Skip to main content

Water, Potassium, Sodium, and Chloride in Nutrition

  • Chapter
  • First Online:
Geriatric Gastroenterology

Abstract

Water, potassium, sodium, and chloride play key roles in health. Each nutrient has a physiologic role, homeostatic balance, and relationship to disease when ingested in inappropriate amounts. Adequate intake of water helps maintain circulating volume and prevent impairments in cognition and exercise capacity due to dehydration. Potassium is needed to maintain electrochemical gradients across cellular membranes; adequate intake from dietary sources can reduce blood pressure, bone demineralization, and formation of kidney stones. Sodium and chloride also impact membrane potential as the principal extracellular ions. When taken in excess, sodium increases blood pressure and cardiovascular risk in salt-sensitive populations such as older persons and African Americans. Education and policy measures to promote appropriate intakes of water, potassium, and sodium can translate into population-wide health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appel LJ, Baker DH, Bar-Or O, Minaker KL, Morris Jr RC, Resnick LM, Sawka MN, Volpe SL, Weinberger MH, Whelton PK. Panel on Dietary Reference Intakes for Electrolytes and Water. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Food and Nutrition Board of the Institute of Medicine. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: National Academies Press; 2005.

    Google Scholar 

  2. Cian C, Koulmann N, Barraud PA, et al. Influence of variations in body hydration on cognitive function: effect of hyperhydration, heat stress, and exercise-induced dehydration. J Psychophysiol. 2000;14:29–36.

    Article  Google Scholar 

  3. Fallowfield JL, Williams C, Booth J, et al. Effect of water ingestion on endurance capacity during prolonged running. J Sports Sci. 1996;14:497–502.

    Article  PubMed  CAS  Google Scholar 

  4. Whelton PK, He J, Cutler JA, et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277:1624–32.

    Article  PubMed  CAS  Google Scholar 

  5. Pak CY, Peterson RD, Poindexter J. Prevention of spinal bone loss by potassium citrate in cases of calcium urolithiasis. J Urol. 2002;168:31–4.

    Article  PubMed  Google Scholar 

  6. Curhan GC, Willett WC, Rimm ER, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med. 1993;328:833–8.

    Article  PubMed  CAS  Google Scholar 

  7. Vollmer WM, Sacks FM, Ard J, et al. Effects of diet and sodium intake on blood pressure: Subgroup analysis of the DASH-sodium trial. Ann Intern Med. 2001;135:1019–28.

    PubMed  CAS  Google Scholar 

  8. Otten JJ, Hellwig JP, Meyers LD, editors. Dietary reference intakes: the essential guide to nutrient requirements. Food and Nutrition Board of the Institute of Medicine. Washington, DC: The National Academies Press; 2006.

    Google Scholar 

  9. Haussinger D, Lang F, Gerok W. Regulation of cell function by the cellular hydration state. Am J Physiol. 1994;267:E343–55.

    PubMed  CAS  Google Scholar 

  10. Hoyt RW, Honig A. Environmental influences on body fluid balance during exercise: altitude. In: Buskirk ER, Puhl SM, editors. Body Fluid Balance: Exercise and Sport. Boca Raton, Fl: CRC Press; 1996. p. 183–96.

    Google Scholar 

  11. Adolph EF. Urinary excretion of water and solutes. In: Adolph EF, editor. Physiology of Man in the Desert. New York: Intersciences Publishers; 1947. p. 96–109.

    Google Scholar 

  12. Newburgh LH, Woodwell Johnston M, Falcon-Lesses M. Measurement of total water exchange. J Clin Invest. 1930;8:161–96.

    Article  PubMed  CAS  Google Scholar 

  13. Kuno Y. Human perspiration. Springfield, IL: Charles C. Thomas; 1956.

    Google Scholar 

  14. Mitchell JW, Nadel ER, Stolwijk JAJ. Respiratory weight losses during exercise. J Appl Physiol. 1972;32:474–6.

    PubMed  CAS  Google Scholar 

  15. Molnar GW. Man in the tropics compared with man in the desert. In: Adolph EF, editor. Physiology of man in the desert. New York: Intersciences; 1947. p. 315–25.

    Google Scholar 

  16. Lloyd LE, McDonald BE, Crampton EW. Water and its metabolism. In: Fundamentals of nutrition. 2nd ed. San Francisco, CA: WH Freeman; 1978, p. 22–35.

    Google Scholar 

  17. Gopinathan PM, Pichan G, Sharma VM. Role of dehydration in heat stress-induced variations in mental performance. Arch Environ Health. 1988;43:15–7.

    Article  PubMed  CAS  Google Scholar 

  18. Epstein M, Keren G, Moisseiev J, et al. Psychomotor deterioration during exposure to heat. Aviat Space Environ Med. 1980;51:607–10.

    PubMed  CAS  Google Scholar 

  19. Below PR, Mora-Rodriguez R, Gonzalez-Alonso J, Coyle EF. Fluid and carbohydrate ingestion independently improve performance during 1 hour of intense exercise. Med Sci Sports Exerc. 1995;27:200–10.

    PubMed  CAS  Google Scholar 

  20. Pichan G, Gauttam RK, Tomar OS, Bajaj AC. Effect of primary hypohydration on physical work capacity. Int J Biometeorol. 1988;32:176–80.

    Article  PubMed  CAS  Google Scholar 

  21. McConell GK, Burge CM, Skinner SL, Hargreaves M. Influence of ingested fluid volume on physiologic responses during prolonged exercise. Acta Physiol Scand. 1997;160:149–56.

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez-Alonso J, Mora-Rodriguez R, Below PR, Coyle EF. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J Appl Physiol. 1997;82:1229–36.

    PubMed  CAS  Google Scholar 

  23. US Department of Health and Human Services, National Center for Health Statistics. Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Atlanta, GA: US Department of Health and Human Services, National Center for Health Statistics; 1994.

    Google Scholar 

  24. Andreoli TE, Reeves WB, Bichet DG. Endocrine control of water balance. In: Fray JCS, Goodman HM, editors. Handbook of Physiology, Section 7, Volume III: Endocrine Regulation of Water and Electrolyte Balance. New York: Oxford University Press; 2000. p. 530–69.

    Google Scholar 

  25. Knepper MA, Valtin H, Sands JM. Renal actions of vasopressin. In: Fray JCS, Goodman HM, editors. Handbook of Physiology, Section 7, Volume III: Endocrine Regulation of Water and Electrolyte Balance. New York: Oxford University Press; 2000. p. 496–529.

    Google Scholar 

  26. Senay Jr LC, Christensen ML. Changes in blood plasma during progressive dehydration. J Appl Physiol. 1965;20:1136–40.

    Google Scholar 

  27. Lindeman RD, Lee Jr TD, Yiengst MJ, Shock NW. Influence of age, renal disease, hypertension, diuretics, and calcium on the antidiuretic responses to suboptimal infusions of vasopressin. J Lab Clin Med. 1966;68:206–23.

    PubMed  CAS  Google Scholar 

  28. Rowe JW, Shock NW, DeFronzo RA. The influence of age on the renal response to water deprivation in man. Nephron. 1976;17:270–8.

    Article  PubMed  CAS  Google Scholar 

  29. Fish LC, Minaker KL, Rowe JW. Altered thirst threshold during hypertonic stress in aging men. Gerontologist. 1985;25:A118–9.

    Google Scholar 

  30. Murphy DJ, Minaker KL, Fish LC, Rowe JW. Impaired osmostimulation of water ingestion delays recovery from hyperosmolarity in normal elderly. Gerontologist. 1988;28:A141.

    Google Scholar 

  31. Gardner JW, Gutmann FD. Fatal water intoxication of an Army trainee during urine drug test. Mil Med. 2002;167:435–7.

    PubMed  Google Scholar 

  32. Arieff AI, Kronlund BA. Fatal child abuse by forced water intoxication. Pediatrics. 1999;103:1292–5.

    Article  PubMed  CAS  Google Scholar 

  33. Freund BJ, Montain SJ, Young AJ, et al. Glycerol hyperhydration: Hormonal, renal, and vascular fluid responses. J Appl Physiol. 1995;79:2069–77.

    PubMed  CAS  Google Scholar 

  34. Sebastian A, Harris ST, Ottaway JH, et al. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med. 1994;330:1776–81.

    Article  PubMed  CAS  Google Scholar 

  35. Sebastian A, Frassetto LA, Sellmeyer DE, et al. Estimation of the net acid load of the diet ancestral preagricultural Homo sapiens and their hominid ancestors. Am J Clin Nutr. 2002;76:1308–16.

    PubMed  CAS  Google Scholar 

  36. Barzel US. The skeleton as an ion exchange system: Implications for the role of acid-base imbalance in the genesis of osteoporosis. J Bone Miner Res. 1995;10:1431–6.

    Article  PubMed  CAS  Google Scholar 

  37. New SA, Robins SP, Campbell MK, et al. Dietary influences on bone mass and bone metabolism: Further evidence of a positive link between fruit and vegetable consumption and bone health. Am J Clin Nutr. 2000;71:142–51.

    PubMed  CAS  Google Scholar 

  38. Holbrook JT, Patterson KY, Bodner JE, et al. Sodium and potassium intake and balance in adults consuming self-selected diets. Am J Clin Nutr. 1984;40:786–93.

    PubMed  CAS  Google Scholar 

  39. Lemann J, Bushinsky DA, Hamm LL. Bone buffering of acid and base in humans. Am J Physiol. 2003;285:F811–32.

    CAS  Google Scholar 

  40. Agarwal R, Afzalpurkur R, Fordtran JS. Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology. 1994;107:548–71.

    PubMed  CAS  Google Scholar 

  41. Eaton SB, Eaton SBI, Konner MJ. Paleolithic nutrition revisited. In: Trevathan WR, Smith EO, McKenna JJ, editors. Evolutionary Medicine. New York: Oxford University Press; 1999. p. 313–32.

    Google Scholar 

  42. Rose G, Stamler J, Stamler R, et al. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ. 1988;297:319–28.

    Article  Google Scholar 

  43. Dyer AR, Elliott P, Shipley M. Urinary electrolyte excretion in 24 hours and blood pressure in the Intersalt study. II. Estimates of electrolyte blood pressure associations corrected for regression dilution bias. Am J Epidemiol. 1994;139:941–51.

    Google Scholar 

  44. Morris Jr RC, Sebastian A, Forman A, et al. Normotensive salt-sensitivity: effects of race and dietary potassium. Hypertension. 1999;33:18–23.

    Article  PubMed  CAS  Google Scholar 

  45. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27:481–90.

    Article  PubMed  CAS  Google Scholar 

  46. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension. 2001;37:429–32.

    Article  PubMed  CAS  Google Scholar 

  47. New SA, Bolton-Smith C, Grubb DA, Reid DM. Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr. 1997;65:1831–9.

    PubMed  CAS  Google Scholar 

  48. Tucker KL, Hannan MT, Chen H, et al. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69:727–36.

    PubMed  CAS  Google Scholar 

  49. Curhan GC, Willett WC, Speizer FE, et al. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk of kidney stones in women. Ann Intern Med. 1997;126:497–504.

    PubMed  CAS  Google Scholar 

  50. Pak CY. Citrate and renal calculi. Miner Electrolyte Metab. 1987;13:257–66.

    PubMed  CAS  Google Scholar 

  51. Lemann J, Pleuss JA, Gray RW. Potassium bicarbonate, but not sodium bicarbonate, reduces urinary calcium excretion and improves calcium balances in healthy men. Kidney Int. 1989;35:688–95.

    Article  PubMed  Google Scholar 

  52. Health and Welfare Canada, Wright JD, Ervin B, Briefel RR, editors. Consensus workshop on dietary assessment: nutrition monitoring and tracking the year 2000 objectives. Hyattsville, MD: US Department of Health and Human Services; 1994.

    Google Scholar 

  53. Berliner RW. Renal mechanisms for potassium excretion. In: Harvey Lectures Series 55. New York: Academic; 1961, p. 141–71.

    Google Scholar 

  54. Mattes RD, Donnelly D. Relative contributions of dietary sodium sources. J Am Coll Nutr. 1991;10:383–93.

    PubMed  CAS  Google Scholar 

  55. Dahl LK. Salt intake and salt need. N Engl J Med. 1958;258:1152–6.

    Article  PubMed  CAS  Google Scholar 

  56. Roy S, Arant B. Alkalosis from chloride-deficient Neo-Mull-Soy. N Engl J Med. 1979;301:615.

    PubMed  Google Scholar 

  57. Oliver WJ, Cohen EL, Neel JV. Blood pressure, sodium intake, and sodium related hormones in the Yanomamo Indians, a “no-salt” culture. Circulation. 1975;52:146–51.

    Article  PubMed  CAS  Google Scholar 

  58. Elliott P, Stamler J, Nichols R, et al. Intersalt revisited: further analysis of 24 hour sodium excretion and blood pressure within and across populations. Br Med J. 1996;312:1249–53.

    Article  CAS  Google Scholar 

  59. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med. 2001;344:3–10.

    Article  PubMed  CAS  Google Scholar 

  60. Kumanyika SK, Herbert PR, Cutler JA, et al. Feasibility and efficacy of sodium reduction in the Trials of Hypertension Prevention, Phase I. Hypertension. 1993;22:502–12.

    Article  PubMed  CAS  Google Scholar 

  61. Trials of Hypertension Prevention Collaborative Research Group. The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. JAMA. 1992;267:1213–20.

    Article  Google Scholar 

  62. Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The trials of Hypertension Prevention, Phase II. Arch Intern Med. 1997;157:657–67.

    Article  Google Scholar 

  63. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, et al. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA. 2011;305:1777–85.

    Article  PubMed  CAS  Google Scholar 

  64. Lancet Editorial. Salt and cardiovascular disease mortality. Lancet. 2011;377:1626.

    Google Scholar 

  65. Kolata G. Low-salt diet ineffective, study finds. Disagreement abounds. New York Times 3 May 2011. Retrieved from www.nytimes.com on 1 June 2011 at http://www.nytimes.com/2011/05/04/health/research/04salt.html?_r=3&ref=health.

  66. The Nutrition Source, Harvard School of Public Health. Flawed science on sodium from JAMA. Why you should take the latest sodium study with a huge grain of salt. Retrieved from www.hsph.harvard.edu on 1 June 2011 at http://www.nytimes.com/2011/05/04/health/research/04salt.html?_r=3&ref=health.

  67. Appel LJ, Frohlich ED, Hall JE, et al. The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke: a call to action from the American Heart Association. Circulation. 2011;123:1138–43.

    Article  PubMed  Google Scholar 

  68. US Department of Agriculture and US Department of Health and Human Services. Dietary guidelines for Americans. Dietary guidelines for Americans, 2010. 7th ed. Washington, DC: US Government Printing Office; 2010.

    Google Scholar 

  69. Johnson AG, Nguyen TV, Davis D. Blood pressure is linked to salt intake and modulated by the angiotensinogen gene in normotensive and hypertensive elderly subjects. J Hypertens. 2001;19:1053–60.

    Article  PubMed  CAS  Google Scholar 

  70. MacGregor GA, Markandu ND, Sagnella GA, et al. Double-blind study of three sodium intakes and long-term effects of sodium restriction in essential hypertension. Lancet. 1989;2:1244–7.

    Article  PubMed  CAS  Google Scholar 

  71. Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  72. Luft FC, Weinberger MH, Fineberg MS, et al. Effect of age on renal sodium homeostasis and its relevance to sodium sensitivity. Am J Med. 1987;82:9S–15.

    Article  Google Scholar 

  73. Khaw KT, Barrett-Connor E. The association between blood pressure, age, and dietary sodium and potassium: a population study. Circulation. 1988;77:53–61.

    Article  PubMed  CAS  Google Scholar 

  74. Stamler R. Implications of the Intersalt study. Hypertension. 1991;17(1 Suppl):I16–20.

    Article  PubMed  CAS  Google Scholar 

  75. Cook NR, Cutler JA, Hennekens CH. An unexpected result from sodium—causal or causal? Hypertension. 1995;25:1153–4.

    Article  PubMed  CAS  Google Scholar 

  76. Bibbins-Domingo K, Chertow GH, Coxson PG, et al. Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med. 2010;362:590–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Dharmarajan MD, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dharmarajan, K., Minaker, K.L. (2012). Water, Potassium, Sodium, and Chloride in Nutrition. In: Pitchumoni, C., Dharmarajan, T. (eds) Geriatric Gastroenterology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1623-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1623-5_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1622-8

  • Online ISBN: 978-1-4419-1623-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics