Skip to main content

Slow and Stopped Light in Coupled Resonator Systems

  • Chapter
  • First Online:
Photonic Microresonator Research and Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 156))

Abstract

In the first part of this chapter, a theoretical overview is presented on the different approaches to the use of dynamic tuning for coherent optical pulse stopping and storage in coupled resonator systems, which are amenable to fabrication in on-chip devices such as photonic crystals. The use of such dynamic tuning overcomes the delay-bandwidth constraint of slow-light structures. The second part of this chapter presents a discussion on recent experimental work that has demonstrated the possibility of such dynamic tuning in on-chip systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris, S.E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)

    Article  Google Scholar 

  2. Lukin, M.D., Yelin, S.F., et al. Entanglement of atomic ensembles by trapping correlated photon states. Phys. Rev. Lett. 84, 4232–4235 (2000)

    Article  Google Scholar 

  3. Liu, C., Dutton, Z., et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    Article  Google Scholar 

  4. Phillips, D.F., Fleischhauer, A., et al. Storage of light in an atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)

    Article  Google Scholar 

  5. Joannopoulos, J.D., Meade, R.D., et al. Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  6. Joannopoulos, J.D., Villeneuve, P.R., et al. Photonic crystals: Putting a new twist on light. Nature. 386, 143–147 (1997)

    Article  Google Scholar 

  7. Soukoulis, C. (ed.) Photonic crystals and light localization in the 21st century (NATO ASI Series). Kluwer, Netherlands (2001)

    Google Scholar 

  8. Johnson, S.G., Joannopoulos, J.D. Photonic crystals: The road from theory to practice. Kluwer, Boston (2002)

    Google Scholar 

  9. Inoue, K., Ohtaka, K. Photonic crystals. Springer-Verlag, Berlin (2004)

    Google Scholar 

  10. Haus, H.A., Popovic, M.A., et al. Optical resonators and filters. In: Vahala, K. (ed.) Optical Microcavities, pp. 1–38. World Scientific, Singapore, (2004)

    Chapter  Google Scholar 

  11. Yanik, M.F., Fan, S. Time-reversal of light with linear optics and modulators. Phys. Rev. Lett. 93, 173903 (2004)

    Article  Google Scholar 

  12. Yanik, M.F., Fan, S. Stopping light all-optically. Phys. Rev. Lett. 92, 083901 (2004)

    Article  Google Scholar 

  13. Yanik, M.F., Suh, W., et al. Stopping light in a waveguide with an all-optical analogue of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004)

    Article  Google Scholar 

  14. Yanik, M.F., Fan, S. Stopping and storing light coherently. Phys. Rev. A 71, 013803 (2005)

    Article  Google Scholar 

  15. Yanik, M.F., Fan, S. Dynamic photonic structures: Stopping, storage, and time-reversal of light. Stud. in Appl. Math. 115, 233–254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sandhu, S., Povinelli, M.L., et al. Dynamically-tuned coupled resonator delay lines can be nearly dispersion free. Opt. Lett. 31, 1985–1987 (2006)

    Article  Google Scholar 

  17. Sandhu, S., Povinelli, M.L., et al. Stopping and time-reversing a light pulse using dynamic loss-tuning of coupled-resonator delay lines. Opt. Lett. 32, 3333–3335 (2007)

    Article  Google Scholar 

  18. Stefanou. N., Modinos, A. Impurity bands in photonic insulators. Phys. Rev. B 57, 12127–12133 (1998)

    Article  Google Scholar 

  19. Yariv, A., Xu, Y., et al. Coupled-resonator optical waveguide: A proposal and analysis. Opt. Lett. 24, 711–713 (1999)

    Article  Google Scholar 

  20. Bayindir, M., Temelkuran, B., et al. Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys. Rev. Lett. 84, 2140–2143 (2000)

    Article  Google Scholar 

  21. Lenz, G., Eggleton, B.J., et al. Optical delay lines based on optical filters. IEEE J. of Quant. Electron. 37, 525–532 (2001)

    Article  Google Scholar 

  22. Heebner, J.E., Boyd, R.W., et al. Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide. Phys. Rev. E 65, 036619 (2002)

    Article  Google Scholar 

  23. Heebner, J.E., Boyd, R.W., et al. SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides. J. Opt. Soc. Am. B 19, 722–731 (2002)

    Article  Google Scholar 

  24. Wang, Z., Fan, S. Compact all-pass filters in photonic crystals as the building block for high capacity optical delay lines. Phys. Rev. E 68, 066616 (2003)

    Article  Google Scholar 

  25. Smith, D.D., Chang, H., et al. Coupled resonator-induced transparency. Phys. Rev. A 69, 063804 (2004)

    Article  Google Scholar 

  26. Maleki, L., Matsko, A.B., et al. Tunable delay line with interacting whispering-gallery-mode resonators. Opt. Lett. 29, 626–628 (2004)

    Article  Google Scholar 

  27. Poon, J.K.S., Scheuer, J., et al. Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B 21, 1665–1673 (2004)

    Article  Google Scholar 

  28. Khurgin, J.B. Expanding the bandwidth of slow-light photonic devices based on coupled resonators. Opt. Lett. 30, 513–515 (2005)

    Article  Google Scholar 

  29. Reed, E.J., Soljacic, M., et al. Color of shock waves in photonic crystals. Phys. Rev. Lett. 91, 133901 (2003)

    Article  Google Scholar 

  30. Yariv, A. Internal modulation in multimode laser oscillators. J. Appl. Phys. 36, 388–391 (1965)

    Article  Google Scholar 

  31. Siegmann, A.E. Lasers. University Science Books, Sausalito (1986)

    Google Scholar 

  32. Notomi, M., Yamada, K., et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001)

    Article  Google Scholar 

  33. Vlasov, Y.A., O’Boyle, M., et al. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)

    Article  Google Scholar 

  34. Altug, H., Vuckovic, J. Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays. Appl. Phys. Lett. 86, 111102 (2005)

    Article  Google Scholar 

  35. Xia, F., Sekaric, L., et al. Coupled resonator optical waveguides based on silicon-on-insulator photonic wires. Appl. Phys. Lett. 89, 041122 (2006)

    Article  Google Scholar 

  36. Huang, S.C., Kato, M., et al. Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides. Opt. Exp. 15, 3543–3549 (2007)

    Article  Google Scholar 

  37. O’Brien, D., Settle, M.D., et al. Coupled photonic crystal heterostructure cavities. Opt. Exp. 15, 1228–1233 (2007)

    Article  Google Scholar 

  38. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  MATH  Google Scholar 

  39. Fan, S. Sharp asymmetric lineshapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 80, 910–912 (2002)

    Google Scholar 

  40. Fan, S., Suh, W., et al. Temporal coupled mode theory for Fano resonances in optical resonators. J. Opt. Soc. Am. A 20, 569–573 (2003)

    Google Scholar 

  41. Suh, W., Wang, Z., et al. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities. IEEE J. of Quantum Electron. 40, 1511–1518 (2004)

    Article  Google Scholar 

  42. Fan, S., Villeneuve, P.R., et al. Theoretical investigation of channel drop tunneling processes. Phys. Rev. B 59, 15882–15892 (1999)

    Article  Google Scholar 

  43. Taflove, A. Hagness, S.C. Computational electrodynamics: The finite-difference time-domain method. Artech House, Norwood (2005)

    Google Scholar 

  44. Otey, C., Povinelli, M.L., et al. Capturing light pulses into a pair of coupled photonic crystal cavities. Appl. Phys. Lett. 94, 231109 (2009)

    Article  Google Scholar 

  45. Otey, C., Povinelli, M.L., et al. Completely capturing light pulses in a few dynamically tuned microcavities. IEEE J. Lightwave Technol. 26, 3784–3793 (2008)

    Article  Google Scholar 

  46. Lipson, M. Guiding, modulating and emitting light on silicon- challenges and opportunities. IEEE J. Lightwave Technol. 23, 4222–4238 (2005)

    Article  Google Scholar 

  47. Xu, Q., Sandhu, S., et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006)

    Article  Google Scholar 

  48. Xu, Q., Dong, P., et al. Breaking the delay-bandwidth limit in a photonic structure. Nature Phys. 3, 406–410 (2007)

    Article  Google Scholar 

  49. Soref, R.A., Bennett, B.R. Electrooptical effects in silicon. IEEE J. of Quantum Electron. 23, 123–129 (1987)

    Article  Google Scholar 

  50. Xu, Q., Schmidt, B., Pradhan, S., Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–237 (2005)

    Google Scholar 

  51. Borselli, M. High-Q microresonators as lasing elements for silicon photonics (Thesis). California Institute of Technology, Pasadena (2006)

    Google Scholar 

  52. Noda, S., Fujita, M., et al. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics 1, 449–458 (2007)

    Article  Google Scholar 

  53. Tanaka, Y., Upham, J., et al. Dynamic control of the Q factor in a photonic crystal nanocavity. Nat. Mater. 6, 862–865 (2007)

    Article  Google Scholar 

  54. Pan, J., Huo, Y., et al. Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning. Appl. Phys. Lett. 92, 103114 (2008)

    Article  Google Scholar 

  55. Longhi, S. Stopping and time reversal of light in dynamic photonic structures via Bloch oscillations. Phys. Rev. B 75, 026606 (2007)

    Article  Google Scholar 

  56. Yang, Z.S., Kwong, N.H., et al. Distortionless light pulse delay in quantum-well Bragg structures. Opt. Lett. 30, 2790–2792 (2005)

    Article  Google Scholar 

  57. Yang, Z.S., Kwong, N.H., et al. Stopping, storing, and releasing light in quantum-well Bragg structures. J. Opt. Soc. Am. B 22, 2144–2156 (2005)

    Article  Google Scholar 

  58. Shen, J.T., Povinelli, M.L., et al. Stopping single photons in one-dimensional quantum electrodynamics systems. Phys. Rev. B 75, 035320 (2007)

    Article  Google Scholar 

  59. Gaburro, Z., Ghulinyan, M., et al. Photon energy lifter. Opt. Exp. 14, 7270–7278 (2006)

    Article  Google Scholar 

  60. Notomi, M., Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803(R) (2006)

    Article  Google Scholar 

  61. Preble, S.F., Xu, Q.F., et al. Changing the colour of light in a silicon resonator. Nat. Photonics 1, 293–296 (2007)

    Article  Google Scholar 

  62. McCutcheon, M.W., Pattantyus-Abraham, A.G., et al. Emission spectrum of electromagnetic energy stored in a dynamically perturbed microcavity. Opt. Exp. 15, 11472–11480 (2007)

    Article  Google Scholar 

  63. Shin, J., Shen, J.T., Catrysse, P.B., Fan, S. Cut-through metal slit array as an anisotropic metamaterial film. IEEE J. Sel. Top. Quantum Electron. 12, 1116–1122 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported in part by NSF, DARPA, and the Lucile and Packard Foundation. The authors acknowledge the important contributions of Prof. Mehmet Fatih Yanik to the works presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanhui Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Fan, S., Sandhu, S., Otey, C.R., Povinelli, M.L. (2010). Slow and Stopped Light in Coupled Resonator Systems. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds) Photonic Microresonator Research and Applications. Springer Series in Optical Sciences, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1744-7_7

Download citation

Publish with us

Policies and ethics