Skip to main content

Electrophysiological Correlates of Intensity Resolution Under Forward Masking

  • Conference paper
  • First Online:
The Neurophysiological Bases of Auditory Perception

Abstract

Nonsimultaneous masking can severely impair auditory intensity resolution, but the effect strongly depends on the stimulus configuration. For example, an intense forward masker causes a pronounced impairment in intensity resolution for standards presented at intermediate levels, but not for standards presented at low and high levels, resulting in a midlevel hump pattern (Zeng et al., Hear Res 55:223-230, 1991). Several aspects of the phenomenon cannot be explained by mechanisms in the auditory periphery. For instance, backward maskers cause midlevel humps at least as large as the humps caused by forward maskers. The present experiment was aimed at studying the relation between the effects of forward maskers on intensity resolution and on the slow components N1 and P2 of the auditory evoked potential. The EEG was recorded while listeners performed a one-interval intensity discrimination task in quiet and under forward masking. The 90-dB SPL masker caused a stronger reduction in sensitivity for a 60-dB SPL than for a 30-dB SPL standard, reflecting the midlevel hump. The effect of the masker on the N1 and the P2 amplitude paralleled the behavioral effects. The amplitude reduction caused by the masker was stronger for the 60-dB SPL than for the 30-dB SPL standard, thus also following a midlevel hump pattern. Listeners who showed a strong N1 midlevel hump tended to also exhibit a strong midlevel hump in sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler G, Adler J (1989) Influence of stimulus intensity on AEP components in the 80- to 200-millisecond latency range. Audiology 28:316–324

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Dunlop CW (1969) Inhibition in the medial geniculate body of the cat. Exp Brain Res 7:68–83

    Article  PubMed  CAS  Google Scholar 

  • Baddeley AD (1966) Short-term memory for word sequences as a function of acoustic semantic and formal similarity. Q J Exp Psychol 18:362–365

    Article  PubMed  CAS  Google Scholar 

  • Braida LD, Durlach NI (1972) Intensity perception: II. Resolution in one-interval paradigms. J Acoust Soc Am 51:483–502

    Article  Google Scholar 

  • Brosch M, Schulz A, Scheich H (1998) Neuronal mechanisms of auditory backward recognition masking in macaque auditory cortex. Neuroreport 9:2551–2555

    Article  PubMed  CAS  Google Scholar 

  • Brosch M, Schulz A, Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. J Neurophysiol 82:1542–1559

    PubMed  CAS  Google Scholar 

  • Budd TW, Barry RJ, Gordon E, Rennie C, Michie PT (1998) Decrement of the N1 auditory event-related potential with stimulus repetition: habituation vs. refractoriness. Int J Psychophysiol 31:51–68

    Article  PubMed  CAS  Google Scholar 

  • Carlyon RP, Beveridge HA (1993) Effects of forward masking on intensity discrimination, frequency discrimination, and the detection of tones in noise. J Acoust Soc Am 93:2886–2895

    Article  PubMed  CAS  Google Scholar 

  • Cowan N (1984) On short and long auditory stores. Psychol Bull 96:341–370

    Article  PubMed  CAS  Google Scholar 

  • Crowley KE, Colrain IM (2004) A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol 115:732–744

    Article  PubMed  Google Scholar 

  • Davis H, Zerlin S (1966) Acoustic relations of the human vertex potential. J Acoust Soc Am 39:109–116

    Article  PubMed  CAS  Google Scholar 

  • Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 96:433–458

    Article  PubMed  CAS  Google Scholar 

  • Durlach NI, Braida LD (1969) Intensity perception: I. Preliminary theory of intensity resolution. J Acoust Soc Am 46:372–383

    Article  PubMed  CAS  Google Scholar 

  • Giard MH, Perrin F, Echallier JF, Thevenet M, Froment JC, Pernier J (1994) Dissociation of temporal and frontal components in the human auditory N1 wave: a scalp current density and dipole model analysis. Electroencephalogr Clin Neurophysiol 92:238–252

    Article  PubMed  CAS  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Hansen JC (1983) Separation of overlapping waveforms having known temporal distributions. J Neurosci Methods 9:127–139

    Article  PubMed  CAS  Google Scholar 

  • Harris DM, Dallos P (1979) Forward masking of auditory-nerve fiber responses. J Neurophysiol 42:1083–1107

    PubMed  CAS  Google Scholar 

  • Hautus MJ (1995) Corrections for extreme proportions and their biasing effects on estimated values of d′. Behav Res Methods Instrum Comput 27:46–51

    Article  Google Scholar 

  • Jesteadt W, Nizami L, Schairer KS (2003) A measure of internal noise based on sample discrimination. J Acoust Soc Am 114:2147–2157

    Article  PubMed  Google Scholar 

  • Kidd G Jr, Mason CR, Arbogast TL (2002) Similarity, uncertainty, and masking in the identification of nonspeech auditory patterns. J Acoust Soc Am 111:1367–1376

    Article  PubMed  Google Scholar 

  • Marascuilo LA (1970) Extensions of the significance test for one-parameter signal detection hypotheses. Psychometrika 35:237–243

    Article  Google Scholar 

  • Massaro DW (1975) Experimental psychology and information processing. Rand McNally College Pub, Chicago

    Google Scholar 

  • Mulert C, Jäger L, Propp S, Karch S, Störmann S, Pogarell O, Möller HJ, Juckel G, Hegerl U (2005) Sound level dependence of the primary auditory cortex: simultaneous measurement with 61-channel EEG and fMRI. Neuroimage 28:49–58

    Article  PubMed  Google Scholar 

  • Näätänen R, Alho K (1997) Mismatch negativity - the measure for central sound representation accuracy. Audiol Neurootol 2:341–353

    Article  PubMed  Google Scholar 

  • Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590

    Article  PubMed  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    Article  PubMed  Google Scholar 

  • Näätänen R, Winkler I (1999) The concept of auditory stimulus representation in cognitive neuroscience. Psychol Bull 125:826–859

    Article  PubMed  Google Scholar 

  • Novak G, Ritter W, Vaughan HG (1992) Mismatch detection and the latency of temporal judgments. Psychophysiology 29:398–411

    Article  PubMed  CAS  Google Scholar 

  • Nuding SC, Chen GD, Sinex DG (1999) Monaural response properties of single neurons in the chinchilla inferior colliculus. Hear Res 131:89–106

    Article  PubMed  CAS  Google Scholar 

  • Oberfeld D (2006) Forward-masked intensity discrimination: evidence from one-interval and two-interval tasks. In: Langer S, Scholl W, Wittstock V (eds) Fortschritte der Akustik: Plenarvorträge und Fachbeiträge der 32. Deutschen Jahrestagung für Akustik DAGA ‘06, Braunschweig. Deutsche Gesellschaft für Akustik, Berlin, pp 309–310

    Google Scholar 

  • Oberfeld D (2007) Loudness changes induced by a proximal sound: loudness enhancement, loudness recalibration, or both? J Acoust Soc Am 121:2137–2148

    Article  PubMed  Google Scholar 

  • Oberfeld D (2008) The mid-difference hump in forward-masked intensity discrimination. J Acoust Soc Am 123:1571–1581

    Article  PubMed  Google Scholar 

  • Oberfeld D (2009) The decision process in forward-masked intensity discrimination: evidence from molecular analyses. J Acoust Soc Am 125:294–303

    Article  PubMed  Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked-potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190

    Article  PubMed  CAS  Google Scholar 

  • Plack CJ, Viemeister NF (1992) Intensity discrimination under backward masking. J Acoust Soc Am 92:3097–3101

    Article  PubMed  CAS  Google Scholar 

  • Relkin EM, Doucet JR (1991) Recovery from prior stimulation. I: Relationship to spontaneous firing rates of primary auditory neurons. Hear Res 55:215–222

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS (1991) Physiological-morphological properties of the cochlear nucleus. In: Altschuler RA, Bobbin RP, Hoffman DW, Clopton BM (eds) Neurobiology of hearing: the central auditory system. Raven Press, New York, pp 47–77

    Google Scholar 

  • Schlauch RS, Lanthier N, Neve J (1997) Forward-masked intensity discrimination: duration effects and spectral effects. J Acoust Soc Am 102:461–467

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE, Mendelson J, Raggio MW, Brosch M, Krueger K (1997) Temporal processing in cat primary auditory cortex. Acta Otolaryngol (Stockh) 117:54–60

    Article  Google Scholar 

  • Shore SE (1995) Recovery of forward-masked responses in ventral cochlear nucleus neurons. Hear Res 82:31–43

    Article  PubMed  CAS  Google Scholar 

  • Tanis DC (1971) A signal-detection analysis of auditory evoked potentials in an intensity discrimination task. Unpublished PhD thesis, Washington University, Saint Louis, MO

    Google Scholar 

  • Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445

    Article  PubMed  CAS  Google Scholar 

  • Zeng FG, Shannon RV (1995) Possible origins of the non-monotonic intensity discrimination function in forward masking. J Acoust Soc Am 82:216–224

    CAS  Google Scholar 

  • Zeng FG, Turner CW (1992) Intensity discrimination in forward masking. J Acoust Soc Am 92:782–787

    Article  PubMed  CAS  Google Scholar 

  • Zeng FG, Turner CW, Relkin EM (1991) Recovery from prior stimulation II: effects upon intensity discrimination. Hear Res 55:223–230

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Oberfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Oberfeld, D. (2010). Electrophysiological Correlates of Intensity Resolution Under Forward Masking. In: Lopez-Poveda, E., Palmer, A., Meddis, R. (eds) The Neurophysiological Bases of Auditory Perception. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5686-6_10

Download citation

Publish with us

Policies and ethics