Skip to main content

Molecular Mechanisms of Parathyroid Hormone Synthesis

  • Chapter
  • First Online:
Diseases of the Parathyroid Glands

Abstract

Parathyroid hormone (PTH) is central for the hormonal and cellular responses that determine mineral metabolism and bone strength. Small changes in serum calcium are sensed by the parathyroid G-protein coupled calcium-sensing receptor (CaR) and alter PTH secretion, gene expression, and if prolonged parathyroid cell proliferation. The major trigger for PTH secretion is a low extracellular calcium. PTH then binds to its receptor on its target tissues, the bone, and kidney to correct serum calcium. The parathyroid also responds to changes in serum phosphate (Pi), 1,25(OH)2 vitamin D (1,25D), and fibroblast growth factor-23 (FGF23). The regulation of PTH gene expression by dietary-induced changes in serum calcium, phosphate, and in chronic kidney failure is post-transcriptional and is mediated by the regulated binding of trans-acting proteins to a defined cis element in the PTH mRNA 3′-untranslated region (UTR). These protein–PTH mRNA interactions are orchestrated by the peptidylprolyl isomerase Pin1. In contrast, 1,25D decreases PTH gene transcription. This chapter discusses the molecular mechanisms of regulation of PTH gene expression that determine serum PTH levels and mineral metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silver J, Naveh-Many T. Phosphate and the parathyroid. Kidney Int. 2009;75(9):898–905.

    Article  PubMed  CAS  Google Scholar 

  2. Habener JF, Rosenblatt M, Potts JTJ. Parathyroid hormone: biochemical aspects of biosynthesis, secretion, action, and metabolism. Physiol Rev. 1984;64:985–1053.

    PubMed  CAS  Google Scholar 

  3. Naveh-Many T. Minireview: the play of proteins on the parathyroid hormone messenger ribonucleic acid regulates its expression. Endocrinology. 2010;151(4): 1398–402.

    Article  PubMed  CAS  Google Scholar 

  4. Silver J, Naveh-Many T, Mayer H, Schmelzer HJ, Popovtzer MM. Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest. 1986;78:1296–301.

    Article  PubMed  CAS  Google Scholar 

  5. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281(10):6120–3.

    Article  PubMed  CAS  Google Scholar 

  6. Ben Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117(12):4003–8.

    PubMed  CAS  Google Scholar 

  7. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature. 1993;366:575–80.

    Article  PubMed  CAS  Google Scholar 

  8. Silver J, Russell J, Sherwood LM. Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci USA. 1985;82:4270–3.

    Article  PubMed  CAS  Google Scholar 

  9. Russell J, Lettieri D, Sherwood LM. Suppression by 1,25(OH)2D3 of transcription of the pre-proparathyroid hormone gene. Endocrinology. 1986;119:2864–6.

    Article  PubMed  CAS  Google Scholar 

  10. Naveh-Many T, Marx R, Keshet E, Pike JW, Silver J. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest. 1990;86:1968–75.

    Article  PubMed  CAS  Google Scholar 

  11. Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM. Sequences in the human parathyroid hormone gene that bind the l,25-dihydroxyvitamin D-3 receptor and mediate transcriptional repression in response to l,25-dihydroxyvitamin D-3. Proc Natl Acad Sci USA. 1992;89:8097–101.

    Article  PubMed  CAS  Google Scholar 

  12. Russell J, Ashok S, Koszewski NJ. Vitamin D receptor interactions with the rat parathyroid hormone gene: synergistic effects between two negative vitamin D response elements. J Bone Miner Res. 1999;14(11):1828–37.

    Article  PubMed  CAS  Google Scholar 

  13. Liu SM, Koszewski N, Lupez M, Malluche HH, Olivera A, Russell J. Characterization of a response element in the 5′-flanking region of the avian (chicken) parathyroid hormone gene that mediates negative regulation of gene transcription by 1,25-dihydroxyvitamin D3 and binds the vitamin D3 receptor. Mol Endocrinol. 1996;10:206–15.

    Article  PubMed  CAS  Google Scholar 

  14. Murayama A, Kim MS, Yanagisawa J, Takeyama K, Kato S. Transrepression by a liganded nuclear receptor via a bHLH activator through co-regulator switching. EMBO J. 2004;23(7):1598–608.

    Article  PubMed  CAS  Google Scholar 

  15. Fujiki R, Kim MS, Sasaki Y, Yoshimura K, Kitagawa H, Kato S. Ligand-induced transrepression by VDR through association of WSTF with acetylated histones. EMBO J. 2005;24(22):3881–94.

    Article  PubMed  CAS  Google Scholar 

  16. Kim MS, Fujiki R, Murayama A, Kitagawa H, Yamaoka K, Yamamoto Y, et al. 1Alpha,25(OH)2D3-induced transrepression by vitamin D receptor through E-box-type elements in the human parathyroid hormone gene promoter. Mol Endocrinol. 2007;21(2): 334–42.

    Article  PubMed  CAS  Google Scholar 

  17. Canaff L, Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem. 2002;277(33): 30337–50.

    Article  PubMed  CAS  Google Scholar 

  18. Naveh-Many T, Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Clin Invest. 1990;86:1313–9.

    Article  PubMed  CAS  Google Scholar 

  19. Wheeler DG, Horsford J, Michalak M, White JH, Hendy GN. Calreticulin inhibits vitamin D3 signal transduction. Nucleic Acids Res. 1995;23:3268–74.

    Article  PubMed  CAS  Google Scholar 

  20. Sela-Brown A, Russell J, Koszewski NJ, Michalak M, Naveh-Many T, Silver J. Calreticulin inhibits vitamin D’s action on the PTH gene in vitro and may prevent vitamin D’s effect in vivo in hypocalcemic rats. Mol Endocrinol. 1998;12:1193–200.

    Article  PubMed  CAS  Google Scholar 

  21. Garfia B, Canadillas S, Canalejo A, Luque F, Siendones E, Quesada M, et al. Regulation of parathyroid vitamin D receptor expression by extracellular calcium. J Am Soc Nephrol. 2002;13(12):2945–52.

    Article  PubMed  CAS  Google Scholar 

  22. Fukuda N, Tanaka H, Tominaga Y, Fukagawa M, Kurokawa K, Seino Y. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest. 1993;92:1436–43.

    Article  PubMed  CAS  Google Scholar 

  23. Patel S, Simpson RU, Hsu CH. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int. 1989;36:234–9.

    Article  PubMed  CAS  Google Scholar 

  24. Arnold A, Brown MF, Urena P, Gaz RD, Sarfati E, Drueke TB. Monoclonality of parathyroid tumors in chronic renal failure and in primary parathyroid hyperplasia. J Clin Invest. 1995;95:2047–53.

    Article  PubMed  CAS  Google Scholar 

  25. Moallem E, Silver J, Kilav R, Naveh-Many T. RNA protein binding and post-transcriptional regulation of PTH gene expression by calcium and phosphate. J Biol Chem. 1998;273:5253–9.

    Article  PubMed  CAS  Google Scholar 

  26. Naveh-Many T, Rahamimov R, Livni N, Silver J. Parathyroid cell proliferation in normal and chronic renal failure rats: the effects of calcium, phosphate and vitamin D. J Clin Invest. 1995;96:1786–93.

    Article  PubMed  CAS  Google Scholar 

  27. Kilav R, Silver J, Naveh-Many T. Parathyroid hormone gene expression in hypophosphatemic rats. J Clin Invest. 1995;96:327–33.

    Article  PubMed  CAS  Google Scholar 

  28. Almaden Y, Canalejo A, Hernandez A, Ballesteros E, Garcia-Navarro S, Torres A, et al. Direct effect of phosphorus on parathyroid hormone secretion from whole rat parathyroid glands in vitro. J Bone Miner Res. 1996;11:970–6.

    Article  PubMed  CAS  Google Scholar 

  29. Almaden Y, Hernandez A, Torregrosa V, Canalejo A, Sabate L, Fernandez CL, et al. High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol. 1998;9(10):1845–52.

    PubMed  CAS  Google Scholar 

  30. Nielsen PK, Feldt-Rasmusen U, Olgaard K. A direct effect of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant. 1996;11:1762–8.

    Article  PubMed  CAS  Google Scholar 

  31. Slatopolsky E, Finch J, Denda M, Ritter C, Zhong A, Dusso A, et al. Phosphate restriction prevents parathyroid cell growth in uremic rats. High phosphate directly stimulates PTH secretion in vitro. J Clin Invest. 1996;97:2534–40.

    Article  PubMed  CAS  Google Scholar 

  32. Rodriguez M, Almaden Y, Hernandez A, Torres A. Effect of phosphate on the parathyroid gland: direct and indirect? Curr Opin Nephrol Hypertens. 1996; 5(4):321–8.

    Article  PubMed  CAS  Google Scholar 

  33. Nechama M, Ben Dov IZ, Briata P, Gherzi R, Naveh-Many T. The mRNA decay promoting factor K-homology splicing regulator protein post-transcriptionally determines parathyroid hormone mRNA levels. FASEB J. 2008;22:3458–68.

    Article  PubMed  CAS  Google Scholar 

  34. Silver J, Kilav R, Naveh-Many T. Mechanisms of secondary hyperparathyroidism. Am J Physiol Renal Physiol. 2002;283(3):F367–76.

    PubMed  CAS  Google Scholar 

  35. Joy MS, Finn WF. Randomized, double-blind, placebo-controlled, dose-titration, phase III study assessing the efficacy and tolerability of lanthanum carbonate: a new phosphate binder for the treatment of hyperphosphatemia. Am J Kidney Dis. 2003; 42(1):96–107.

    Article  PubMed  CAS  Google Scholar 

  36. D’Haese PC, Spasovski GB, Sikole A, Hutchison A, Freemont TJ, Sulkova S, et al. A multicenter study on the effects of lanthanum carbonate (Fosrenol) and calcium carbonate on renal bone disease in dialysis patients. Kidney Int Suppl. 2003;85:S73–8.

    Article  PubMed  Google Scholar 

  37. Block GA, Martin KJ, de Francisco AL, Turner SA, Avram MM, Suranyi MG, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004;350(15):1516–25.

    Article  PubMed  CAS  Google Scholar 

  38. Moe SM, Cunningham J, Bommer J, Adler S, Rosansky SJ, Urena-Torres P, et al. Long-term treatment of secondary hyperparathyroidism with the calcimimetic cinacalcet HCl. Nephrol Dial Transplant. 2005;20(10):2186–93.

    Article  PubMed  CAS  Google Scholar 

  39. Levi R, Ben Dov IZ, Lavi-Moshayoff V, Dinur M, Martin D, Naveh-Many T, et al. Increased parathyroid hormone gene expression in secondary hyperparathyroidism of experimental uremia is reversed by calcimimetics: correlation with posttranslational modification of the trans acting factor AUF1. J Am Soc Nephrol. 2006;17(1):107–12.

    Article  PubMed  CAS  Google Scholar 

  40. Ben Dov IZ, Pappo O, Sklair-Levy M, Galitzer H, Ilan Y, Naveh-Many T, et al. Lanthanum carbonate decreases PTH gene expression with no hepatotoxicity in uraemic rats. Nephrol Dial Transplant. 2007;22(2):362–8.

    Article  PubMed  CAS  Google Scholar 

  41. Yalcindag C, Silver J, Naveh-Many T. Mechanism of increased parathyroid hormone mRNA in experimental uremia: roles of protein RNA binding and RNA degradation. J Am Soc Nephrol. 1999;10(12): 2562–8.

    PubMed  CAS  Google Scholar 

  42. Nechama M, Ben Dov IZ, Silver J, Naveh-Many T. Regulation of PTH mRNA stability by the calcimimetic R568 and the phosphorus binder lanthanum carbonate in CKD. Am J Physiol Renal Physiol. 2009;296(4):F795–800.

    Article  PubMed  CAS  Google Scholar 

  43. Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 2006;33(22):7138–50.

    Article  PubMed  Google Scholar 

  44. Brewer G. Messenger RNA decay during aging and development. Ageing Res Rev. 2002;1(4):607–25.

    Article  PubMed  CAS  Google Scholar 

  45. Gherzi R, Lee KY, Briata P, Wegmuller D, Moroni C, Karin M, et al. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell. 2004;14(5):571–83.

    Article  PubMed  CAS  Google Scholar 

  46. Linker K, Pautz A, Fechir M, Hubrich T, Greeve J, Kleinert H. Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res. 2005;33(15):4813–27.

    Article  PubMed  CAS  Google Scholar 

  47. Chou CF, Mulky A, Maitra S, Lin WJ, Gherzi R, Kappes J, et al. Tethering KSRP, a decay-promoting AU-rich element-binding protein, to mRNAs elicits mRNA decay. Mol Cell Biol. 2006;26(10):3695–706.

    Article  PubMed  CAS  Google Scholar 

  48. Wilusz CJ, Wilusz J. Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet. 2004;20(10):491–7.

    Article  PubMed  CAS  Google Scholar 

  49. Bell O, Silver J, Naveh-Many T. Parathyroid hormone, from gene to protein. In: Naveh-Many T, editor. Molecular biology of the parathyroid. New York: Landes Bioscience and Kluwer Academic; 2005. p. 8–28.

    Chapter  Google Scholar 

  50. Kilav R, Silver J, Naveh-Many T. A conserved cis-acting element in the parathyroid hormone 3′-untranslated region is sufficient for regulation of RNA stability by calcium and phosphate. J Biol Chem. 2001;276:8727–33.

    Article  PubMed  CAS  Google Scholar 

  51. Bell O, Silver J, Naveh-Many T. Identification and characterization of cis-acting elements in the human and bovine parathyroid hormone mRNA 3′-untranslated region. J Bone Miner Res. 2005;20:858–66.

    Article  PubMed  CAS  Google Scholar 

  52. Fritz DT, Ford LP, Wilusz J. An in vitro assay to study regulated mRNA stability. Sci STKE. 2000; 2000(61):L1.

    Article  Google Scholar 

  53. Kilav R, Bell O, Le SY, Silver J, Naveh-Many T. The parathyroid hormone mRNA 3′-untranslated region AU-rich element is an unstructured functional element. J Biol Chem. 2004;279(3):2109–16.

    Article  PubMed  CAS  Google Scholar 

  54. Sela-Brown A, Silver J, Brewer G, Naveh-Many T. Identification of AUF1 as a parathyroid hormone mRNA 3′-untranslated region binding protein that determines parathyroid hormone mRNA stability. J Biol Chem. 2000;275(10):7424–9.

    Article  PubMed  CAS  Google Scholar 

  55. Dinur M, Kilav R, Sela-Brown A, Jacquemin-Sablon H, Naveh-Many T. In vitro evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability. Mol Endocrinol. 2006;20(7):1652–60.

    Article  PubMed  CAS  Google Scholar 

  56. Wagner BJ, DeMaria CT, Sun Y, Wilson GM, Brewer G. Structure and genomic organization of the human AUF1 gene: alternative pre-mRNA splicing generates four protein isoforms. Genomics. 1998;48(2): 195–202.

    Article  PubMed  CAS  Google Scholar 

  57. Bell O, Gaberman E, Kilav R, Levi R, Cox KB, Molkentin JD, et al. The protein phosphatase calcineurin determines basal parathyroid hormone gene expression. Mol Endocrinol. 2005;19:516–26.

    Article  PubMed  CAS  Google Scholar 

  58. Naveh-Many T, Nechama M. Regulation of parathyroid hormone mRNA stability by calcium, phosphate and uremia. Curr Opin Nephrol Hypertens. 2007; 16(4):305–10.

    Article  PubMed  CAS  Google Scholar 

  59. Nechama M, Peng Y, Bell O, Briata P, Gherzi R, Schoenberg DR, Naveh-Many T. KSRP-PMR1-exosome association determines parathyroid hormone mRNA levels and stability in transfected cells. BMC Cell Biol. 2009;10:70.

    Article  PubMed  CAS  Google Scholar 

  60. Gherzi R, Trabucchi M, Ponassi M, Ruggiero T, Corte G, Moroni C, et al. The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biol. 2006; 5(1):e5.

    Article  PubMed  Google Scholar 

  61. Ruggiero T, Trabucchi M, Ponassi M, Corte G, Chen CY, al Haj L, et al. Identification of a set of KSRP target transcripts upregulated by PI3K-AKT signaling. BMC Mol Biol. 2007;8:28.

    Article  PubMed  Google Scholar 

  62. Wulf GM, Liou YC, Ryo A, Lee SW, Lu KP. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem. 2002;277(50):47976–9.

    Article  PubMed  CAS  Google Scholar 

  63. Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell. 2000;6(4):873–83.

    Article  PubMed  CAS  Google Scholar 

  64. Winkler KE, Swenson KI, Kornbluth S, Means AR. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science. 2000;287(5458):1644–7.

    Article  PubMed  CAS  Google Scholar 

  65. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature. 1999;399(6738):784–8.

    Article  PubMed  CAS  Google Scholar 

  66. Shen ZJ, Esnault S, Malter JS. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nat Immunol. 2005;6(12):1280–7.

    Article  PubMed  CAS  Google Scholar 

  67. Shen ZJ, Esnault S, Rosenthal LA, Szakaly RJ, Sorkness RL, Westmark PR, et al. Pin1 regulates TGF-beta1 production by activated human and murine eosinophils and contributes to allergic lung fibrosis. J Clin Invest. 2008;118(2):479–90.

    PubMed  CAS  Google Scholar 

  68. Nechama M, Uchida T, Yosef-Levi IM, Silver J, Naveh-Many T. The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism. J Clin Invest. 2009;119(10):3102–14.

    Article  PubMed  CAS  Google Scholar 

  69. Lu PJ, Zhou XZ, Liou YC, Noel JP, Lu KP. Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem. 2002;277:2381–4.

    Article  PubMed  CAS  Google Scholar 

  70. Lee TH, Chen CH, Suizu F, Huang P, Schiene-Fischer C, Daum S, Zhang YJ, Goate A, Chen RH, Zhou XZ Lu KP. Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function. Mol Cell. 22 2011;42(2):147–59.

    Article  PubMed  CAS  Google Scholar 

  71. Takeshita K, Fujimori T, Kurotaki Y, Honjo H, Tsujikawa H, Yasui K, et al. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation. 2004; 109(14):1776–82.

    Article  PubMed  Google Scholar 

  72. Krajisnik T, Bjorklund P, Marsell R, Ljunggren O, Akerstrom G, Jonsson KB, et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol. 2007;195(1):125–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris Nechama PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Naveh-Many, T., Nechama, M. (2012). Molecular Mechanisms of Parathyroid Hormone Synthesis. In: Licata, A., Lerma, E. (eds) Diseases of the Parathyroid Glands. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5550-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5550-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5549-4

  • Online ISBN: 978-1-4419-5550-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics