Skip to main content

Gene- and Cell-Based Approaches for Neurodegenerative Disease

  • Chapter
Frontiers in Brain Repair

Abstract

Neurodegenerative diseases comprise an important group of chronic diseases that increase in incidence with rising age. In particular, the two most common neurodegenerative diseases are Alzheimer’s disease and Parkinson’s disease, both of which will be discussed below. A third, Huntington’s disease, occurs infrequently, but has been studied intensely. Each of these diseases shares characteristics which are also generalizeable to other neurodegenerative diseases: accumulation of proteinaceous substances that leads inexorably to selective neuronal death and decline in neural function. Treatments for these diseases have historically focused on symptomatic relief, but recent advances in molecular research have identified more specific targets. Additionally, stem cell therapy, immunotherapy and trophic-factor delivery provide avenues for neuronal protection that may alter the natural progression of these devastating illnesses. Upcoming clinical trials will evaluate treatment strategies and provide hope that translational research will decrease the onset of debilitating disability associated with neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suh H, Consiglio A, Ray J et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 2007; 1(5):515–28.

    Article  CAS  PubMed  Google Scholar 

  2. Bachman DL, Wolf PA, Linn R et al. Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham Study. Neurology 1992; 42(1):115–9.

    CAS  PubMed  Google Scholar 

  3. Evans DA. Estimated prevalence of Alzheimer’s disease in the United States. Milbank Q 1990; 68(2):267–89.

    Article  CAS  PubMed  Google Scholar 

  4. Hebert LE, Scherr PA, Bienias JL et al. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003; 60(8):1119–22.

    Article  PubMed  Google Scholar 

  5. Perl DP. Neuropatholog y of Alzheimer’s disease and related disorders. Neurol Clin 2000; 18(4):847–64.

    Article  CAS  PubMed  Google Scholar 

  6. Lee VM, Balin BJ, Otvos L Jr et al. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 1991; 251(4994):675–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wisniewski K, Jervis GA, Moretz RC et al. Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 1979; 5(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  8. Santacruz K, Lewis J, Spires T et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005; 309(5733):476–81.

    Article  CAS  PubMed  Google Scholar 

  9. Tanzi RE. Tangles and neurodegenerative disease—a surprising twist. N Engl J Med 2005; 353(17):1853–5.

    Article  CAS  PubMed  Google Scholar 

  10. Bennett DA, Schneider JA, Wilson RS et al. Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch Neurol 2004; 61(3):378–84.

    Article  PubMed  Google Scholar 

  11. Grober E, Dickson D, Sliwinski MJ et al. Memory and mental status correlates of modified Braak staging. Neurobiol Aging 1999; 20(6):573–9.

    Article  CAS  PubMed  Google Scholar 

  12. Lleo A, Berezovska O, Growdon JH et al. Clinical, pathological and biochemical spectrum of Alzheimer disease associated with PS-1 mutations. Am J Geriatr Psychiatry 2004; 12(2):146–56.

    PubMed  Google Scholar 

  13. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3):885–90.

    Article  CAS  PubMed  Google Scholar 

  14. Levy-Lahad E, Wasco W, Poorkaj P et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995; 269(5226):973–7.

    Article  CAS  PubMed  Google Scholar 

  15. Selkoe DJ. Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci 2000; 924:17–25.

    Article  CAS  PubMed  Google Scholar 

  16. Rissman RA, Poon WW, Blurton-Jones M et al. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 2004; 114(1):121–30.

    CAS  PubMed  Google Scholar 

  17. Masliah E, Terry R. The role of synaptic proteins in the pathogenesis of disorders of the central nervous system. Brain Pathol 1993; 3(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  18. Terry RD, Masliah E, Salmon DP et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30(4):572–80.

    Article  CAS  PubMed  Google Scholar 

  19. Terry RD, Peck A, DeTeresa R et al. Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 1981; 10(2):184–92.

    Article  CAS  PubMed  Google Scholar 

  20. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4):239–59.

    Article  CAS  PubMed  Google Scholar 

  21. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5(6):525–35.

    Article  PubMed  Google Scholar 

  22. Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med 1998; 339(15):1044–53.

    Article  CAS  PubMed  Google Scholar 

  23. Van Den Eeden SK, Tanner CM, Bernstein AL et al. Incidence of Parkinson’s disease: variation by age, gender and race/ethnicity. Am J Epidemiol 2003; 157(11):1015–22.

    Article  Google Scholar 

  24. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999; 56(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  25. Langston JW. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 2006; 59(4):591–6.

    Article  PubMed  Google Scholar 

  26. Lippa CF, Duda JE, Grossman M et al. DLB and PDD boundary issues: diagnosis, treatment, molecular pathology and biomarkers. Neurology 2007; 68(11):812–9.

    Article  CAS  PubMed  Google Scholar 

  27. Apaydin H, Ahlskog JE, Parisi JE et al. Parkinson disease neuropathology: later-developing dementia and loss of the levodopa response. Arch Neurol 2002; 59(1):102–12.

    Article  PubMed  Google Scholar 

  28. Braak H, Braak E, Yilmazer D et al. Amygdala pathology in Parkinson’s disease. Acta Neuropathol 1994; 88(6):493–500.

    Article  CAS  PubMed  Google Scholar 

  29. Braak H, de Vos RA, Jansen EN et al. Neuropathological hallmarks of Alzheimer’s and Parkinson’s diseases. Prog Brain Res 1998; 117:267–85.

    Article  CAS  PubMed  Google Scholar 

  30. Pollanen MS, Dickson DW, Bergeron C. Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 1993; 52(3):183–91.

    Article  CAS  PubMed  Google Scholar 

  31. Cole NB, Murphy DD. The cell biology of alpha-synuclein: a sticky problem? Neuromolecular Med 2002; 1(2):95–109.

    Article  CAS  PubMed  Google Scholar 

  32. Golbe LI. Alpha-synuclein and Parkinson’s disease. Mov Disord 1999; 14(1):6–9.

    Article  CAS  PubMed  Google Scholar 

  33. Braak H, Rub U, Jansen Steur EN et al. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 2005; 64(8):1404–10.

    CAS  PubMed  Google Scholar 

  34. Del Tredici K, Rub U, De Vos RA et al. Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 2002; 61(5):413–26.

    PubMed  Google Scholar 

  35. Langston JW, Ballard P, Tetrud JW et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219(4587):979–80.

    Article  CAS  PubMed  Google Scholar 

  36. Pifl C, Schingnitz G, Hornykiewicz O. Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neuroscience 1991; 44(3):591–605.

    Article  CAS  PubMed  Google Scholar 

  37. Kruger R, Kuhn W, Muller T et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998; 18(2):106–8.

    Article  CAS  PubMed  Google Scholar 

  38. Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276(5321):2045–7.

    Article  CAS  PubMed  Google Scholar 

  39. Zarranz JJ, Alegre J, Gomez-Esteban JC et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004; 55(2):164–73.

    Article  CAS  PubMed  Google Scholar 

  40. Farrer M, Kachergus J, Forno L et al. Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 2004; 55(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  41. Singleton AB, Farrer M, Johnson J et al. Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003; 302(5646):841.

    Article  CAS  PubMed  Google Scholar 

  42. Farrer M, Chan P, Chen R et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 2001; 50(3):293–300.

    Article  CAS  PubMed  Google Scholar 

  43. Leroy E, Boyer R, Auburger G et al. The ubiquitin pathway in Parkinson’s disease. Nature 1998; 395(6701):451–2.

    Article  CAS  PubMed  Google Scholar 

  44. van de Warrenburg BP, Lammens M, Lucking CB et al. Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology 2001; 56(4):555–7.

    PubMed  Google Scholar 

  45. Kitada T, Asakawa S, Hattori N et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392(6676):605–8.

    Article  CAS  PubMed  Google Scholar 

  46. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003; 302(5646):819–22.

    Article  CAS  PubMed  Google Scholar 

  47. Valente EM, Abou-Sleiman PM, Caputo V et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004; 304(5674):1158–60.

    Article  CAS  PubMed  Google Scholar 

  48. Bonifati V, Rizzu P, van Baren MJ et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003; 299(5604):256–9.

    Article  CAS  PubMed  Google Scholar 

  49. Betarbet R, Sherer TB, MacKenzie G et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000; 3(12):1301–6.

    Article  CAS  PubMed  Google Scholar 

  50. Conway KA, Rochet JC, Bieganski RM et al. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 2001; 294(5545):1346–9.

    Article  CAS  PubMed  Google Scholar 

  51. Greenamyre JT, Hastings TG. Biomedicine. Parkinson’s—divergent causes, convergent mechanisms. Science 2004; 304(5674):1120–2.

    Article  CAS  PubMed  Google Scholar 

  52. Sherer TB, Betarbet R, Stout AK et al. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002; 22(16):7006–15.

    CAS  PubMed  Google Scholar 

  53. Trottier Y, Lutz Y, Stevanin G et al. Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 1995; 378(6555):403–6.

    Article  CAS  PubMed  Google Scholar 

  54. Snell RG, MacMillan JC, Cheadle J P et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 1993; 4(4):393–7.

    Article  CAS  PubMed  Google Scholar 

  55. Zuhlke C, Riess O, Schroder K et al. Expansion of the (CAG)n repeat causing Huntington’s disease in 352 patients of German origin. Hum Mol Genet 1993; 2(9):1467–9.

    Article  CAS  PubMed  Google Scholar 

  56. DiFiglia M, Sapp E, Chase KO et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277(5334):1990–3.

    Article  CAS  PubMed  Google Scholar 

  57. Krobitsch S, Lindquist S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 2000; 97(4):1589–94.

    Article  CAS  PubMed  Google Scholar 

  58. Aylward EH, Sparks BF, Field KM et al. Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 2004; 63(1):66–72.

    CAS  PubMed  Google Scholar 

  59. Kipps CM, Duggins AJ, Mahant N et al. Progression of structural neuropathology in preclinical Huntington’s disease: a tensor based morphometry study. J Neurol Neurosurg Psychiatry 2005; 76(5):650–5.

    Article  CAS  PubMed  Google Scholar 

  60. Reddy PH, Williams M, Charles V et al. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet 1998; 20(2):198–202.

    Article  CAS  PubMed  Google Scholar 

  61. Ordway JM, Tallaksen-Greene S, Gutekunst CA et al. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 1997; 91(6):753–63.

    Article  CAS  PubMed  Google Scholar 

  62. DiFiglia M, Sapp E, Chase K et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 1995; 14(5):1075–81.

    Article  CAS  PubMed  Google Scholar 

  63. Trottier Y, Devys D, Imbert G et al. Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat Genet 1995; 10(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  64. Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol 1998; 57(5):369–84.

    Article  CAS  PubMed  Google Scholar 

  65. Mukai H, Isagawa T, Goyama E et al. Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells. Proc Natl Acad Sci USA 2005; 102(31):10887–92.

    Article  CAS  PubMed  Google Scholar 

  66. Arrasate M, Mitra S, Schweitzer ES et al. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004; 431(7010):805–10.

    Article  CAS  PubMed  Google Scholar 

  67. Kaytor MD, Wilkinson KD, Warren ST. Modulating huntingtin half-life alters polyglutamine-dependent aggregate formation and cell toxicity. J Neurochem 2004; 89(4):962–73.

    Article  CAS  PubMed  Google Scholar 

  68. Menalled LB, Sison JD, Dragatsis I et al. Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol 2003; 465(1):11–26.

    Article  CAS  PubMed  Google Scholar 

  69. Van Raamsdonk JM, Pearson J, Slow EJ et al. Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci 2005; 25(16):4169–80.

    Article  PubMed  CAS  Google Scholar 

  70. Zuccato C, Liber D, Ramos C et al. Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol Res 2005; 52(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  71. Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 2003; 991:1–14.

    Article  CAS  PubMed  Google Scholar 

  72. Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005; 28:223–50.

    Article  CAS  PubMed  Google Scholar 

  73. Walton NM, Sutter BM, Chen HX et al. Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 2006; 133(18):3671–81.

    Article  CAS  PubMed  Google Scholar 

  74. Bjornson CR, Rietze RL, Reynolds BA et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283(5401):534–7.

    Article  CAS  PubMed  Google Scholar 

  75. Mezey E, Chandross KJ, Harta G et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290(5497):1779–82.

    Article  CAS  PubMed  Google Scholar 

  76. Dezawa M, Kanno H, Hoshino M et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113(12):1701–10.

    CAS  PubMed  Google Scholar 

  77. Li JY, Christophersen NS, Hall V et al. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 2008; 31(3):146–53.

    Article  PubMed  CAS  Google Scholar 

  78. Smidt MP, Burbach JP. How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 2007; 8(1):21–32.

    Article  CAS  PubMed  Google Scholar 

  79. Roy NS, Cleren C, Singh SK et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 2006; 12(11):1259–68.

    Article  CAS  PubMed  Google Scholar 

  80. Akerud P, Canals JM, Snyder EY et al. Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J Neurosci 2001; 21(20):8108–18.

    CAS  PubMed  Google Scholar 

  81. Muller FJ, Snyder EY, Loring JF. Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 2006; 7(1):75–84.

    Article  PubMed  CAS  Google Scholar 

  82. Freed CR, Greene PE, Breeze RE et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344(10):710–9.

    Article  CAS  PubMed  Google Scholar 

  83. Olanow CW, Goetz CG, Kordower JH et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003; 54(3):403–14.

    Article  PubMed  Google Scholar 

  84. Mendez I, Dagher A, Hong M et al. Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases. J Neurosurg 2002; 96(3):589–96.

    Google Scholar 

  85. Mendez I, Hong M, Smith S et al. Neural transplantation cannula and microinjector system: experimental and clinical experience. Technical note. J Neurosurg 2000; 92(3):493–9.

    CAS  Google Scholar 

  86. Mendez I, Sanchez-Pernaute R, Cooper O et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 2005; 128(Pt 7):1498–510.

    Article  PubMed  Google Scholar 

  87. Dunnett SB. Functional analysis of fronto-striatal reconstruction by striatal grafts. Novartis Found Symp 2000; 231:21–41; discussion-52.

    Article  CAS  PubMed  Google Scholar 

  88. Brasted PJ, Watts C, Torres EM et al. Behavioural recovery following striatal transplantation: effects of postoperative training and P-zone volume. Exp Brain Res 1999; 128(4):535–8.

    Article  CAS  PubMed  Google Scholar 

  89. Dobrossy MD, Dunnett SB. Striatal grafts alleviate deficits in response execution in a lateralised reaction time task. Brain Res Bull 1998; 47(6):585–93.

    Article  CAS  PubMed  Google Scholar 

  90. Dunnett SB, White A. Striatal grafts alleviate bilateral striatal lesion deficits in operant delayed alternation in the rat. Exp Neurol 2006; 199(2):479–89.

    Article  PubMed  Google Scholar 

  91. Fine A, Dunnett SB, Bjorklund A et al. Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease. Proc Natl Acad Sci USA 1985; 82(15):5227–30.

    Article  CAS  PubMed  Google Scholar 

  92. Itakura T, Umemoto M, Kamei I et al. Autotransplantation of peripheral cholinergic neurons into the brains of Alzheimer model rats. Acta Neurochir (Wien) 1992; 115(3–4):127–32.

    Article  CAS  Google Scholar 

  93. Weiner HL, Frenkel D. Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 2006; 6(5):404–16.

    Article  CAS  PubMed  Google Scholar 

  94. Frenkel D, Balass M, Katchalski-Katzir E et al. High affinity binding of monoclonal antibodies to the sequential epitope EFRH of beta-amyloid peptide is essential for modulation of fibrillar aggregation. J Neuroimmunol 1999; 95(1–2):136–42.

    Article  CAS  PubMed  Google Scholar 

  95. Frenkel D, Balass M, Solomon B. N-terminal EFRH sequence of Alzheimer’s beta-amyloid peptide represents the epitope of its anti-aggregating antibodies. J Neuroimmunol 1998; 88(1–2):85–90.

    Article  CAS  PubMed  Google Scholar 

  96. Solomon B, Koppel R, Frankel D et al. Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci USA 1997; 94(8):4109–12.

    Article  CAS  PubMed  Google Scholar 

  97. Solomon B, Koppel R, Hanan E et al. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc Natl Acad Sci USA 1996; 93(1):452–5.

    Article  CAS  PubMed  Google Scholar 

  98. Janus C, Pearson J, McLaurin J et al. A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 2000; 408(6815):979–82.

    Article  CAS  PubMed  Google Scholar 

  99. Morgan D, Diamond DM, Gottschall PE et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 2000; 408(6815):982–5.

    Article  CAS  PubMed  Google Scholar 

  100. Schenk D, Barbour R, Dunn W et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400(6740):173–7.

    Article  CAS  PubMed  Google Scholar 

  101. Bayer AJ, Bullock R, Jones RW et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 2005; 64(1):94–101.

    CAS  PubMed  Google Scholar 

  102. Gilman S, Koller M, Black RS et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005; 64(9):1553–62.

    Article  CAS  PubMed  Google Scholar 

  103. Hock C, Konietzko U, Streffer J R et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 2003; 38(4):547–54.

    Article  CAS  PubMed  Google Scholar 

  104. Orgogozo JM, Gilman S, Dartigues JF et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003; 61(1):46–54.

    CAS  PubMed  Google Scholar 

  105. Ferrer I, Boada Rovira M, Sanchez Guerra ML et al. Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol 2004; 14(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  106. Masliah E, Hansen L, Adame A et al. Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 2005; 64(1):129–31.

    CAS  PubMed  Google Scholar 

  107. Dass B, Olanow CW, Kordower JH. Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson’s disease. Neurology 2006; 66(10 Suppl 4):S89–103.

    Google Scholar 

  108. Tuszynski MH, U HS, Alksne J et al. Growth factor gene therapy for Alzheimer disease. Neurosurg Focus 2002; 13(5):e5.

    Article  PubMed  Google Scholar 

  109. Tuszynski MH. Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol 2002; 1(1):51–7.

    Article  PubMed  Google Scholar 

  110. Tuszynski MH, Thal L, Pay M et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005; 11(5):551–5.

    Article  CAS  PubMed  Google Scholar 

  111. Consiglio A, Gritti A, Dolcetta D et al. Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc Natl Acad Sci USA 2004; 101(41):14835–40.

    Article  CAS  PubMed  Google Scholar 

  112. Lie DC, Dziewczapolski G, Willhoite AR et al. The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 2002; 22(15):6639–49.

    CAS  PubMed  Google Scholar 

  113. Zhao M, Momma S, Delfani K et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 2003; 100(13):7925–30.

    Article  CAS  PubMed  Google Scholar 

  114. Kaplitt MG, Feigin A, Tang C et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 2007; 369(9579):2097–105.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaudia Urbaniak Hunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hunter, K.U., Yarbrough, C., Ciacci, J. (2010). Gene- and Cell-Based Approaches for Neurodegenerative Disease. In: Jandial, R. (eds) Frontiers in Brain Repair. Advances in Experimental Medicine and Biology, vol 671. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5819-8_10

Download citation

Publish with us

Policies and ethics