Skip to main content

Elucidating the In Vivo Targets of Photorhabdus Toxins in Real-Time Using Drosophila Embryos

  • Conference paper
  • First Online:
Recent Advances on Model Hosts

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 710))

Abstract

The outcome of any bacterial infection, whether it is clearance of the infecting pathogen, establishment of a persistent infection, or even death of the host, is as dependent on the host as on the pathogen (Finlay and Falkow 1989). To infect a susceptible host bacterial pathogens express virulence factors, which alter host cell physiology and allow the pathogen to establish a nutrient-rich niche for growth and avoid clearance by the host immune response. However survival within the host often results in tissue damage, which to some cases accounts for the disease-specific pathology. For many bacterial pathogens the principal determinants of virulence and elicitors of host tissue damage are soluble exotoxins, which allow bacteria to penetrate into deeper tissue or pass through a host epithelial or endothelial barrier. Therefore, exploring the complex interplay between host tissue and bacterial toxins can help us to understand infectious disease and define the contributions of the host immune system to bacterial virulence. In this chapter, we describe a new model, the Drosophila embryo, for addressing a fundamental issue in bacterial pathogenesis, the elucidation of the in vivo targets of bacterial toxins and the monitoring of the first moments of the infection process in real-time. To develop this model, we used the insect and emerging human pathogen Photorhabdus asymbiotica and more specifically we characterised the initial cross-talk between the secreted cytotoxin Mcf1 and the embryonic hemocytes. Mcf1 is a potent cytotoxin which has been detected in all Photorhabdus strains isolated so far, which can rapidly kill insects upon injection. Despite several in vitro tissue culture studies, the biology of Mcf1 in vivo is not well understood. Furthermore, despite the identification of many Photorhabdus toxins using recombinant expression in E. coli (Waterfield et al. 2008), very few studies address the molecular mechanism of action of these toxins in relation to specific immune responses in vivo in the insect model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bataillé L, Augé B, Ferjoux G, Haenlin M, Waltzer L (2005) Resolving embryonic blood cell fate choice in Drosophila: interplay of GCM and RUNX factors. Development 132(20):4635–4644

    Article  PubMed  Google Scholar 

  • Blow NS, Salomon RN, Garrity K, Reveillaud I, Kopin A et al (2005) Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera. PLoS Pathog 1:e8

    Article  PubMed  Google Scholar 

  • Brandt SM, Dionne MS, Khush RS, Pham LN, Vigdal TJ et al (2004) Secreted bacterial effectors and host-produced Eiger/TNF drive death in a Salmonella-infected fruit fly. PLoS Biol 2:e418

    Article  PubMed  Google Scholar 

  • Brugirard-Ricaud K, Duchaud E, Givaudan A, Girard PA, Kunst F, Boemare N, Brehélin M, Zumbihl R (2005) Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Cell Microbiol 7(3):363–371

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116(2):167–179

    Article  PubMed  CAS  Google Scholar 

  • Ciche TA, Ensign JC (2003) For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl Environ Microbiol 69(4):1890–1897

    Article  PubMed  CAS  Google Scholar 

  • Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall DH (2008) Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 74(8):2275–2287

    Article  PubMed  CAS  Google Scholar 

  • Daborn PJ, Waterfield N, Silva CP, Au CP, Sharma S, Ffrench-Constant RH (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci USA 99(16):10742–10747

    Google Scholar 

  • Dong Y, Taylor HE, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 4(7):e229

    Article  PubMed  Google Scholar 

  • Dowling AJ, Daborn PJ, Waterfield NR, Wang P, Streuli CH et al (2004) The insecticidal toxin makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. Cell Microbiol 6:345–353

    Article  PubMed  CAS  Google Scholar 

  • Dowling AJ, Waterfield NR, Hares MC, Le Goff G, Streuli CH et al (2007) The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain. Cell Microbiol 9:2470–2484

    Article  PubMed  CAS  Google Scholar 

  • Eleftherianos I, Millichap PJ, ffrench-Constant RH, Reynolds SE (2006a) RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Dev Comp Immunol 30(12):1099–1107

    Article  PubMed  CAS  Google Scholar 

  • Eleftherianos I, Marokhazi J, Millichap PJ, Hodgkinson AJ, Sriboonlert A, ffrench-Constant RH, Reynolds SE (2006b) Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochem Mol Biol 36(6):517–525

    Article  PubMed  CAS  Google Scholar 

  • Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, ffrench-Constant RH, Reynolds SE (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104(7):2419–2424

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    Article  PubMed  CAS  Google Scholar 

  • Farmer JJ 3rd, Jorgensen JH, Grimont PA, Akhurst RJ, Poinar GO Jr, Ageron E, Pierce GV, Smith JA, Carter GP, Wilson KL et al (1989) Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J Clin Microbiol 27(7):1594–1600

    PubMed  Google Scholar 

  • Finlay BB, Falkow S (1989) Common themes in microbial pathogenicity. Microbiol Rev 53(2):210–230

    PubMed  CAS  Google Scholar 

  • Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE (1999) Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. Luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. Temperate subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 49 Pt 4:1645–1656

    Article  PubMed  CAS  Google Scholar 

  • Fleming V, Feil E, Sewell AK, Day N, Buckling A et al (2006) Agr interference between clinical Staphylococcus aureus strains in an insect model of virulence. J Bacteriol 188:7686–7688

    Article  PubMed  CAS  Google Scholar 

  • Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    Article  PubMed  CAS  Google Scholar 

  • Frandsen JL, Gunn B, Muratoglu S, Fossett N, Newfeld SJ (2008) Salmonella pathogenesis reveals that BMP signaling regulates blood cell homeostasis and immune responses in Drosophila. Proc Natl Acad Sci USA 105:14952–14957

    Article  PubMed  CAS  Google Scholar 

  • Gerrard JG, Vohra R, Nimmo GR (2003) Identification of Photorhabdus asymbiotica in cases of human infection. Commun Dis Intell 27(4):540–541

    PubMed  Google Scholar 

  • Gerrard J, Waterfield N, Vohra R, ffrench-Constant R (2004) Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes Infect 6:229–237

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643

    Article  PubMed  CAS  Google Scholar 

  • Hallem EA, Rengarajan M, Ciche TA, Sternberg PW (2007) Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr Biol 17(10):898–904, Epub 3 May 2007

    Article  PubMed  CAS  Google Scholar 

  • Holz A, Bossinger B, Strasser T, Janning W, Klapper R (2003) The two origins of hemocytes in Drosophila. Development 130(20):4955–4962

    Article  PubMed  CAS  Google Scholar 

  • Jacinto A, Wood W, Balayo T, Turmaine M, Martinez-Arias A, Martin P (2000) Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr Biol 10(22):1420–1426

    Article  PubMed  CAS  Google Scholar 

  • Jacinto A, Wood W, Woolner S, Hiley C, Turner L, Wilson C, Martinez-Arias A, Martin P (2002) Dynamic analysis of actin cable function during Drosophila dorsal closure. Curr Biol 12(14):1245–1250

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Ji D, Cho S, Park Y (2005) Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J Invertebr Pathol 89(3):258–264

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Park SY, Heo YJ, Cho YH (2008) Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA. Infect Immun 76:4152–4162

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto T (2001) Conditional modification of behaviour in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47:81–92

    Article  PubMed  CAS  Google Scholar 

  • Mandal L, Dumstrei K, Hartenstein V (2004) Role of FGFR signaling in the morphogenesis of the Drosophila visceral musculature. Dev Dyn 231(2):342–348

    Google Scholar 

  • Olofsson B, Page DT (2005) Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity. Dev Biol 279(1):233–243

    Article  PubMed  CAS  Google Scholar 

  • Paladi M, Tepass U (2004) Function of Rho GTPases in embryonic blood cell migration in Drosophila. J Cell Sci 117(Pt 26):6313–6326

    Article  PubMed  CAS  Google Scholar 

  • Peel MM, Alfredson DA, Gerrard JG, Davis JM, Robson JM, McDougall RJ, Scullie BL, Akhurst RJ (1999) Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J Clin Microbiol 37(11):3647–3653

    PubMed  CAS  Google Scholar 

  • Pielage JF, Powell KR, Kalman D, Engel JN (2008) RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization. PLoS Pathog 4(3):e1000031

    Article  PubMed  Google Scholar 

  • Shirasu-Hiza MM, Schneider DS (2007) Confronting physiology: how do infected flies die? Cell Microbiol 9(12):2775–2783

    Article  PubMed  CAS  Google Scholar 

  • Silva CP, Waterfield NR, Daborn PJ, Dean P, Chilver T, Au CP, Sharma S, Potter U, Reynolds SE, ffrench-Constant RH (2002) Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta. Cell Microbiol 4(6):329–339

    Article  PubMed  CAS  Google Scholar 

  • Stramer B, Wood W, Galko MJ, Redd MJ, Jacinto A, Parkhurst SM, Martin P (2005) Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J Cell Biol 168(4):567–573

    Article  PubMed  CAS  Google Scholar 

  • Stuart LM, Boulais J, Charriere GM, Hennessy EJ, Brunet S, Jutras I, Goyette G, Rondeau C, Letarte S, Huang H, Ye P, Morales F, Kocks C, Bader JS, Desjardins M, Ezekowitz RA (2007) A systems biology analysis of the Drosophila phagosome. Nature 445(7123):95–101

    Google Scholar 

  • Tepass U, Fessler LI, Aziz A, Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120:1829–1837

    PubMed  CAS  Google Scholar 

  • Vlisidou I, Dowling AJ, Evans IR, Waterfield N, ffrench-Constant RH, Wood W (2009) Drosophila embryos as model systems for monitoring bacterial infection in real time. PLoS Pathog 5(7):e1000518

    Article  PubMed  Google Scholar 

  • Waterfield NR, Sanchez-Contreras M, Eleftherianos I, Dowling A, Yang G, Wilkinson P, Parkhill J, Thomson N, Reynolds SE, Bode HB, Dorus S, ffrench-Constant RH (2008) Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci USA 105(41):15967–15972

    Article  PubMed  CAS  Google Scholar 

  • Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574

    Article  PubMed  CAS  Google Scholar 

  • Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309(5742):1874–1878

    Article  PubMed  CAS  Google Scholar 

  • Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC (2004) Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118(5):619–633

    Article  PubMed  CAS  Google Scholar 

  • Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL (2007) A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell 130(6):1134–1145

    Article  PubMed  CAS  Google Scholar 

  • Wood W, Jacinto A (2007) Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat Rev Mol Cell Biol 8(7):542–551

    Article  PubMed  CAS  Google Scholar 

  • Woolner S, Jacinto A, Martin P (2005) The small GTPase Rac plays multiple roles in epithelial sheet fusion–dynamic studies of Drosophila dorsal closure. Dev Biol 282(1):163–173

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Vlisidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Vlisidou, I., Waterfield, N., Wood, W. (2012). Elucidating the In Vivo Targets of Photorhabdus Toxins in Real-Time Using Drosophila Embryos. In: Mylonakis, E., Ausubel, F., Gilmore, M., Casadevall, A. (eds) Recent Advances on Model Hosts. Advances in Experimental Medicine and Biology, vol 710. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5638-5_6

Download citation

Publish with us

Policies and ethics