Skip to main content

Transparent Conducting Oxides Based on Tin Oxide

  • Chapter
  • First Online:
Handbook of Transparent Conductors

Abstract

Tin oxide (SnO2) is an important and widely used wide band-gap semiconductor and is part of a family of binary transparent conducting oxides (TCO), such as Sn- and ZnO-doped In2O3 (ITO, ZIO) [1] and ZnO:Al [2], CdO. It is of great interest in corrosive environment applications due to its high stability. This includes applications such as batteries, low emission windows coatings, solar cells, etc. In this chapter we will introduce the structural, electrical and optical properties of undoped and doped tin oxides. In addition, thin films via various deposition methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flexible flat panel displays, edited by G. P. Crawford, Wiley, Chichester, England (2005), pp.79–98.

    Book  Google Scholar 

  2. A. Sarkar, S. Ghosh, S. Chaudhuri, and A. K. Pal, Thin Solid Films, 204 (1991) 255.

    Article  Google Scholar 

  3. W. H. Baur, and A. A. Khan, Acta Crystallogr. B 27 (1971) 2133.

    Article  Google Scholar 

  4. O. Byl, and J. T. Yates, J. Phys. Chem. Lett. 110 (2006) 22966–22967.

    Google Scholar 

  5. L. Luxman, and R. Dobner, Metall. (Berlin) 34 (1980) 821.

    Google Scholar 

  6. J. Guertz, S. Rau, W. Richter, and F. J. Schmitte, SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies, Thin Solid Films 121 (1984) 217.

    Article  Google Scholar 

  7. A. Sanchez-Juareza, A. Tiburcio-Silver, and A. Ortizc, Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition, Thin Solid Films 480–481 (2005) 452.

    Article  Google Scholar 

  8. G. W. Watson, The origin of the electron distribution in SnO, J. Appl. Phys. 114 (2001) 758.

    Google Scholar 

  9. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett. 93 (2008) 032113.

    Article  Google Scholar 

  10. P. Kofstad, Non-stoichiometry, diffusion and electrical conductivity of binary metal oxides. Wiley, New York (1972) p. 335.

    Google Scholar 

  11. L.-Z. Yang, Z.-T. Sui and C.-Z. Wang, Solid State Ionics 50 (1992) 203.

    Article  Google Scholar 

  12. B. Kamp, R. Merkle, R. Lauck, and J. Maier, Chemical diffusion of oxygen in tin oxide: effects of dopants and oxygen partial pressure, J. Solid State Chem. 178 (2005) 3027.

    Article  Google Scholar 

  13. C. G. Fornstad, and R. H. Rediker, Electrical properties of high-quality stannic oxide crystals, J. Appl. Phys. 42 (1971) 2911.

    Article  Google Scholar 

  14. R. Y. Korotkov, A. J. E. Farran, T. Culp, D. Russo, and C. Roger, Transport properties of undoped and NH3-doped polycrystalline SnO2 with low electron background concentrations, J. Appl. Phys. 96 (2004) 6445.

    Article  Google Scholar 

  15. B. Stjerna, E. Olsson, and C. G. Granqvist, Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo, J. Appl. Phys. 76 (1994) 3797.

    Article  Google Scholar 

  16. C. Kilic, and A. Zunger, Origins of coexistance of conductivity and transparency in SnO2, Phys. Rev. Lett. 88 (2002) 095501.

    Article  Google Scholar 

  17. E. Shanti, V. Dutta, A. Banerjee, and K. L. Chopra, Electrical and optical properties of undoped and antimony-doped tin oxide films, J. Appl. Phys. 51 (1980) 6243.

    Article  Google Scholar 

  18. S. W. Lee, Y.-W. Kim, and H. Chen, Electrical properties of Ta-doped SnO2 thin films prepared by the metal-organic chemical-vapor deposition method, Appl. Phys. Lett. 78 (2001) 350.

    Article  Google Scholar 

  19. C. Agashe, and S. S. Major, Effect of F, Cl and Br doping on the electrical properties of sprayed SnO2 films, J. Mater. Sci. Lett. 15 (1996) 497.

    Google Scholar 

  20. Y.-W. Kim, S. W. Lee, and H. Chen, Microstructural evolution and electrical property of Ta-doped SnO2 films grown on Al2O3 (0001) by metalorganic chemical vapor deposition, Thin Solid Films 405 (2002) 256.

    Article  Google Scholar 

  21. R. D. Shannon, Acta Cryst. A32 (1976) 751.

    Google Scholar 

  22. I. Saadeddin, B. Pecquenard, J. P. Manaud, R. Decourt, C. Labrugere, T. Buffeteau, and G. Campet, Synthesis and characterization of single and co-doped SnO2 thin films for optoelectronic applications, Appl. Surf. Sci. 253 (2007) 5240.

    Article  Google Scholar 

  23. K. Galatsis, L. Cukrov, W. Wlodarski, P. McCormick, K. Kalantar-zadeh, E. Comini, C. Sberveglieri, p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique, Sens. Actuators B 93 (2003) 562.

    Article  Google Scholar 

  24. Z. Ji, Z. He, Y. Song, K. Liu, and Z. Ye, Fabrication and characterization of indium doped p-type SnO2 thin films, J. Cryst. Growth 259 (2003) 282.

    Article  Google Scholar 

  25. Z. Ji, Z. He, Y. Song, K. Liu, and Y. Xiang, A novel transparent pn+ juction based on indium tin oxides, Thin Solid Films, 460 (2004) 324.

    Article  Google Scholar 

  26. C. Chen, Z. Ji, C. Wang, L. Zhao, and Q. Zhou, P-type tin–indium oxide films prepared by thermal oxidation of metallic InSn alloy films, Mater. Lett. 60 (2006) 3096.

    Article  Google Scholar 

  27. Y. Huang, Z. Ji, and C. Chen, Preparation and characterization of p-type transparent conducting tin-gallium oxide films, Appl. Surf. Sci. 253 (2007) 4819.

    Article  Google Scholar 

  28. M.-M. Bagheri-Mohagheghi, and M. Shokooh-Saremi, Influence of Al doping on the electrical, optical and structural properties of SnO2 transparent conducting films deposited by the spray pyrolysis technique, J. Phys. D Appl. Phys. 37 (2004) 1248.

    Article  Google Scholar 

  29. L. Poupon, P. Iacconi, and C. Pijolat, J. Eur. Ceram. Soc. 19 (1999) 747.

    Article  Google Scholar 

  30. X. Q. Pan, L. Fu, Tin Oxide thin films grown on the (1-012) sapphire substrate, J. Electroceram. 7 (2001) 35.

    Article  Google Scholar 

  31. E. L. Peltzer y Blanca, A. Svane, N. E. Christensen, C. O. Rodriguez, O. M. Cappannini, and M. S. Moreno, Calculated static and dynamic properties of β-Sn and Sn-O compounds, Phys. Rev. B Condens. Matter 48 (1993) 15712.

    Article  Google Scholar 

  32. K. C. Mishra, K. H. Johnson, and P. C. Schmidt, Electronic structure of antimony-doped tin oxide, Phys. Rev. B 51 (1995) 13972.

    Article  Google Scholar 

  33. G. W. Watson, The origin of the electron distribution in SnO, J. Chem. Phys. 114 (2001) 758.

    Article  Google Scholar 

  34. Y. Mi, H. Odaka, and S. Iwata, Electronic structure and optical properties of ZnO, SnO2 and In2O3, Jpn. J. Appl. Phys. 38 (1999) 3453.

    Article  Google Scholar 

  35. K. J. Button, C. G. Fonstad, and W. Dreybrodt, Determination of electron masses in stannic oxide by submillimeter cyclotron resonance, Phys. Rev. B 4 (1971) 4539.

    Article  Google Scholar 

  36. G. Sanon, R. Rup, A. Mansingh, Band gap narrowing and band structure in degenerate tin oxide (SnO2) films, Phys. Rev. B 44 (1991) 5672.

    Article  Google Scholar 

  37. S.-K. Song, J.-S. Cho, W.-K. Choi, H.-J. Jung, D. Choi, J.-Y. Lee, H.-K. Baik, and S.-K. Koh, Structure and gas-sensing characteristics of undoped tin oxide thin films fabricated by ion-assisted deposition, Sens. Actuators 46 (1998) 42.

    Article  Google Scholar 

  38. C. Agashe, B. R. Marathe, M. G. Takwale, and V. G. Bhide, Thin Solid Films 164 (1988) 261.

    Article  Google Scholar 

  39. H. S. Randhawa, M. D. Matthews, and R. F. Bunshah, Thin Solid Films 83 (1981) 267.

    Article  Google Scholar 

  40. J. E. Dominiguez, L. Fu, and X. Q. Pan, Effect of crystal defects on the electrical properties in epitaxial tin dioxide thin films, Appl. Phys. Lett. 81 (2002) 5168.

    Article  Google Scholar 

  41. J. E. Dominiguez, X. Q. Pan, L. Fu, P. A. van Rompay, Z. Zhang, J. A. Nees, and P. P. Pronko, Epitaxial SnO2 films grown on (-1012) sapphire by femtosecond pulsed laser deposition, J. Appl. Phys. 91 (2001) 1060.

    Article  Google Scholar 

  42. M. Kojima, H. Kato, A. Imai, Electronic conduction of tin oxide thin films prepared by chemical vapor deposition, J. Appl. Phys. 64 (1988) 1902.

    Article  Google Scholar 

  43. T. R. Giraldi, M. T. Escote, M. I. B. Bernardi, V. Bouquet, E. R. Leite, E. Longo, and J. A. Varela, Effect of thickness on the electrical and optical properties of Sb-doped SnO2 (ATO) thin films, J. Electroceram. 13 (2004) 159.

    Article  Google Scholar 

  44. H.-L. Ma, X.-T. Hao, J. Ma, Y.-G. Yang, J. Huang, D.-H. Zhang, X.-G. Xu, Thickness dependence of properties of SnO2:Sb films deposited on flexible substrates, Appl. Surf. Sci. 191 (2002) 313.

    Article  Google Scholar 

  45. T. Isono, T. Fukuda, K. Nakagawa, R. Usui, R. Satoh, E. Morinaga, and Y. Mihara, High conductivity SnO2 thin films for flat panel displays, SID Digest (2006) 1874.

    Google Scholar 

  46. S.-Y. Lee, and B. O. Park, Structural electrical and optical characterizatics of SnO2:Sb thin films by ultrasonic spray pyrolisys, Thin Solid Films 510 (2006) 154.

    Article  Google Scholar 

  47. R.J. Choudhary, S.B. Ogale, S.R. Shinde, V.N. Kulkani, T. Venkatessan, K.S. Harshavardhan, M. Strikovski, and B. Hannoyer, Pulsed-electron-beam deposition of transparent conducting SnO2 films and study of their properties, Appl. Phys. Lett. 84 (2004) 1483.

    Article  Google Scholar 

  48. E. Burstein, Phys. Rev. 104 (1954) 632.

    Article  Google Scholar 

  49. E. Shanthi, A. Banerjee, V. Dutta, and K. L. Chopra, Electrical and optical properties of tin oxide films doped with F and (Sb+F), J. Appl. Phys. 53 (1982) 1615.

    Article  Google Scholar 

  50. B. Yu, C. Zhu, and F. Gan, Opt. Mater. Amsterdam, Neth. 7 (1997) 15.

    Google Scholar 

  51. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72 (1998) 3270.

    Article  Google Scholar 

  52. S. S. Pan, C. Ye, X. M. Teng, L. Li, and G. H. Li, Localized exciton luminescence in nitrogen-incorporated SnO2 thin films, Appl. Phys. Lett. 89 (2006) 251911.

    Article  Google Scholar 

  53. S. S. Fouad, A. Y. Moursy, I. El-Fallal, and M. A. Harith, Optical properties of stannous oxide thin films, Czech. J. Phys. 42(2) (1992) 235.

    Article  Google Scholar 

  54. R. Sivaramasubramaniam, M. R. Muhamad, and S. Radhakrishna, Optical properties of annealed tin(II) oxide in different ambients. Physica Status Solidi A Appl. Res. 136(1) (1993) 215.

    Article  Google Scholar 

  55. H. Hosono, M. Yasukawa, and H. Kawazoe, Novel oxide amorphous semiconductors: transparent conducting amorphous oxides, J. Non-Cryst. Solids 203 (1996) 334.

    Article  Google Scholar 

  56. I. H. Kim, J. H. Ko, D. Kim, K. S. Lee, T. S. Lee, J.-H. Jeong, B. Cheong, Y.-J. Baik, and W. M. Kim, Scattering mechanism of transparent conducting tin oxide films prepared by magnetron sputtering, Thin Solid Films 515 (2006) 2475.

    Article  Google Scholar 

  57. S. Shirakata, A. Yokoyama, and S. Isomura, Preparation of SnO2 thin films by plasma-assisted metaloganic chemical vapor deposition, Jpn. J. Appl. Phys. 35 (1996) L722.

    Article  Google Scholar 

  58. T. Minami, H. Sonohara, S. Takata, and H. Sato, Highly transparent and conductive zinc-stannate thin films prepared by rf magnetron sputtering, Jpn. J. Appl. Phys. 33 (1994) L1693.

    Article  Google Scholar 

  59. J. D. Perkins, J. A. del Cuerto, J. L. Alleman, C. Warnsingh, B. M. Keyes, L. M. Gedvilas, P. A. Parilla, B. To, D. W. Readey, and D. S. Ginley, Combinatorial studies of Zn-Al-O and Zn-Sn-O transparent conducting oxide thin films, Thin Solid Films 411 (2002) 152.

    Article  Google Scholar 

  60. H. Q. Chang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, High mobility transparent thin film transistors with amorphous zinc tin oxide channel layer, Appl. Phys. Lett. 86 (2005) 013503.

    Article  Google Scholar 

  61. T. Minami, T. Kakumu, K. Shimokawa, and S. Takata, New transparent conducting ZnO-In2O3-SnO2 thin films prepared by magnetron sputtering, Thin Solid Films 317 (1998) 318.

    Article  Google Scholar 

  62. J. B. Yadav, R. B. Patil, R. K. Puri, and V. Puri, Studies on undoped SnO2 thin film deposited by chemical reactive evaporation method, Mater. Sci. Eng. B 139 (2007) 69.

    Article  Google Scholar 

  63. T. Minami, T. Miyata, and T. Yamamoto, Stability of transparent conducting oxide films for use at high temperatures, J. Vac. Sci. Technol. A 17 (1999) 1822.

    Article  Google Scholar 

  64. H. Wakabayashi, T. Suzuki, Y. Iwazaki, and M. Fujimoto, Defect structure of heteroepitaxial SnO2 thin films grown on TiO2 substrates, Jpn. J. Appl. Phys. 40 (2001) 6081.

    Article  Google Scholar 

  65. N. Nagano, Chemical vapor deposition of SnO2 on thin films on rutile single crystals, J. Cryst. Growth 67 (1984) 465.

    Article  Google Scholar 

  66. T. Tsuchiya, A. Watanabe, T. Kumagai, and S. Mizuta, Epitaxial growth of tin oxide films on (001) TiO2 substrates by KrF and XeCl excimer laser annealing, Appl. Surf. Sci. 248 (2005) 118.

    Article  Google Scholar 

  67. J. E. Dominiguez, L. Fu, and X. Q. Pan, Epitaxial nanocrystalline tin dioxide thin films grown on (0001) sapphire by femtosecond pulsed laser deposition, Appl. Phys. Lett. 79 (2001) 614.

    Article  Google Scholar 

  68. A. Rosental, A. Tarre, A. Gerst, J. Sundqvist, A. Harsta, A. Aidla, J. Aarik, V. Sammelselg, and T. Uustare, Gas sensing properties of epitaxial thin films prepared by atomic layer deposition, Sens. Actuators B Chem. 93 (2003) 552.

    Article  Google Scholar 

  69. R. E. Cavicchi, S. Semancik, M. D. Antonik, and R. J. Lad, Layer-by-layer growth of epitaxial SnO2 on sapphire by reactive sputter deposition, Appl. Phys. Lett. 61 (1992) 1921.

    Article  Google Scholar 

  70. M. Batzill, J. M. Burst, and U. Diebold, Pure and co-doped SnO2 (101) films grown by MBE on Al2O3, Thin Solid Films 484 (2005) 132.

    Article  Google Scholar 

  71. S. Shanti, C. Subramanian, and P. Ramasamy, Preparation and properties of sprayed undoped and fluorine doped tin oxide, Mater. Sci. Eng. B 57 (1999) 127.

    Article  Google Scholar 

  72. E. Elangovan, and K. Ramamurthi, Studies on micro-structural and electrical properties os spray-deposited fluorine-doped tin oxide thin films from low cost precursor, Thin Solid Films 476 (2005) 231.

    Article  Google Scholar 

  73. S. Suh, Z. Zhang, W.-K. Chu, and D. M. Hoffman, Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films, Thin Solid Films 345 (1999) 240.

    Article  Google Scholar 

  74. H.-G. Hong, J.-O Song, S.-H. Kim, T. Lee, and T.-Y. Seong, Effects of oxygen partial pressure on the electrical and optical properties of pulsed-laser-deposited Sb-doped SnO2 films, J. Electrochem. Soc. 153 (2006) G922.

    Article  Google Scholar 

  75. J. F. Wager, Transparent electronics, Science 300 (2003) 1245.

    Article  Google Scholar 

  76. R. E. Presley, C. L. Munsee, C.-H. Park, D. Hong, J. F. Wager, and D. A. Keszler, Tin oxide transparent thin film transistors, J. Phys. D Appl. Phys. 37 (2004) 2810.

    Article  Google Scholar 

  77. D.-H. Lee, Y.-J. Chang, W. Stickle, and C.-H. Chang, Functional porous tin oxide thin films fabricated by inkjet printing process, Electrochem. Solid-State Lett. 10 (2007) K51.

    Article  Google Scholar 

  78. R. L. Hoffman, B. J. Norris, and J. F. Wager, ZnO-based transparent thin film transistors, Appl. Phys. Lett. 82 (2003) 733.

    Article  Google Scholar 

  79. W. B. Jackson, G. S. Herman, R. L. Hoffman, C. Taussig, S. Braymen, F. Jeffery, and J. Hauschildt, Zinc tin oxide transistors on flexible substrates, J. Non-Cryst. Solids, 352 (2006) 1753.

    Article  Google Scholar 

  80. M. J. Madou, and S. R. Morrison, Chemical sensing with solid-state devices, Academic Press, Boston, 1989.

    Google Scholar 

  81. M. Batzill, and U. Diebold, The surface and materials science of tin oxide, Prog. Surface Sci. 79 (2005) 47.

    Article  Google Scholar 

  82. S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kukarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, and T. Venkatesan, High temperature ferromagnetism with giant magnetic moment in transparent Co-doped SnO2-δ, Phys. Rev. Lett. 91 (2003) 077205.

    Article  Google Scholar 

  83. J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett. 84 (2004) 1332.

    Article  Google Scholar 

  84. A. Punnoose, J. Hays, A. Thurber, M. H. Engelhard, R. K. Kukkadapu, C. Wang, W. Shutthanandan, and S. Thevuthasan, Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping, Phys. Rev. B 72 (2005) 054402.

    Article  Google Scholar 

  85. H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, and H. Koinuma, Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2, Appl. Phys. Lett. 80 (2002) 94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kykyneshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Kykyneshi, R., Zeng, J., Cann, D.P. (2011). Transparent Conducting Oxides Based on Tin Oxide. In: Ginley, D. (eds) Handbook of Transparent Conductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1638-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1638-9_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1637-2

  • Online ISBN: 978-1-4419-1638-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics