Skip to main content

Mechanisms by Which Catecholamines Induce Growth in Gram-Negative and Gram-Positive Human Pathogens

  • Chapter
  • First Online:
Microbial Endocrinology

Abstract

Iron is essential for the growth of most bacteria, and its availability can determine the outcome of an infection. Pathogenic bacteria have evolved a variety of mechanisms to acquire this essential nutrient from host iron sequestering proteins such as transferrin and lactoferrin. Recently, this array of bacterial iron scavenging mechanisms has also been shown to include opportunistic use of catecholamine stress hormones and inotropes to directly acquire iron from transferrin and lactoferrin. Other mechanisms include catecholamine induction of novel bacterial growth inducers. This chapter considers in detail the several mechanisms by which catecholamines can stimulate the growth of infectious bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, M. T., and Armstrong, S. K. 2006. The Bordetella Bfe system: Growth and transcriptional response to siderophores, catechols, and neuroendocrine catecholamines. J. Bact.188:5731–5740

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M. T., and Armstrong, S. K. 2008. Norepinephrine mediates acquisition of transferrin-iron on Bordetella brontiseptica. J. Bacteriol. 190:3940–3947

    Article  PubMed  CAS  Google Scholar 

  • Bailey, M., Engler, H., and Sheridan, J. 2006. Stress induces the translocation of cutaneous and gastrointestinal microflora to secondary lymphoid organs of C57BL/6 mice. J. Neuroimmunol. 171:29–37

    Article  PubMed  CAS  Google Scholar 

  • Bearson, B. L., Bearson, S. M., Uthe, J. J., Dowd, S. E., Houghton, J. O., Lee, I., Toscano, M. J., and Lay Jr., D. C. 2008. Iron regulated genes of Salmonella enterica serovar Typhimurium in response to norepinephrine and the requirement of fepDGC for norepinephrine-enhanced growth. Microbes Infect. 10:807–816.

    Article  PubMed  CAS  Google Scholar 

  • Burton, C. L., Chhabra, S. R., Swift, S., Baldwin, T. J., Withers, H., Hill, S. J., and Williams, P. 2002. The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect. Immun. 70:5913–5923

    Article  PubMed  CAS  Google Scholar 

  • Clarke, M. B., Hughes, D. T., Zhu, C., Boedeker, E. C., and Sperandio, V. 2006. The QseC sensor kinase: a bacterial adrenergic receptor. Proc. Natl. Acad. Sci. U. S. A. 103:10420–10425

    Article  PubMed  CAS  Google Scholar 

  • Coulanges, V., Andre, P., and Vidon, D. J.-M. 1998. Effect of siderophores, catecholamines, and catechol compounds on Listeria spp. growth in iron-complexed medium. Biochem. Biophys. Res. Comm. 249:526–530

    Article  PubMed  CAS  Google Scholar 

  • Freestone, P. P., Haigh, R. D., Williams, P. H., and Lyte, M. 1999. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol. Lett. 172:53–60

    Article  PubMed  CAS  Google Scholar 

  • Freestone, P. P., Lyte, M., Neal, C. P., Maggs, A. F., Haigh, R. D., and Williams, P. H. 2000. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J. Bacteriol. 182:6091–6098

    Article  PubMed  CAS  Google Scholar 

  • Freestone, P. P., Williams, P. H., Haigh, R. D., Maggs, A. F., Neal, C. P., and Lyte, M. 2002. Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock 18:465–470

    Article  PubMed  Google Scholar 

  • Freestone, P. P., Haigh, R. D., Williams, P. H., and Lyte, M. 2003. Involvement of enterobactin in norepinephrine-mediated iron supply from transferrin to enterohaemorrhagic Escherichia coli. FEMS Microbiol. Lett. 222:39–43

    Article  PubMed  CAS  Google Scholar 

  • Freestone, P. P., Haigh, R. D., and Lyte, M. 2007a. Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol. 7:8

    Article  PubMed  Google Scholar 

  • Freestone, P. P., Haigh, R. D., and Lyte, M. 2007b. Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. FEMS Microbiol. Lett. 269:221–228

    Article  PubMed  CAS  Google Scholar 

  • Freestone, P. P. E., Walton, N., Haigh R. H., and Lyte, M. 2007c. Influence of dietary catechols on the growth of enteropathogenic bacteria. Int. J. Food Micro. 119: 159–169

    Article  CAS  Google Scholar 

  • Freestone, P. P., Sandrini, S. M., Haigh, R. D., and Lyte, M. 2008a. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 16:55–64

    Article  PubMed  CAS  Google Scholar 

  • Freestone, P. P. E., Haigh, R. D., and Lyte, M. 2008b. Catecholamine inotrope resuscitation of antibiotic-damaged staphylococci and its blockade by specific receptor ­antagonists. J. Infect. Dis. 197:2044–1052

    Article  Google Scholar 

  • Gerard, C., Chehhal, H., and Aplincourt, M., 1999. Stability of metal complexes with a ligand of biological interest: Noradrenaline. J. Chem. Res. S: 90–91

    Google Scholar 

  • Harris, R., Picton R., Singh, S., and Waring R. 2000. Activity of phenolsulfotransferases in the human gastrointestinal tract. Life Sci. 67: 2051–2057

    Article  PubMed  CAS  Google Scholar 

  • Kinney, K. S., Austin, C. E., Morton, D. S., and Sonnenfeld, G. 1999. Catecholamine enhancement of Aeromonas hydrophila growth. Microb. Pathog. 26: 85–91

    Article  CAS  Google Scholar 

  • Lacoste, A., Jalabert, F., Malham, S. K., Cueff, A., and Poulet, S. A. 2001. Stress and stress-induced neuroendocrine changes increase the susceptibility of juvenile oysters (Crassostrea gigas) to Vibrio splendidus. Appl. Environ. Microbiol. 67:2304–2309

    Article  CAS  Google Scholar 

  • Lambert, L., Perri, H., Halbrooks, P.J., and Mason, A.B. 2005. Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp. Biochem. Phys. 142: 129–141

    Article  Google Scholar 

  • Lyte, M., Frank, C. D., and Green, B. T. 1996. Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7. FEMS Microbiol. Lett. 139:155–161

    PubMed  CAS  Google Scholar 

  • Lyte, M., and Bailey M, T. 1997 Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma. J. Surg. Res. 70:195–201.

    Article  PubMed  CAS  Google Scholar 

  • Lyte, M., Freestone, P. P., Neal, C. P., Olson, B. A., Haigh, R. D., Bayston, R., and Williams, P. H., 2003. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 361:130–135

    Article  PubMed  CAS  Google Scholar 

  • Lyte, M. 2004. Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol. 12:14–20.

    Article  PubMed  CAS  Google Scholar 

  • Markel, T. A., Crisostosmo, P. R., Wang, M., Herring, C. M., Meldrum, K. K., Lillemoe, K. D., and Meldrum, D. R., 2007. The struggle for iron: gastrointestinal microbes modulate the host immune response during infection. J. Leukoc. Biol. 81:393–400

    Article  CAS  Google Scholar 

  • Neal, C. P., Freestone, P. P. E., Maggs, A. F., Haigh, R. D., Williams, P. H., and Lyte, M. 2001. Catecholamine inotropes as growth factors for Staphylococcus epidermidis and other coagulase-negative staphylococci. FEMS Microbiol. Lett. 194:163–169.

    Article  PubMed  CAS  Google Scholar 

  • Ratledge, C., and Dover, L.G. 2000. Iron metabolism in pathogenic bacteria. Ann. Rev. Microbiol. 54:881–941

    Article  CAS  Google Scholar 

  • Reissbrodt, R., Rienaecker, I., Romanova, J. M., Freestone, P. P. E., Haigh, R. D., Lyte, M., Tschäpe, H., and Williams, P. H. 2002. Resuscitation of Salmonella enterica serovar Typhimurium and Enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer. Appl. Environ. Microbiol. 68:4788–4794.

    Article  CAS  Google Scholar 

  • Reissbrodt, R., Raßbach, A., Burghardt, B, Rienäcker, I., Mietke, H., Schleif, J., Tschäpe H., Lyte, M., and Williams, P. H. 2004. Assessment of a new selective chromogenic Bacillus cereus group plating medium, and use of enterobacterial autoinducer of growth for cultural identification of Bacillus species. J. Clin. Microbiol. 42:3795–3798.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A., Matthews, J. B., Socransky, S. S., Freestone, P. P., Williams, P. H., and Chapple, I. L. 2002. Stress and the periodontal diseases: effects of catecholamines on the growth of periodontal bacteria in vitro. Oral Microbiol. Immunol. 17:296–303

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A., Matthews, J., Socransky, S., Freestone, P., Williams, P., and Chapple, I. 2005. Stress and the periodontal diseases: growth responses of periodontal bacteria to Escherichia coli stress-associated autoinducer and exogenous Fe. Oral Microbiol. Immunol. 20:147–153.

    Article  CAS  Google Scholar 

  • Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P., and Kaper, J. B. 2003. Bacteria–host ­communication: the language of hormones. Proc. Natl. Acad. Sci. U. S. A. 100:8951–8956.

    Article  PubMed  CAS  Google Scholar 

  • Wally, J., Halbrooks, P., Vonrhein, C., Rould, M., Everse, S., Mason, A., and Buchanan, S.K. 2006. The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J. Biol. Chem. 281:24934–24944

    Article  PubMed  CAS  Google Scholar 

  • Williams, P. H., Rabsch, W., Methner, U., Voigt, W., Tschäpe, H., and Reissbrodt, R. (2006) Catecholate receptor proteins in Salmonella enterica: role in virulence and implications for vaccine development. Vaccine 24:3840–3844

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primrose P. E. Freestone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag New York

About this chapter

Cite this chapter

Freestone, P.P.E., Sandrini, S. (2010). Mechanisms by Which Catecholamines Induce Growth in Gram-Negative and Gram-Positive Human Pathogens. In: Lyte, M., Freestone, P. (eds) Microbial Endocrinology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5576-0_3

Download citation

Publish with us

Policies and ethics