Skip to main content

BOLD fMRI for Presurgical Planning: Part II

  • Chapter
  • First Online:
Functional Brain Tumor Imaging

Abstract

In the early 1990s, functional magnetic resonance imaging (fMRI) entered the field of neuroimaging as a unique resource in the arsenal of preoperative planning tools for brain tumor patients. fMRI is a technique that takes advantage of the differences in magnetic susceptibility between oxyhemoglobin and deoxyhemoglobin. It is a less invasive neuroimaging method than its positron emission tomography (PET) predecessor given that the contrast agent is endogenous [1]. fMRI is possible because oxyhemoglobin has a different magnetic resonance signal than deoxyhemoglobin. When a task is performed, oxygenated blood in excess of the amount needed (termed luxury perfusion) is delivered to the active area. The difference in magnetic susceptibility between deoxyhemoglobin concentrations and oxyhemoglobin concentrations creates the signal in functional imaging. This effect is termed the blood oxygen level-dependent signal (BOLD signal). fMRI provides good spatial localization (as low as 1 mm) and temporal acquisition resolution (as low as 1 s) though it is limited by the resolution of the hemodynamic response (8–30 s). The superior spatial resolution is particularly advantageous for mapping peri-tumoral eloquent areas for treatment planning [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Decharms RC. Applications of real-time fMRI. Nat Rev Neurosci. 2008;9(9):720–9.

    Google Scholar 

  2. Wilkinson ID, Romanowski CAJ, Jellinek DA, Morris J, Griffiths PD. Motor functional MRI for pre-operative and intraoperative neurosurgical guidance. Br J Radiol. 2003;76(902):98–103.

    Google Scholar 

  3. Paleologos TS, Wadley JP, Kitchen ND, Thomas DG. Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery. Neurosurgery. 2000;47(1):40–7. discussion 47–8.

    Google Scholar 

  4. Kasahara M, Menon DK, Salmond CH, et al. Altered functional connectivity in the motor network after traumatic brain injury. Neurology. 2010;75(2):168–76.

    Google Scholar 

  5. Stippich C, Blatow M. Clinical functional MRI : presurgical functional neuroimaging. Berlin; New York: Springer; 2007.

    Google Scholar 

  6. Tieleman A, Deblaere K, Van Roost D, Van Damme O, Achten E. Preoperative fMRI in tumour surgery. Eur Radiol. 2009;19(10):2523–34.

    Google Scholar 

  7. Zentner J, Hufnagel A, Pechstein U, Wolf HK, Schramm J. Functional results after resective procedures involving the supplementary motor area. J Neurosurg. 1996;85(4):542–9.

    Google Scholar 

  8. Fontaine D, Capelle L, Duffau H. Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery. 2002;50(2):297–303. discussion 303–5.

    Google Scholar 

  9. Krainik A, Lehericy S, Duffau H, et al. Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology. 2003;60(4):587–94.

    Google Scholar 

  10. Bannur U, Rajshekhar V. Post operative supplementary motor area syndrome: clinical features and outcome. Br J Neurosurg. 2000;14(3):204–10.

    Google Scholar 

  11. Brennan NP. Preparing the paitent for the fMRI study and optimization of paradigm selection and delivery. In: Holodny AI, editor. Functional neuroimaging. New York: Informia Healthcare; 2008. p. 13–21.

    Google Scholar 

  12. Dassonville P, Zhu XH, Ugurbil K, Kim SG, Ashe J. Functional activation in motor cortex reflects the direction and the degree of handedness (vol 94, pg 14015, 1997). Proc Natl Acad Sci U S A. 1998;95(19):11499.

    Google Scholar 

  13. Matsuzaka Y, Aizawa H, Tanji J. A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J Neurophysiol. 1992;68(3):653–62.

    Google Scholar 

  14. Luppino G, Matelli M, Camarda RM, Gallese V, Rizzolatti G. Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J Comp Neurol. 1991;311(4):463–82.

    Google Scholar 

  15. Fried I, Katz A, McCarthy G, et al. Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci. 1991;11(11):3656–66.

    Google Scholar 

  16. Mitz AR, Wise SP. The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J Neurosci. 1987;7(4):1010–21.

    Google Scholar 

  17. Arienzo D, Babiloni C, Ferretti A, et al. Somatotopy of anterior cingulate cortex (ACC) and supplementary motor area (SMA) for electric stimulation of the median and tibial nerves: an fMRI study. Neuroimage. 2006;33(2):700–5.

    Google Scholar 

  18. Chainay H, Krainik A, Tanguy ML, Gerardin E, Le Bihan D, Lehericy S. Foot, face and hand representation in the human supplementary motor area. Neuroreport. 2004;15(5):765–9.

    Google Scholar 

  19. Rijntjes M, Dettmers C, Buchel C, Kiebel S, Frackowiak RSJ, Weiller C. A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci. 1999;19(18):8043–8.

    Google Scholar 

  20. Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci. 2008;9(11):856–69.

    Google Scholar 

  21. Tanji J, Kurata K. Comparison of movement-related activity in 2 cortical motor areas of primates. J Neurophysiol. 1982;48(3):633–53.

    Google Scholar 

  22. Brinkman C, Porter R. Supplementary motor area in the monkey: activity of neurons during performance of a learned motor task. J Neurophysiol. 1979;42(3):681–709.

    Google Scholar 

  23. Tharin S, Golby A. Functional brain mapping and its applications to neurosurgery. Neurosurgery. 2007;60(4):185–201.

    Google Scholar 

  24. VanOostende S, VanHecke P, Sunaert S, Nuttin B, Marchal G. FMRI studies of the supplementary motor area and the premotor cortex. Neuroimage. 1997;6(3):181–90.

    Google Scholar 

  25. Peck KK, Bradbury M, Hou BL, Brennan NP, Holodny AI. The role of the supplementary motor area (SMA) in the execution of primary motor activities in brain tumor patients: functional MRI detection of time-resolved differences in the hemodynamic response. Med Sci Monit. 2009;15(4):Mt55–62.

    Google Scholar 

  26. Tanji J. The supplementary motor area in the cerebral-cortex. Neurosci Res. 1994;19(3):251–68.

    Google Scholar 

  27. Peck KK, Bradbury M, Psaty EL, Brennan NR, Holodny AI. Joint activation of the supplementary motor area and presupplementary motor area during simultaneous motor and language functional MRI. Neuroreport. 2009;20(5):487–91.

    Google Scholar 

  28. Bittar RG, Olivier A, Sadikot AF, Andermann F, Pike GB, Reutens DC. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg. 1999;91(6):915–21.

    Google Scholar 

  29. Pujol J, Deus J, Acebes JJ, et al. Identification of the sensorimotor cortex with functional MRI: frequency and actual contribution in a neurosurgical context. J Neuroimaging. 2008;18(1):28–33.

    Google Scholar 

  30. Petrella JR, Shah LM, Harris KM, et al. Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology. 2006;240(3):793–802.

    Google Scholar 

  31. Kim PE, Singh M. Functional magnetic resonance imaging for brain mapping in neurosurgery. Neurosurg Focus. 2003;15(1):E1.

    Google Scholar 

  32. Birn RM, Cox RW, Bandettini PA. Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. Neuroimage. 2002;15(1):252–64.

    Google Scholar 

  33. Rombouts SARB, Barkhof F, Scheltens P. Clinical applications of functional brain MRI. Oxford: Oxford University Press; 2007.

    Google Scholar 

  34. Zarahn E, Aguirre G, DEsposito M. A trial-based experimental design for fMRI. Neuroimage. 1997;6(2):122–38.

    Google Scholar 

  35. Aguirre G, D’Esposito M. Experimental design for brain fMRI. In: Moonen CTW, Bandettini PA, editors. Functional MRI. Berlin: Springer; 2000. p. 369–80.

    Google Scholar 

  36. Liu TT, Frank LR, Wong EC, Buxton RB. Detection power, estimation efficiency, and predictability in event-related fMRI. Neuroimage. 2001;13(4):759–73.

    Google Scholar 

  37. Marquart M, Birn R, Haughton V. Single- and multiple-event paradigms for identification of motor cortex activation. AJNR Am J Neuroradiol. 2000;21(1):94–8.

    Google Scholar 

  38. Stippich C. Presurgical functional magnetic resonance imaging (fMRI). Clin Neuroradiol. 2007;2:69–87.

    Google Scholar 

  39. Krings T, Reinges MHT, Erberich S, et al. Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry. 2001;70(6):749–60.

    Google Scholar 

  40. Roux FE, Boulanouar K, Ibarrola D, Tremoulet M, Chollet F, Berry I. Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. J Neurol Neurosurg Psychiatry. 2000;69(4):453–63.

    Google Scholar 

  41. Holodny AI, Schulder M, Liu WC, Maldjian JA, Kalnin AJ. Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol. 1999;20(4):609–12.

    Google Scholar 

  42. Krings T, Topper R, Willmes K, Reinges MHT, Gilsbach JM, Thron A. Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology. 2002;58(3):381–90.

    Google Scholar 

  43. Schreiber A, Hubbe U, Ziyeh S, Henning J. The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR Am J Neuroradiol. 2000;21:1055–63.

    Google Scholar 

  44. Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol. 2000;21(8):1415–22.

    Google Scholar 

  45. Korvenoja A, Kirveskari E, Aronen HJ, et al. Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology. 2006;241(1):213–22.

    Google Scholar 

  46. Kober H, Nimsky C, Moller M, Hastreiter P, Fahlbush R, Ganslandt O. Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage. 2001;14(5):1214–28.

    Google Scholar 

  47. Petrovich N, Holodny AI, Tabar V, et al. Discordance between functional magnetic resonance imaging during silent speech tasks and intraoperative speech arrest. J Neurosurg. 2005;103(2):267–74.

    Google Scholar 

  48. Parmar H, Sitoh YY, Yeo TT. Combined magnetic resonance tractography and functional magnetic resonance imaging in evaluation of brain tumors involving the motor system. J Comput Assist Tomogr. 2004;28(4):551–6.

    Google Scholar 

  49. Stippich C, Kress B, Ochmann H, Tronnier V, Sartor K. Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application. Rofo. 2003;175(8):1042–50.

    Google Scholar 

  50. Ulmer JL, Salvan CV, Mueller WM, et al. The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat. 2004;3(6):567–76.

    Google Scholar 

  51. Holodny AI, Schwartz TH, Ollenschleger M, Liu WC, Schulder M. Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation - case illustration. J Neurosurg. 2001;95(6):1082.

    Google Scholar 

  52. Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf Y. Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage. 2006;30(4):1100–11.

    Google Scholar 

  53. Xie J, Chen XZ, Jiang T, et al. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with gliomas involving the motor cortical areas. Chin Med J (Engl). 2008;121(7):631–5.

    Google Scholar 

  54. Gasser T, Ganslandt O, Sandalcioglu E, Stolke D, Fahlbusch R, Nimsky C. Intraoperative functional MRI: implementation and preliminary experience. Neuroimage. 2005;26(3):685–93.

    Google Scholar 

  55. Krishnan R, Raabe A, Hattingen E, et al. Functional magnetic resonance imaging integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery. 2004;55(4):904–14.

    Google Scholar 

  56. Feigl GC, Safavi-Abbasi S, Gharabaghi A, et al. Real-time 3 T fMRI data of brain tumour patients for intra-operative localization of primary motor areas. Eur J Surg Oncol. 2008;34(6):708–15.

    Google Scholar 

  57. Schwindack C, Siminotto E, Meyer M, et al. Real-time functional magnetic resonance imaging (rt-fMRI) in patients with brain tumours: preliminary findings using motor and language paradigms. Br J Neurosurg. 2005;19(1):25–32.

    Google Scholar 

  58. Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D. Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J Neurophysiol. 2010;103(5):2544–56.

    Google Scholar 

  59. Schaechter JD, Stokes C, Connell BD, Perdue K, Bonmassar G. Finger motion sensors for fMRI motor studies. Neuroimage. 2006;31(4):1549–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei I. Holodny M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gabriel, M., Brennan, N.P., Peck, K.K., Holodny, A.I. (2014). BOLD fMRI for Presurgical Planning: Part II. In: Pillai, J. (eds) Functional Brain Tumor Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5858-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5858-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5857-0

  • Online ISBN: 978-1-4419-5858-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics