Skip to main content

The Navigation Potential of Ground Feature Tracking

  • Chapter
  • First Online:
Dynamics of Information Systems

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 40))

Summary

Navigation System aiding using bearing measurements of stationary ground features is investigated. The objective is to quantify the navigation information obtained by tracking ground features over time. The answer is provided by an analysis of the attendant observability problem. The degree of Inertial Navigation System aiding action is determined by the degree of observability provided by the measurement arrangement. The latter is strongly influenced by the nature of the available measurements—in our case, bearing measurements of stationary ground objects—the trajectory of the aircraft, and the length of the measurement interval. It is shown that when one known ground object is tracked, the observability Grammian is rank deficient and thus full Inertial Navigation System aiding action is not available. However, if baro altitude is available and an additional vertical gyroscope is used to provide an independent measurement of the aircraft’s pitch angle, a data driven estimate of the complete navigation state can be obtained. If two ground features are simultaneously tracked the observability Grammian is full rank and all the components of the navigation state vector are positively impacted by the external measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pacher, M.: INS aiding by tracking an unknown ground object—theory. In: Proceedings of the 2003 American Control Conference, Denver, CO, June 4–6, 2003

    Google Scholar 

  2. Pacher, M., Polat, M.: Bearing—only measurements for INS aiding: theory for the three dimensional case. In: Proceedings of the 2003 AIAA Guidance, Navigation and Control Conference, Austin, Texas, August 11–14, 2003, AIAA paper No. 2003-5354

    Google Scholar 

  3. Pacher, M.: Optical flow for INS aiding: the 3D case. In: Proceedings of the 44th Israel Conference on Aerospace Sciences, Tel Aviv, Israel, February 25–26, 2004

    Google Scholar 

  4. Pacher, M.: Bearing—only measurements for INS aiding: the 3D case. In: Proceedings of the American Control Conference, Boston, MA, June 30–July 2, 2004

    Google Scholar 

  5. Pacher, M.: INS aiding using bearing—only measurements of known ground object. In: Proceedings of the 17th IFAC Symposium on Automatic Control in Aerospace, June 25–29, 2007, Tulouse, France

    Google Scholar 

  6. Pacher, M., Porter, A., Polat, M.: INS aiding using bearing—only measurements of an unknown ground object. ION J. Navig. 53(1), 1–20 (2006)

    Google Scholar 

  7. Veth, M., Raquet, J., Pacher, M.: Stochastic constraints for fast image correspondance search with uncertain terrain model. IEEE Trans. Aerosp. Electron. Syst. 42(3), 973–982 (2006)

    Article  Google Scholar 

  8. Veth, M., Raquet, J., Pacher, M.: Correspondance search mitigation using feature space anti-aliasing. In: Proceedings of the 63rd Annual Meeting of the Institute of Navigation, Cambridge, MA, April 23–25, 2007

    Google Scholar 

  9. Bar-Itzhack, I.Y., Berman, N.: Control theoretic approach to inertial navigation systems. J. Guid. Control Dyn. 11(3), 237–245 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rhee, I., Abdel-Hafez, M.F., Speyer, J.L.: Observability of an integrated GPS/INS during maneuvers. IEEE Trans. Aerosp. Electron. Syst. 40(2), 526–534 (2004)

    Article  Google Scholar 

  11. Nielsen, M., Raquet, J., Pacher, M.: Development and flight test of a robust optical–inertial navigation system using low cost sensors. In: ION GNNS 2008, Savannah, GA, September 16–19, 2008

    Google Scholar 

  12. Brockett, R.: Finite Dimensional Linear Systems. Wiley, New York (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meir Pachter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pachter, M., Mutlu, G. (2010). The Navigation Potential of Ground Feature Tracking. In: Hirsch, M., Pardalos, P., Murphey, R. (eds) Dynamics of Information Systems. Springer Optimization and Its Applications, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5689-7_15

Download citation

Publish with us

Policies and ethics