of the common phenomena of MEMS that designers and researchers encounter when studying their mechanical behavior. We end the chapter with some remarks on the state-of-the-art of MEMS modeling and simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. www.memsnet.org (MEMS and Nanotechnology Exchange; Reston, Virginia)

    Google Scholar 

  2. Hsu T R (2008) MEMS and microsystems: Design, manufacture, and nanoscale engineering. Wiley, New York

    Google Scholar 

  3. Liu C (2006) Foundations of MEMS. Prentice Hall, New Jersey

    Google Scholar 

  4. Madou M J (2002) Fundamentals of microfabrication: The science of miniaturization. CRC, Boston

    Google Scholar 

  5. Elwenspoek M (2001) Mechanical microsensors. Springer, New York

    Book  Google Scholar 

  6. Roundy S, Wright P K, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26:1131–1144

    Article  Google Scholar 

  7. Beeby S P, Tudor M J, White N M (2006) Energy harvesting vibration sources for microsystems applications. Measurement Science Technology, 17:R175–R195

    Article  Google Scholar 

  8. Miles R N, Su Q, Cui W, Shetye M, Degertekin F L, Bicen B, Garcia C, Jones S, Hall N (2009) A low-noise differential microphone inspired by the ears of the parasitoid fly Ormia ochracea. Journal of Acoustics Society of America, 125:2013–2026

    Article  Google Scholar 

  9. www.sensata.com (Sensata Technologies; Attleboro, MA)

    Google Scholar 

  10. Senturia S D (2001) Microsystem design. Springer, New York

    Google Scholar 

  11. Nayfeh A, Mook D (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  12. Nayfeh A, Pai P F (2000) Linear and nonlinear structural mechanics. Wiley, New York

    Google Scholar 

  13. Mahmoodi S N, Jalili N, Daqaq M F (2008) Modeling, nonlinear dynamics, and identification of a piezoelectrically actuated microcantilever sensor. IEEE/ASME Transactions on Mechatronics, 13(1):58–65

    Article  Google Scholar 

  14. Zener C (1937) Internal friction in solids: I. Theory of internal friction in reeds. Physical Review, 52:230–235

    Article  MATH  Google Scholar 

  15. Lifshitz R, Roukes M L (2000) Thermoelastic damping in micro-and nanomechanical systems. Physical Review B, 61:5600–5609

    Article  Google Scholar 

  16. Roszhart T V (1990) The effect of thermoelastic internal friction on the Q of micromachined silicon resonators. Proceeding of IEEE Solid-State Sensors Actuator Workshop, Hilton Head, South Carolina, pp. 13–16

    Google Scholar 

  17. Randall R H, Rose F C, Zener C (1939) Intercrystalline thermal currents as a source of internal friction. Physical Review, 56:343–348

    Article  Google Scholar 

  18. Nathanson H C, Newell W E, Wickstrom R A, Davis J R (1967) The resonant gate transistor. IEEE Transaction Electron Devices, ED-14(3):117–133

    Article  Google Scholar 

  19. Krylov S, Maimon R (2004) Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. Transactions of the ASME, 126(3):332–342

    Google Scholar 

  20. Younis M I, Miles R, Jordy D (2006) Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces. Journal of Micromechanics and Microengineering, 16:2463–2474

    Article  Google Scholar 

  21. Nayfeh A H, Younis M I, Abdel-Rahman E M (2007) Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 48:153–163

    Article  MATH  Google Scholar 

  22. Alsaleem F M, Younis M I, and Ouakad H M (2009) On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. Journal of Micromechanics and Microengineering. 19:045013(14pp)

    Article  Google Scholar 

  23. Rebeiz G M (2003) RF MEMS: theory, design, and technology. Wiley, New York

    Book  Google Scholar 

  24. Varadan V M, Vinoy K J, Jose K A (2003) RF MEMS and their applications. Wiley, New York

    Google Scholar 

  25. De Boer M P, Clews P J, Smith B K, Michalske, T A (1997) Adhesion of polysilicon microbeams in controlled humidity ambient. Material Researech Society Symposium, 518:131–136

    Article  Google Scholar 

  26. De Boer M P, Michalske T A (1999) Accurate method for determining adhesion of cantilever beams. Journal of Applied Physics, 86(2):817–827

    Article  Google Scholar 

  27. Mastrangelo C H, Hsu C H (1993) Mechanical stability and adhesion of microstructures under capillary forces. I. Basic Theory. Journal of Microelectromechanical Systems 2:33–43

    Article  Google Scholar 

  28. Mastrangelo C H, Hsu C H (1993) Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments. Journal of Microelectromechanical Systems, 2:44–55

    Article  Google Scholar 

  29. Legtenberg R, Tilmans H A C, Elders J, Elwenspoek M (1994) Stiction of surface micromachined structures after rinsing and drying: Model and investigation of adhesion mechanisms. Journal of Sensors and Actuators, 43:230–238

    Article  Google Scholar 

  30. Tas N, Sonnenberg T, Jansen H, Legtenberg R, Elwenspoek M (1996) Stiction in surface micromachining. Journal of Micromechanics and Microengineering, 6:385–397

    Article  Google Scholar 

  31. Allen J J (2005) Micro electro mechanical system design. CRC Press, New York

    Book  Google Scholar 

  32. Pelesko J A, Bernstein D H (2002) Modeling MEMS and NEMS. CRC, Boca Raton

    Book  Google Scholar 

  33. Bao M (2005) Analysis and design principles of MEMS devices. Elsevier, Amsterdam

    Google Scholar 

  34. Lobontiu N, Garcia E (2004) Mechanics of microelectromechanical systems. Springer, New York

    Google Scholar 

  35. Lobontiu N (2007) Dynamics of microelectromechanical systems, Springer, New York

    Book  Google Scholar 

  36. Kaajakari, V, (2009) Practical MEMS: Design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems, Small Gear Publishing, Las Vegas

    Google Scholar 

  37. http://www.ansys.com/ (ANSYS Inc.; Canonsburg, PA)

  38. http://www.comsol.com/ (COMSOL, Inc.; Burlington, MA)

  39. http://www.coventor.com/ (Coventor Inc.; Cary, NC)

  40. http://www.intellisensesoftware.com/ (IntelliSense Corp; Woburn, MA)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Younis Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Younis, M.I. (2011). MEMS, Their Features, and Modeling Challenges. In: MEMS Linear and Nonlinear Statics and Dynamics. Microsystems, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6020-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6020-7_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6019-1

  • Online ISBN: 978-1-4419-6020-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics