Skip to main content

Electrochemical Micromachining and Microstructuring of Aluminum and Anodic Alumina

  • Chapter
  • First Online:
Electrodeposition

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 48))

Abstract

At a time when natural recourses are getting scarce and the impact of human civilization on the environment is increasing, the cost and abundance of raw materials have to be considered in every industry. Since the discovery of the electrolytic production of aluminum in the late nineteenth century, Al has been employed for manufacturing a variety of products ranging from household appliances to airplanes. The electrometallurgical production of Al consumes a large amount of electrical energy and is associated with hazardous emissions. Nevertheless, Al remains widely used in industry due to its abundance on our planet, durability, and useful electrical, gravimetric, thermal, and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. 100 (1953) 411.

    Article  CAS  Google Scholar 

  2. J. W. Diggle, T. G. Downie, and C. W. Goulding, Chem. Rev. 69 (1969) 365.

    Article  CAS  Google Scholar 

  3. A. Despic and V. Parkhutik, in Modern Aspects of Electrochemistry, Vol. 20, Ed. by J. O’M. Bockris, R. E. White, and B. E. Conway, Plenum Press, New York (1989) 401.

    Google Scholar 

  4. H. Takahashi, M. Sakairi, and T. Kikuchi, in Modern Aspects of Electrochemistry, Vol. 46, Ed. by S.-I. Pyun and J.-W. Lee, Springer, New York (2009) 59.

    Google Scholar 

  5. S. Krongelb, L. T. Romankiw, E. D. Perfecto, and K. H. Wong, in Microelectronic Packaging, Ed. by M. Datta, T. Osaka, and J. M. Schultze, CRC Press, Boca Raton (2005) 337.

    Google Scholar 

  6. P. P. Mardilovich, A. N. Govyadinov, V. V. Kozharinov, and R. Paterson, in Advances in Science and Technology. Ceramics: Charting the Future, Ed. by P. Vincenzini, Techna, Florence, Italy (1995) 2763.

    Google Scholar 

  7. P. Mardilovich, D. Routkevitch, and A. Govyadinov, in Microfabricated Systems and MEMS V, Proceedings by Electrochemical Society, 2000–19, Ed. P. J. Hesketh et al. (2000) 33.

    Google Scholar 

  8. D. Routkevitch, A. Govyadinov, and P. Mardilovich, in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Nov. 5–10, 2000, Orlando, Florida, Vol. 2, ASME, New York (2000) 39.

    Google Scholar 

  9. S. Tan, M. Reed, H. Han, and R. Boudreau, in Proceedings of IEEE MEMS’95 (1995) 267.

    Google Scholar 

  10. A.-P. Li, F. Müller, A. Birner, K. Nelsh, and U. Gösele, Adv. Mater. 11 (1999) 483.

    Article  CAS  Google Scholar 

  11. M. J. Madou, Fundamentals of Micromachining: The Science of Miniaturization, 2nd edition, CRC Press, Boca Raton (2002) 519.

    Google Scholar 

  12. R. Alkire and H. Deligianni, J. Electrochem. Soc. 135 (1988) 1093.

    Article  CAS  Google Scholar 

  13. M. Datta and L. T. Romankiw, J. Electrochem. Soc. 136 (1989) 285C.

    Article  CAS  Google Scholar 

  14. A. C. West, C. Madore, M. Matlosz, and D. Landolt, J. Electrochem. Soc. 139 (1992) 499.

    Article  CAS  Google Scholar 

  15. M. Datta, R. V. Shenoy, and L. T. Romankiw, J. Eng. Ind. 118 (1996) 29.

    Article  Google Scholar 

  16. R. V. Shenoy, M. Datta, and L. T. Romankiw, J. Electrochem. Soc. 143 (1996) 2305.

    Article  CAS  Google Scholar 

  17. M. Datta, IBM J. Res. Dev. 42 (1998) 655.

    Article  CAS  Google Scholar 

  18. C. Madore, O. Piotrowski, and D. Landolt, J. Electrochem. Soc. 146 (1999) 2526.

    Article  CAS  Google Scholar 

  19. Y. Ferri, O. Piotrowski, P.-F. Chauvy, C. Madore, and D. Landolt, J. Micromech. Microeng. 11 (2001) 522.

    Article  CAS  Google Scholar 

  20. O. Zinger, P.-F. Chauvy, and D. Landolt, J. Electrochem. Soc. 150 (2003) B495.

    Article  CAS  Google Scholar 

  21. D. Landolt, P.-F. Chauvy, and O. Zinger, Electrochim. Acta 48 (2003) 3185.

    Article  CAS  Google Scholar 

  22. P.-F. Chauvy and D. Landolt, J. Appl. Electrochem. 33 (2003) 135.

    Article  CAS  Google Scholar 

  23. J. J. Kelly and C. H. de Minjer, J. Electrochem. Soc. 122 (1975) 931.

    Article  CAS  Google Scholar 

  24. P. E. Riley, J. Electrochem. Soc. 140 (1993) 1518.

    Article  CAS  Google Scholar 

  25. W. E. Frank, Microelectron. Eng. 33 (1997) 85.

    Article  CAS  Google Scholar 

  26. G. C. Schwartz and V. J. Platter, J. Electrochem. Soc. 122 (1975) 1508.

    Article  CAS  Google Scholar 

  27. S. Lazarouk, I. Baranov, G. Maiello, E. Proverbio, G. Decesare, and A. Ferrari, Electrochem. Soc. 141 (1994) 2556.

    Article  CAS  Google Scholar 

  28. S. Lazarouk, S. Katsouba, A. Demainaovich, V. Stanovski, S. Viotech, V. Vysotski, and V. Ponomar, Solid-State Electron. 44 (2000) 815.

    Article  CAS  Google Scholar 

  29. S. Lazarouk, S. Katsouba, A. Leshok, A. Demainaovich, V. Stanovski, S. Viotech, V. Vysotski, and V. Ponomar, Microelectron. Eng. 50 (2000) 321.

    Article  CAS  Google Scholar 

  30. P. Mardilovich, A. Govyadinov, and D. Routkevitch, in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Nov. 5–10, 2000, Orlando, Florida, Vol. 2, ASME, New York (2000) 45.

    Google Scholar 

  31. D. A. Brevnov, T. C. Gamble, P. Atanassov, G. P. López, T. M. Bauer, Z. A. Chaudhury, C. D. Schwappach, and L. E. Mosley, Electrochem. Solid-State Lett. 9 (2006) B35.

    Article  CAS  Google Scholar 

  32. J. T. Cosse, G. P. López, P. Atanassov, T. M. Bauer, Z. A. Chaudhury, C. D. Schwappach, L. E. Mosley, and D. A. Brevnov, J. Micromech. Microeng. 17 (2007) 89.

    Article  CAS  Google Scholar 

  33. J. P. O’Sullivan and G. C. Wood, Proc. R. Soc. Lond. A. 317 (1970) 511.

    Article  Google Scholar 

  34. V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys. 25 (1992) 1258.

    Article  CAS  Google Scholar 

  35. F. Li, L. Zhang and R. M. Metzger, Chem. Mater. 10 (1998) 2470.

    Article  CAS  Google Scholar 

  36. J. E. Houser and K. R. Hebert, J. Electrochem. Soc. 153 (2006) B566.

    Article  CAS  Google Scholar 

  37. H.-H. Strehblow, C. M. Melliar-Smith, and W. M. Augustyniak, J. Electrochem. Soc. 125 (1978) 915.

    Article  CAS  Google Scholar 

  38. R. L. Chiu, P. H. Chang, and C. H. Tung, J. Electrochem. Soc. 142 (1995) 525.

    Article  CAS  Google Scholar 

  39. H. Habazaki, K. Shimizu, P. Skeldon, G. E. Thompson, G. C. Wood, and X. Zhou, Trans. Ins. Met. Finish. 75 (1997) 18.

    CAS  Google Scholar 

  40. T. Kikuchi, M. Sakairi, H. Takahashi, Y. Abe, and N. Katayama, J. Electrochem. Soc. 148 (2001) C740.

    Article  CAS  Google Scholar 

  41. T. A. Renshaw, J. Electrochem. Soc. 108 (1961) 185.

    Article  CAS  Google Scholar 

  42. J. O. Dukovic, in Advances in Electrochemical Science and Engineering, Vol. 3, Ed. by H. Gerischer and C. W. Tobias, VCH Publishers Inc., New York, NY (1994) 117.

    Google Scholar 

  43. A. C. West, M. Matlosz, and D. Landolt, J. Electrochem. Soc. 138 (1991) 728.

    Article  CAS  Google Scholar 

  44. S. Mehdizadeh, J. O. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. Y. Cheh, J. Electrochem. Soc. 139 (1992) 78.

    Article  CAS  Google Scholar 

  45. C. Madore and D. Landolt, J. Micromech. Microeng. 7 (1997) 270.

    Article  CAS  Google Scholar 

  46. G. C. Schwartz and V. J. Platter, J. Electrochem. Soc. 123 (1976) 34.

    Article  CAS  Google Scholar 

  47. D. A. Brevnov, T. C. Gamble, P. Atanassov, and L. E. Mosley, J. Electrochem. Soc. 153 (2006) C801.

    Article  CAS  Google Scholar 

  48. R. Akolkar, U. Landau, H. Kuo, and Y.-M. Wang J. Appl. Electrochem. 34 (2004) 807.

    Article  CAS  Google Scholar 

  49. A. J. Learn, J. Electrochem. Soc. 123 (1976) 894.

    Article  CAS  Google Scholar 

  50. D. R. Collins, S. R. Shortes, W. R. McMahon, R. C. Bracken, and T. C. Penn, J. Electrochem. Soc. 120 (1973) 521.

    Article  Google Scholar 

  51. V. Labunov, V. Sokol, V. Parkun, and A. Vorob’yova, Process for Making Multilevel Interconnectors of Electronic Components, U.S. Patent 5,580,825 (1996).

    Google Scholar 

  52. V. Surganov, A. Mozalev, and V. Boksha, Microelectron. Eng. 37–38 (1997) 335.

    Article  Google Scholar 

  53. A. I. Vorob’eva, V. A. Sokol, and V. M. Parkun, Russ. Microelectron. 3 (2003) 136 translated from Mikroelectronika 32 (2003) 177.

    Google Scholar 

  54. R. M. Swanson, S. K. Beckwith, R. A. Crane, W. D. Eaides, Y. H. Kwark, R. A. Sinton, and S. E. Swirhun, IEEE Trans. Electron Devices 31 (1984) 661.

    Article  Google Scholar 

  55. P. Verlinden, R. M. Swanson, R. A. Sinton, and D. E. Kane, in IEEE Photovoltaic Specialists Conference, Vol. 1, IEEE, Las Vegas, NV (1988) 532.

    Google Scholar 

  56. V. Surganov, IEEE Trans. Compon. Packag. Manuf. Technol. – Part B Adv. Packag. 17 (1994) 197.

    CAS  Google Scholar 

  57. S. D. Wijeyesekera, J. Jing, D. C. Benson, and T. Sasagawa, Thin Film Capacitors, U.S. Patent 6,404,615 B1 (2002).

    Google Scholar 

  58. X. Zhao, P. Jiang, S. Xie, L. Liu, W. Zhou, Y. Gao, L. Song, J. Wang, D. Liu, X. Dou, S. Luo, Z. Zhang, Y. Xiang, and G. Wanga, J. Electrochem. Soc. 152 (2005) B411.

    Article  CAS  Google Scholar 

  59. P. P. Mardilovich, A. N. Govyadinov, N. I. Mukhurov, A. M. Rzhevskii, and R. Paterson, J. Memb. Sci. 98 (1995) 131.

    Article  CAS  Google Scholar 

  60. K. Itaya, S. Sugavara, K. Arai, and S. Saito, J. Chem. Eng. Jpn. 17 (1984) 514.

    Article  CAS  Google Scholar 

  61. M. Mehmood, A. Rauf, M. A. Rasheed, S. Saeed, J. I. Akhter, J. Ahmad, and M. Aslam, Mater. Chem. Phys. 104 (2007) 306.

    Article  CAS  Google Scholar 

  62. R. Paterson et al. Permeable Anodic Alumina Film. PCT, GB 95/01646, WO 96/01684 (1996).

    Google Scholar 

  63. H. L. Lira and R. Paterson, J. Memb. Sci. 206 (2002) 375.

    Article  CAS  Google Scholar 

  64. J. H. Yuan, W. Chen, R. J. Hui, Y. L. Hu, and X. H. Xia, Electrochim. Acta 51 (2006) 4589.

    Article  CAS  Google Scholar 

  65. W. Chen, J. S. Wu, J. H. Yuan, X. H. Xia, and X. H. Lin, J. Electroanal. Chem. 600 (2007) 257.

    Article  CAS  Google Scholar 

  66. I. W. M. Brown, M. E. Bowden, T. Kemmitt, and K. J. D. MacKenzie, Curr. Appl. Phys. 6 (2006) 557.

    Article  Google Scholar 

  67. A. Kiechner, K. J. D. MacKenzie, I. W. M. Brown, T. Kemmitt, and M. E. Bowden, J. Memb. Sci. 287 (2007) 264.

    Article  Google Scholar 

  68. R. Ozao, M. Ochiai, H. Yoshida, Y. Ichimura, and T. Inada, J. Therm. Anal. Calorim. 64 (2001) 923.

    Article  CAS  Google Scholar 

  69. A. Govyadinov, P. Mardilovich, and D. Routkevitch, in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Nov. 5–10, 2000, Orlando, Florida, Vol. 2, ASME, New York (2000) 313.

    Google Scholar 

  70. A. N. Govyadinov, I. L. Grigorishin, and P. P. Mardilovich, in Proceedings of the 7th Conference of ITG Committee 5.7 “Vacuum Electronics and Displays”, 2–3 May 1995, Garmisch-Partenkirchen, Germany, ITG-Fachbericht, VDE, Verlag, 132 (1995) 161.

    Google Scholar 

  71. D. Routkevitch, A. Govyadinov, P. Mardilovich, S. Hooker, and K. Novogradecz, in Proceedings of the 198th Meeting of the Electrochemical Society, 22–27 October 2000, Phoenix, AZ, Abstract 1115 (2000).

    Google Scholar 

  72. D. Routkevitch et al., Nanostructured Ceramic Platform for Micromachined Devices and Device Arrays, U.S. Patent 6,705,152 (2004).

    Google Scholar 

  73. T. Yadav et al., Semiconductor and Device Nanotechnology and Methods for their Manufacture, U.S. Patent 6,946,197 (2004).

    Google Scholar 

  74. P. Mardilovich, A. Govyadinov, and D. Routkevitch, in Proceedings of the 198th Meeting of the Electrochemical Society, 22–27 October 2000, Phoenix, AZ, Abstract 1116 (2000).

    Google Scholar 

  75. I. L. Grigorishin, I. F. Kotova, and N. I. Mukhurov, Appl. Surf. Sci. 111 (1997) 101.

    Article  CAS  Google Scholar 

  76. N. I. Mukhurov, in Proceedings of Electronics and Radiophysics of Ultra-High Frequencies, 24–28 May 1999, IEEE, St. Petersburg, Russia (1999) 323.

    Google Scholar 

  77. I. L. Grigorishin, N. I. Mukhurov, O. M. Surmach, and I. F. Kotova, in Proceedings of the 7th International Vacuum Microelectronics Conference (IVMC’94), 4–7 July 1994, Revue “Le Vide, les Couches Minces”, Grenoble, France, Suppl. No. 271 (1994) 304.

    Google Scholar 

  78. I. L. Grigorishin, G. I. Efremov, N. I. Mukhurov, and P. E. Protas, in Proceedings of the 7th International Vacuum Microelectronics Conference (IVMC’94), 4–7 July 1994, Revue “Le Vide, les Couches Minces”, Grenoble, France, Suppl. No. 271 (1994) 308.

    Google Scholar 

  79. I. L. Grigorishin, N. I. Mukhurov, and I. F. Kotova, in Proceedings of the 7th Conference of ITG Committee 5.7 “Vacuum Electronics and Displays”, 2–3 May 1995, Garmisch-Partenkirchen, Germany, ITG-Fachbericht, VDE, Verlag 132 (1995) 167.

    Google Scholar 

  80. I. L. Grigorishin, N. I. Mukhurov, and I. F. Kotova, in Technical Digest of the 9th International Vacuum Microelectronics Conference, 7–12 July 1996, St. Petersburg, Russia (1996) 589.

    Google Scholar 

  81. I. L. Grigorishin, N. I. Mukhurov, and G. I. Efremov, in Technical Digest of the 9th International Vacuum Microelectronics Conference, 7–12 July 1996, St. Petersburg, Russia (1995) 593.

    Google Scholar 

  82. G. I. Efremov and N. I. Mukhurov, in Electronics, Circuits and Systems, Proceedings of ICECS’99, The 6th IEEE International Conference 2 (1999) 1047.

    Google Scholar 

Download references

Acknowledgments

Dmitri A. Brevnov is thankful to Prof. Harry O. Finklea (West Virginia University, Morgantown, WV, USA) and Prof. Plamen Atanassov (University of New Mexico (UNM), Albuquerque, NM, USA) for their mentoring. The financial support for Dr. Brevnov’s research at UNM was provided in part by Intel Corp. (Santa Clara, CA, USA), funded through Center for Micro-Engineered Materials (UNM). Peter Mardilovich thanks Dr. Alexander Govyadinov (Hewlett-Packard Company, Corvallis, OR, USA) for helpful discussions on the history of development of multilevel alumina ceramics in the National Academy of Sciences of Belarus in 1970s–1980s.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brevnov, D.A., Mardilovich, P. (2010). Electrochemical Micromachining and Microstructuring of Aluminum and Anodic Alumina. In: Djokic, S. (eds) Electrodeposition. Modern Aspects of Electrochemistry, vol 48. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5589-0_5

Download citation

Publish with us

Policies and ethics