Skip to main content

Advanced Diffusion MR Tractography for Surgical Planning

  • Chapter
  • First Online:
Functional Brain Tumor Imaging

Abstract

A goal of neurosurgery is to preserve both functionally important cortices and the underlying white matter tracts. Damage to either portion of a pathway may cause postoperative functional deficit. Diffusion MR tractography remains the only noninvasive method of determining the subcortical course of white matter tracts. Tractography based upon diffusion MR can follow a specific white matter tract from voxel to voxel in 3D through the brain. Diffusion MR tractography complements other surgical mapping techniques which are restricted to the grey matter. However, the quality and clinical utility of diffusion tractography is dependent on the type of MRI acquisition and post-processing algorithm used. Traditional diffusion tensor imaging (DTI) is widely used for surgical planning, but fails to accurately represent the microstructure of crossing white matter tracts. The insufficiencies of DTI have motivated the development of advanced diffusion MR techniques capable of accurately describing the microstructure and connectivity of complex white matter tracts. This chapter describes how advanced diffusion MR improves white matter tract localization and enhances surgical planning.

It is critical that the capabilities and limitations of advanced diffusion MR be understood so the technique can be safely used for surgical planning. The first section of this chapter describes the motivation for translating advanced diffusion MR into a tool for surgical planning. The second section reviews the acquisition and reconstruction of various advanced diffusion MR techniques. The final section describes how high angular resolution diffusion imaging (HARDI) tractography has been translated into a routinely used tool for surgical planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.

    Article  PubMed  CAS  Google Scholar 

  2. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15(7–8):435–55.

    Article  PubMed  Google Scholar 

  3. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage. 2007;34(1):144–55.

    Article  PubMed  CAS  Google Scholar 

  4. Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2001;45(6):935–9.

    Article  PubMed  CAS  Google Scholar 

  5. Tuch DS, Reese TG, Wiegell MR, Wedeen VJ. Diffusion MRI of complex neural architecture. Neuron. 2003;40(5):885–95.

    Article  PubMed  CAS  Google Scholar 

  6. Basser PJ, Pierpaoli C. A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med. 1998;39(6):928–34.

    Article  PubMed  CAS  Google Scholar 

  7. Wedeen VJ, Hagmann P, Tseng WI, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 2005;54(6):1377–86.

    Article  PubMed  Google Scholar 

  8. Lin C, Wedeen VJ, Chen J, Yao C, Tseng WI. Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. Neuroimage. 2003;19(3): 482–95.

    Article  PubMed  Google Scholar 

  9. Kuo L, Chen J, Wedeen VJ, Tseng WI. Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage. 2008;41(1):7–18.

    Article  PubMed  Google Scholar 

  10. Reese TG, Benner T, Wang R, Feinberg DA, Wedeen VJ. Halving imaging time of whole brain diffusion spectrum imaging and diffusion tractography using simultaneous image refocusing in EPI. J Magn Reson Imaging. 2009;29(3):517–22.

    Article  PubMed  Google Scholar 

  11. Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N. Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn Reson Med. 2010;64(2):554–66. PMCID: PMC2911516.

    PubMed  Google Scholar 

  12. Fritzsche KH, Laun FB, Meinzer H, Stieltjes B. Opportunities and pitfalls in the quantification of fiber integrity: what can we gain from Q-ball imaging? Neuroimage. 2010;51(1):242–51.

    Article  PubMed  Google Scholar 

  13. Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52(6):1358–72.

    Article  PubMed  Google Scholar 

  14. Hess CP, Mukherjee P, Han ET, Xu D, Vigneron DB. Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn Reson Med. 2006;56(1):104–17.

    Article  PubMed  Google Scholar 

  15. Tournier JD, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 2004;23(3):1176–85.

    Article  PubMed  Google Scholar 

  16. Sakaie KE, Lowe MJ. An objective method for regularization of fiber orientation distributions derived from diffusion-weighted MRI. Neuroimage. 2007;34(1):169–76.

    Article  PubMed  Google Scholar 

  17. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48(4):577–82.

    Article  PubMed  Google Scholar 

  18. Anderson AW. Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn Reson Med. 2005;54(5):1194–206.

    Article  PubMed  Google Scholar 

  19. Özarslan E, Shepherd TM, Vemuri BC, Blackband SJ, Mareci TH. Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). Neuroimage. 2006;31(3):1086–103.

    Article  PubMed  Google Scholar 

  20. Wu Y, Alexander AL. Hybrid diffusion imaging. Neuroimage. 2007;36(3):617–29.

    Article  PubMed  Google Scholar 

  21. Berman JI, Berger MS, Mukherjee P, Henry RG. Diffusion-tensor imaging—guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg Pediatr. 2004;101(1):66–72.

    Article  Google Scholar 

  22. Mikuni N, Okada T, Enatsu R, Miki Y, Hanakawa T, Urayama S, Kikuta K, Takahashi JA, Nozaki K, Fukuyama H, Hashimoto N. Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg. 2007;106(4):593–8.

    Article  PubMed  Google Scholar 

  23. Mikuni N, Okada T, Nishida N, Taki J, Enatsu R, Ikeda A, Miki Y, Hanakawa T, Fukuyama H, Hashimoto N. Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors. J Neurosurg. 2007;106(1):128–33.

    Article  PubMed  Google Scholar 

  24. Bello L, Gambini A, Castellano A, Carrabba G, Acerbi F, Fava E, Giussani C, Cadioli M, Blasi V, Casarotti A, Papagno C, Gupta AK, Gaini S, Scotti G, Falini A. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage. 2008;39(1):369–82.

    Article  PubMed  Google Scholar 

  25. Holodny AI, Schwartz TH, Ollenschleger M, Liu WC, Schulder M. Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg. 2001;95(6):1082.

    Article  PubMed  CAS  Google Scholar 

  26. Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Takano T, Kirino T, Kawahara N, Morita A. Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg. 2005;102(4):664–72.

    Article  PubMed  Google Scholar 

  27. Campbell JS, Siddiqi K, Rymar VV, Sadikot AF, Pike GB. Flow-based fiber tracking with diffusion tensor and q-ball data: validation and comparison to principal diffusion direction techniques. Neuroimage. 2005; 27(4):725–36.

    Article  PubMed  Google Scholar 

  28. Berman JI, Chung S, Mukherjee P, Hess CP, Han ET, Henry RG. Probabilistic streamline q-ball tractography using the residual bootstrap. Neuroimage. 2008;39(1):215–22.

    Article  PubMed  Google Scholar 

  29. Perrin M, Poupon C, Cointepas Y, Rieul B, Golestani N, Pallier C, Riviere D, Constantinesco A, Le Bihan D, Mangin JF. Fiber tracking in q-ball fields using regularized particle trajectories. Inf Process Med Imaging. 2005;19:52–63.

    Article  PubMed  CAS  Google Scholar 

  30. Descoteaux M, Deriche R, Knosche TR, Anwander A. Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging. 2009;28(2):269–86.

    Article  PubMed  Google Scholar 

  31. Parker GJM, Alexander DC. Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philos Trans R Soc Lond B Biol Sci. 2005;360(1457):893–902.

    Article  PubMed  Google Scholar 

  32. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, Pandya DN, Hagmann P, D’Arceuil H, de Crespigny AJ. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 2008;41(4):1267–77.

    Article  PubMed  CAS  Google Scholar 

  33. Jeurissen B, Leemans A, Jones DK, Tournier J, Sijbers J. Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp. 2011;32(3):461–79.

    Article  PubMed  Google Scholar 

  34. Guye M, Parker GJ, Symms M, Boulby P, Wheeler-Kingshott CA, Salek-Haddadi A, Barker GJ, Duncan JS. Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage. 2003;19(4):1349–60.

    Article  PubMed  Google Scholar 

  35. Krishnan R, Raabe A, Hattingen E, Szelenyi A, Yahya H, Hermann E, Zimmermann M, Seifert V. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery. 2004;55(4):904–14. discusssion 914-5; 904–14; discusssion 914–5.

    Article  PubMed  Google Scholar 

  36. Schulder M, Maldjian JA, Liu WC, Holodny AI, Kalnin AT, Mun IK, Carmel PW. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg. 1998;89(3):412–8.

    Article  PubMed  CAS  Google Scholar 

  37. Ganslandt O, Buchfelder M, Hastreiter P, Grummich R, Fahlbusch R, Nimsky C. Magnetic source imaging supports clinical decision making in glioma patients. Clin Neurol Neurosurg. 2004;107(1):20–6.

    Article  PubMed  CAS  Google Scholar 

  38. Nagarajan S, Kirsch H, Lin P, Findlay A, Honma S, Berger MS. Preoperative localization of hand motor cortex by adaptive spatial filtering of magnetoencephalography data. J Neurosurg. 2008;109(2):228–37.

    Article  PubMed  Google Scholar 

  39. Schiffbauer H, Berger MS, Ferrari P, Freudenstein D, Rowley HA, Roberts TP. Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. J Neurosurg. 2002;97(6):1333–42.

    Article  PubMed  Google Scholar 

  40. Engel AK, Moll CK, Fried I, Ojemann GA. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci. 2005;6(1):35–47.

    Article  PubMed  CAS  Google Scholar 

  41. Wieshmann UC, Symms MR, Parker GJ, Clark CA, Lemieux L, Barker GJ, Shorvon SD. Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumour. J Neurol Neurosurg Psychiatry. 2000;68(4):501–3.

    Article  PubMed  CAS  Google Scholar 

  42. Nimsky C, Ganslandt O, Hastreiter P, Wang RP, Benner T, Sorensen AG, Fahlbusch R. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures—initial experience. Radiology. 2005;234(1):218–25.

    Article  PubMed  Google Scholar 

  43. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr. 1998;22(1):139–52.

    Article  PubMed  CAS  Google Scholar 

  44. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.

    Article  PubMed  CAS  Google Scholar 

  45. Berman J. Diffusion MR tractography as a tool for surgical planning. Magn Reson Imaging Clin N Am. 2009;17(2):205–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey I. Berman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berman, J.I. (2014). Advanced Diffusion MR Tractography for Surgical Planning. In: Pillai, J. (eds) Functional Brain Tumor Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5858-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5858-7_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5857-0

  • Online ISBN: 978-1-4419-5858-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics