Skip to main content

Parallel Imaging in Angiography

  • Chapter
  • First Online:
Magnetic Resonance Angiography

Abstract

One of the main goals in magnetic resonance angiography (MRA) is to acquire data quickly, both to reduce longer scan times to avoid artifacts due to patient motion (for time-of-flight and phase-contrast imaging) and to capture relevant dynamic information (contrast-enhanced MRA). However, the amount of time it takes to generate an MRI image depends directly on the desired spatial resolution. Images with higher spatial resolution require more k-space data, and thus, a longer time is needed to acquire these data. In order to meet both goals of high spatial resolution and high temporal resolution simultaneously, one must look to advanced image acquisition and reconstruction techniques, such as parallel imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelton J, Magin RM, Wright SM. An algorithm for rapid image acquisition using multiple receiver coils. Proc Intl Soc Magn Reson Med. 1989;8:1172.

    Google Scholar 

  2. Ra JB, Rim CY. Fast imaging using subencoding data sets from multiple detectors. Magn Reson Med. 1993;30:142–145.

    Article  PubMed  CAS  Google Scholar 

  3. Carlson JW, Minemura T. Imaging time reduction through multiple receiver coil data acquisition and image reconstruction. Magn Reson Med. 1993;29:681–687.

    Article  PubMed  CAS  Google Scholar 

  4. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591–603.

    Article  PubMed  CAS  Google Scholar 

  5. Jakob PM, Griswold MA, Edelman RR, Sodickson DK. AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous Acquisition of Spatial Harmonics. MAGMA. 1998;7:42–54.

    Article  PubMed  CAS  Google Scholar 

  6. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–962.

    Article  PubMed  CAS  Google Scholar 

  7. Griswold MA, Jakob PM, Nittka M, Goldfarb JW, Haase A. Partially parallel imaging with localized sensitivities (PILS). Magn Reson Med. 2000;44:602–609.

    Article  PubMed  CAS  Google Scholar 

  8. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–1210.

    Article  PubMed  Google Scholar 

  9. Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med. 2001;46:638–651.

    Article  PubMed  CAS  Google Scholar 

  10. Griswold MA, Heidemann RM, Jakob PM. Direct parallel imaging reconstruction of radially sampled data using GRAPPA with relative shifts. Proc Intl Soc Mag Reson Med. 2003;11:2349.

    Google Scholar 

  11. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med. 2001;45:846–852.

    Article  PubMed  CAS  Google Scholar 

  12. Breuer FA, Kellman P, Griswold MA, Jakob PM. Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med. 2005;53:981–985.

    Article  PubMed  Google Scholar 

  13. Heidemann RM, Seiberlich N, Griswold MA, Wohlfarth K, Krueger G, Jakob PM Perspectives and limitations of parallel MR imaging at high field strengths. Neuroimaging Clin N Am. 2006; 16:311–320, xi.

    Article  PubMed  Google Scholar 

  14. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging. 2004;15:223–236.

    Article  PubMed  Google Scholar 

  15. Griswold MA, Jakob PM, Chen Q, Goldfarb JW, Manning WJ, Edelman RR, Sodickson DK. Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med. 1999;41:1236–1245.

    Article  PubMed  CAS  Google Scholar 

  16. Weiger M, Boesiger P, Hilfiker PR, Weishaupt D, Pruessmann KP., Sensitivity encoding as a means of enhancing the SNR efficiency in steady-state MRI. Magn Reson Med. 2005;53:177–185.

    Article  PubMed  Google Scholar 

  17. Kressler B, Spincemaille P, Nguyen TD, Cheng L, Xi Hai Z, Prince MR, Wang Y. Three-dimensional cine imaging using variable-density spiral trajectories and SSFP with application to coronary artery angiography. Magn Reson Med. 2007;58:535–543.

    Article  PubMed  Google Scholar 

  18. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med. 1990;16:192–225.

    Article  PubMed  CAS  Google Scholar 

  19. Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med. 2000;43:682–690.

    Article  PubMed  CAS  Google Scholar 

  20. Huber ME, Kozerke S, Pruessmann KP, Smink J, Boesiger P. Sensitivity-encoded coronary MRA at 3T. Magn Reson Med. 2004;52:221–227.

    Article  PubMed  Google Scholar 

  21. Jahnke C, Paetsch I, Schnackenburg B, Bornstedt A, Gebker R, Fleck E, Nagel E. Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology. 2004;232:669–676.

    Article  PubMed  Google Scholar 

  22. Huber ME, Kozerke S, Boesiger P. Improved artery delineation in dual-stack coronary magnetic resonance angiography using parallel imaging at 3 T. J Magn Reson Imaging. 2005;21:443–448.

    Article  PubMed  Google Scholar 

  23. Niendorf T, Saranathan M, Lingamneni A, Pedrosa I, Spencer M, Cline H, Foo TK, Rofsky NM. Short breath-hold, volumetric coronary MR angiography employing steady-state free precession in conjunction with parallel imaging. Magn Reson Med. 2005;53:885–894.

    Article  PubMed  Google Scholar 

  24. Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG, Sivananthan MU. Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology. 2005;235:423–430.

    Article  PubMed  Google Scholar 

  25. Niendorf T, Hardy CJ, Giaquinto RO, Gross P, Cline HE, Zhu Y, Kenwood G, Cohen S, Grant AK, Joshi S, Rofsky NM, Sodickson DK. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med. 2006;56:167–176.

    Article  PubMed  Google Scholar 

  26. Gharib AM, Herzka DA, Ustun AO, Desai MY, Locklin J, Pettigrew RI, Stuber M. Coronary MR angiography at 3T during diastole and systole. J Magn Reson Imaging. 2007;26:921–926.

    Article  PubMed  Google Scholar 

  27. Summers PE, Kollias SS, Valavanis A. Resolution improvement in thick-slab magnetic resonance digital subtraction angiography using SENSE at 3T. J Magn Reson Imaging. 2004;20:662–673.

    Article  PubMed  Google Scholar 

  28. Taschner CA, Gieseke J, Le Thuc V, Rachdi H, Reyns N, Gauvrit JY, Leclerc X. Intracranial arteriovenous malformation: time-resolved contrast-enhanced MR angiography with combination of parallel imaging, keyhole acquisition, and k-space sampling techniques at 1.5 T. Radiology. 2008;246:871–879.

    Article  PubMed  Google Scholar 

  29. Petkova M, Gauvrit JY, Trystram D, Nataf F, Godon-Hardy S, Munier T, Oppenheim C, Meder JF. Three-dimensional dynamic time-resolved contrast-enhanced MRA using parallel imaging and a variable rate k-space sampling strategy in intracranial arteriovenous malformations. J Magn Reson Imaging. 2009;29:7–12.

    Article  PubMed  Google Scholar 

  30. Parmar H, Ivancevic MK, Dudek N, Gandhi D, Mukherji SK. Dynamic MRA with four-dimensional time-resolved angiography using keyhole at 3 tesla in head and neck vascular lesions. J Neuroophthalmol. 2009;29:119–127.

    Article  PubMed  Google Scholar 

  31. Willinek WA, Hadizadeh DR, von Falkenhausen M, Urbach H, Hoogeveen R, Schild HH, Gieseke J. 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T. J Magn Reson Imaging. 2008;27:1455–1460.

    Article  PubMed  Google Scholar 

  32. Bicakci K, Soker G, Binokay F, Akgul E, Aksungur E, Sertdemir Y. Estimation of the ratio of renal artery stenosis with magnetic resonance angiography using parallel imaging technique in suspected renovascular hypertension. Nephron Clin Pract. 2006;104:c169-c175.

    Article  PubMed  Google Scholar 

  33. Gufler H, Weimer W, Neu K, Wagner S, Rau WS. Contrast enhanced MR angiography with parallel imaging in the early period after renal transplantation. J Magn Reson Imaging. 2009;29:909–916.

    Article  PubMed  Google Scholar 

  34. Muthupillai R, Douglas E, Huber S, Lambert B, Pereyra M, Wilson GJ, Flamm SD. Direct comparison of sensitivity encoding (SENSE) accelerated and conventional 3D contrast enhanced magnetic resonance angiography (CE-MRA) of renal arteries: effect of increasing spatial resolution. J Magn Reson Imaging. 2010;31:149–159.

    Article  PubMed  CAS  Google Scholar 

  35. Maki JH, Wilson GJ, Eubank WB, Hoogeveen RM. Utilizing SENSE to achieve lower station sub-millimeter isotropic resolution and minimal venous enhancement in peripheral MR angiography. J Magn Reson Imaging. 2002;15:484–491.

    Article  PubMed  Google Scholar 

  36. Wang MS, Haynor DR, Wilson GJ, Leiner T, Maki JH. Maximizing contrast-to-noise ratio in ultra-high resolution peripheral MR angiography using a blood pool agent and parallel imaging. J Magn Reson Imaging. 2007;26:580–588.

    Article  PubMed  CAS  Google Scholar 

  37. Ruhl KM, Katoh M, Langer S, Mommertz G, Guenther RW, Niendorf T, Spuentrup E. Time-resolved 3D MR angiography of the foot at 3 T in patients with peripheral arterial disease. AJR Am J Roentgenol. 2008;190:W360-W364.

    Article  PubMed  Google Scholar 

  38. de Vries M, Nijenhuis RJ, Hoogeveen RM, de Haan MW, van Engelshoven JM, Leiner T. Contrast-enhanced peripheral MR angiography using SENSE in multiple stations: feasibility study. J Magn Reson Imaging. 2005;21:37–45.

    Article  PubMed  Google Scholar 

  39. Sumi T, Sumi M, Van Cauteren M, Kimura Y, Nakamura T. Parallel imaging technique for the external carotid artery and its branches: comparison of balanced turbo field echo, phase contrast, and time-of-flight sequences. J Magn Reson Imaging. 2007;25:1028–1034.

    Article  PubMed  Google Scholar 

  40. Riederer SJ, Hu HH, Kruger DG, Haider CR, Campeau NG, Huston J 3rd. Intrinsic signal amplification in the application of 2D SENSE parallel imaging to 3D contrast-enhanced elliptical centric MRA and MRV. Magn Reson Med. 2007;58:855–864.

    Article  PubMed  Google Scholar 

  41. Yu J, Schär M, Vonken EJ, Kelle S, Stuber M. Improved SNR efficiency in gradient echo coronary MRA with high temporal resolution using parallel imaging. Magn Reson Med. 2009;62:1211–1220.

    Article  PubMed  Google Scholar 

  42. Haider CR, Hu HH, Campeau NG, Huston J 3rd, Riederer SJ. 3D high temporal and spatial resolution contrast-enhanced MR angiography of the whole brain. Magn Reson Med. 2008;60:749–760.

    Article  PubMed  Google Scholar 

  43. Haider CR, Glockner JF, Stanson AW, Riederer SJ. Peripheral vasculature: high-temporal- and high-spatial-resolution three-­dimensional contrast-enhanced MR angiography. Radiology. 2009;253:831–843.

    Article  PubMed  Google Scholar 

  44. Ozsarlak O, Van Goethem JW, Parizel PM. 3D time-of-flight MR angiography of the intracranial vessels: optimization of the technique with water excitation, parallel acquisition, eight-channel phased-array head coil and low-dose contrast administration. Eur Radiol. 2004;14:2067–2071.

    Article  PubMed  CAS  Google Scholar 

  45. Gaa J, Weidauer S, Requardt M, Kiefer B, Lanfermann H, Zanella FE. Comparison of intracranial 3D-ToF-MRA with and without parallel acquisition techniques at 1.5T and 3.0T: preliminary results. Acta Radiol. 2004;45:327–332.

    Article  PubMed  CAS  Google Scholar 

  46. Hope MD, Purcell DD, Hope TA, von Morze C, Vigneron DB, Alley MT, Dillon WP. Complete intracranial arterial and venous blood flow evaluation with 4D flow MR imaging. AJNR Am J Neuroradiol. 2009;30:362–366.

    Article  PubMed  CAS  Google Scholar 

  47. Hope TA, Hope MD, Purcell DD, von Morze C, Vigneron DB, Alley MT, Dillon WP. Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. Magn Reson Imaging. 2010;28:41–46.

    Article  PubMed  Google Scholar 

  48. Meckel S, Mekle R, Taschner C, Haller S, Scheffler K, Radue EW, Wetzel SG. Time-resolved 3D contrast-enhanced MRA with GRAPPA on a 1.5-T system for imaging of craniocervical vascular disease: initial experience. Neuroradiology. 2006;48:291–299.

    Article  PubMed  Google Scholar 

  49. Markl M, Uhl M, Wieben O, Ness T, Langer M, Hennig J, Bley TA. High resolution 3T MRI for the assessment of cervical and superficial cranial arteries in giant cell arteritis. J Magn Reson Imaging. 2006;24:423–427.

    Article  PubMed  Google Scholar 

  50. von Morze C, Purcell DD, Banerjee S, Xu D, Mukherjee P, Kelley DA, Majumdar S, Vigneron DB. High-resolution intracranial MRA at 7T using autocalibrating parallel imaging: initial experience in vascular disease patients. Magn Reson Imaging. 2008;26:1329–1333.

    Article  Google Scholar 

  51. Lettau M, Sartor K, Heiland S, Hähnel S. 3T high-spatial-resolution contrast-enhanced MR angiography of the intracranial venous system with parallel imaging. AJNR Am J Neuroradiol. 2009;30:185–187.

    Article  PubMed  CAS  Google Scholar 

  52. Schoenberg SO, Rieger J, Weber CH, Michaely HJ, Waggershauser T, Ittrich C, Dietrich O, Reiser MF. High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology. 2005;235:687–698.

    Article  PubMed  Google Scholar 

  53. Michaely HJ, Herrmann KA, Kramer H, Dietrich O, Laub G, Reiser MF, Schoenberg SO. High-resolution renal MRA: comparison of image quality and vessel depiction with different parallel imaging acceleration factors. J Magn Reson Imaging. 2006;24:95–100.

    Article  PubMed  Google Scholar 

  54. Nael K, Saleh R, Lee M, McNamara T, Godinez SR, Laub G, Finn JP, Ruehm SG. High-spatial-resolution contrast-enhanced MR angiography of abdominal arteries with parallel acquisition at 3.0 T: initial experience in 32 patients. AJR Am J Roentgenol. 2006;187:W77–W85.

    Article  PubMed  Google Scholar 

  55. Fenchel M, Nael K, Deshpande VS, Finn JP, Kramer U, Miller S, Ruehm S, Laub G. Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions. Invest Radiol. 2006;41:697–703.

    Article  PubMed  Google Scholar 

  56. Lum DP, Busse RF, Francois CJ, Brau AC, Beatty PJ, Huff J, Brittain JH, Reeder SB. Increased volume of coverage for abdominal contrast-enhanced MR angiography with two-dimensional autocalibrating parallel imaging: initial experience at 3.0 Tesla. J Magn Reson Imaging. 2009;30:1093–1100.

    Article  PubMed  Google Scholar 

  57. Tongdee R, Narra VR, McNeal G, Hildebolt CF, El-Merhi F, Foster G, Brown JJ. Hybrid peripheral 3D contrast-enhanced MR angiography of calf and foot vasculature. AJR Am J Roentgenol. 2006;186:1746–1753.

    Article  PubMed  Google Scholar 

  58. Kramer H, Michaely HJ, Matschl V, Schmitt P, Reiser MF, Schoenberg SO. High-resolution magnetic resonance angiography of the lower extremities with a dedicated 36-element matrix coil at 3 Tesla. Invest Radiol. 2007;42:477–483.

    Article  PubMed  Google Scholar 

  59. Potthast S, Bongartz GM, Huegli R, Schulte AC, Schwarz JG, Aschwanden M, Bilecen D. Intraarterial contrast-enhanced MR aortography with and without parallel acquisition technique in patients with peripheral arterial occlusive disease. AJR Am J Roentgenol. 2007;188:823–829.

    Article  PubMed  Google Scholar 

  60. Zenge MO, Vogt FM, Brauck K, Jökel M, Barkhausen J, Kannengiesser S, Ladd ME, Quick HH. High-resolution continuously acquired peripheral MR angiography featuring partial parallel imaging GRAPPA. Magn Reson Med. 2006;56:859–865.

    Article  PubMed  Google Scholar 

  61. Quick HH, Vogt FM, Maderwald S, Herborn CU, Bosk S, Göhde S, Debatin JF, Ladd ME. High spatial resolution whole-body MR angiography featuring parallel imaging: initial experience. Rofo. 2004;176:163–169.

    Article  PubMed  CAS  Google Scholar 

  62. Nikolaou K, Kramer H, Grosse C, Clevert D, Dietrich O, Hartmann M, Chamberlin P, Assmann S, Reiser MF, Schoenberg SO. High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology. 2006;241:861–872.

    Article  PubMed  Google Scholar 

  63. Nael K, Fenchel M, Krishnam M, Laub G, Finn JP, Ruehm SG. High-spatial-resolution whole-body MR angiography with high-acceleration parallel acquisition and 32-channel 3.0-T unit: initial experience. Radiology. 2007;242:865–872.

    Article  PubMed  Google Scholar 

  64. Fenchel M, Doering J, Seeger A, Kramer U, Rittig K, Klumpp B, Claussen CD, Miller S. Ultrafast whole-body MR angiography with two-dimensional parallel imaging at 3.0 T: feasibility study. Radiology. 2009;250:254–263.

    Article  PubMed  Google Scholar 

  65. Nikolaou K, Schoenberg SO, Attenberger U, Scheidler J, Dietrich O, Kuehn B, Rosa F, Huber A, Leuchte H, Baumgartner R, Behr J, Reiser MF. Pulmonary arterial hypertension: diagnosis with fast perfusion MR imaging and high-spatial-resolution MR angiography – preliminary experience. Radiology. 2005;236:694–703.

    Article  PubMed  Google Scholar 

  66. Nael K, Fenchel M, Krishnam M, Finn JP, Laub G, Ruehm SG. 3.0 Tesla high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) of the pulmonary circulation: initial experience with a 32-channel phased array coil using a high relaxivity contrast agent. Invest Radiol. 2007;42:392–398.

    Article  PubMed  CAS  Google Scholar 

  67. Attenberger UI, Ingrisch M, Dietrich O, Herrmann K, Nikolaou K, Reiser MF, Schönberg SO, Fink C. Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T. Invest Radiol. 2009;44:525–531.

    Article  PubMed  Google Scholar 

  68. Park J, McCarthy R, Li D. Feasibility and performance of breath-hold 3D true-FISP coronary MRA using self-calibrating parallel acquisition. Magn Reson Med. 2004;52:7–13.

    Article  PubMed  Google Scholar 

  69. Jin H, Zeng MS, Ge MY, Yang S, Chen CZ, Shen JZ, Li RC. A study of in vitro and in vivo MR of free-breathing whole-heart 3D coronary angiography using parallel imaging. Int J Cardiovasc Imaging. 2009;25(Suppl 1):121–129.

    Article  PubMed  Google Scholar 

  70. Oleaga L, Dalal SS, Weigele JB, Hurst RW, Lee J, Voorhees A, Melhem ER. The role of time-resolved 3D contrast-enhanced MR angiography in the assessment and grading of cerebral arteriovenous malformations. Eur J Radiol. 2010;73:e117-e121.

    Article  Google Scholar 

  71. Lim RP, Shapiro M, Wang EY, Law M, Babb JS, Rueff LE, Jacob JS, Kim S, Carson RH, Mulholland TP, Laub G, Hecht EM. 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced Bolus-Chase MRA and 3D time-of-flight MRA. AJNR Am J Neuroradiol. 2008;29:1847–1854.

    Article  PubMed  CAS  Google Scholar 

  72. Lim RP, Jacob JS, Hecht EM, Kim DC, Huffman SD, Kim S, Babb JS, Laub G, Adelman MA, Lee VS. Time-resolved lower extremity MRA with temporal interpolation and stochastic spiral trajectories: preliminary clinical experience. J Magn Reson Imaging. 2010;31:663–672.

    Article  PubMed  Google Scholar 

  73. Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med. 2005;53:684–691.

    Article  PubMed  Google Scholar 

  74. Breuer FA, Blaimer M, Seiberlich N, Griswold MA, Jakob PM. A 3D GRAPPA algorithm for volumetric parallel imaging. Proc Intl Soc Mag Reson Med. 2006;14:286.

    Google Scholar 

  75. Lauzon ML, Rutt BK. Effects of polar sampling in k-space. Magn Reson Med. 1996;36:940–949.

    Article  PubMed  CAS  Google Scholar 

  76. Scheffler K, Hennig J. Reduced circular field-of-view imaging. Magn Reson Med. 1998;40:474–480.

    Article  PubMed  CAS  Google Scholar 

  77. Kannengiesser SAR and Noll TG. Towards a practical generalized image reconstruction method for MRI. In: Proc Intl Soc Mag Reson Med. 2002;10:155.

    Google Scholar 

  78. Bi X, Park J, Larson AC, Zhang Q, Simonetti O, Li D. Contrast-enhanced 4D radial coronary artery imaging at 3.0 T within a single breath-hold. Magn Reson Med. 2005;54:470–475.

    Article  PubMed  Google Scholar 

  79. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–1195.

    Google Scholar 

  80. Seiberlich N, Ehses P, Duerk JL, Griswold MA. Through-Time Radial GRAPPA Calibration: Application to Real-Time Cardiac Imaging. In: Proc 3rd International Workshop on Parallel Imaging (2009), San Diego CA.

    Google Scholar 

  81. Jeong HJ, Eddleman CS, Shah S, Seiberlich N, Griswold MA, Batjer HH, Carr JC, Carroll TJ. Accelerating time-resolved MRA with multiecho acquisition. Magn Reson Med. 2010;63:1520–1528.

    Article  PubMed  Google Scholar 

  82. Seiberlich N, Breuer FA, Blaimer M, Speier P, Griswold MA, Jakob PM. 3D Cylindrical GRAPPA. Proc Intl Soc Mag Reson Med. 2006;14:7.

    Google Scholar 

  83. Kellman P, Derbyshire JA, Agyeman KO, McVeigh ER, Arai AE. Extended coverage first-pass perfusion imaging using slice-interleaved TSENSE. Magn Reson Med. 2004;51:200–204.

    Article  PubMed  CAS  Google Scholar 

  84. Han M, Daniel BL, Hargreaves BA. Accelerated bilateral dynamic contrast-enhanced 3D spiral breast MRI using TSENSE. J Magn Reson Imaging. 2008;28:1425–1434.

    Article  PubMed  Google Scholar 

  85. Lai P, Huang F, Larson AC, Li D. Fast four-dimensional coronary MR angiography with k-t GRAPPA. J Magn Reson Imaging. 2008;27:659–665.

    Article  PubMed  Google Scholar 

  86. Madore B, Glover GH, Pelc NJ. Unaliasing by fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med. 1999;42:813–828.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Seiberlich PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Seiberlich, N., Griswold, M. (2012). Parallel Imaging in Angiography. In: Carr, J., Carroll, T. (eds) Magnetic Resonance Angiography. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1686-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1686-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1685-3

  • Online ISBN: 978-1-4419-1686-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics