Skip to main content

Intermediary Metabolism of Carbohydrate, Protein, and Fat

  • Chapter
  • First Online:
Metabolic Basis of Obesity

Abstract

The causes of obesity in an individual may involve many factors, both genetic and environmental, including fat cell production and development, appetite and energy regulation. However, the excessive accumulation of triglyceride (triacylglycerol) that characterizes obesity and its effects on the use and storage of various fuels (glucose, fatty acids, and amino acids) are clearly the result of abnormalities in metabolism. The pathways of carbohydrate, protein, and fat metabolism and their interactions and regulatory mechanisms are described, including effects of insulin and counterregulatory hormones such as glucagon and epinephrine. Fructose, incorporated increasingly in the diet, has relatively unregulated metabolism compared with glucose and may thus promote obesity. New insights that have been obtained from studies of genetic models with oblation or modification of particular enzymes or hormone receptors often in a tissue-specific manner are presented, in particular the insulin receptor and the insulin-stimulated glucose transporter Glut4 of muscle and fat cells. The enzyme AMP-activated protein kinase (AMPK) is probably of central importance, as it has recently been identified as a cellular mediator of many events in intermediary metabolism and whose dysregulation may be a cause of disorders associated with the metabolic syndrome and a target for their therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matschinsky, F., Liang, Y., Kesavan, P., et al. (1993). Glucokinase as pancreatic β cell glucose sensor and diabetes gene. Journal of Clinical Investigation, 92, 2092–2098.

    Article  CAS  PubMed  Google Scholar 

  2. Zorzano, A., Balon, T.W., Brady, L.J., et al. (1985). Effects of starvation and exercise on concentrations of citrate. hexose phosphates and glycogen in skeletal muscle and heart. Evidence for selective operation of the glucose-fatty acid cycle. Biochemical Journal, 232, 585–591.

    CAS  PubMed  Google Scholar 

  3. Atsumi, T., Nishio, T., Niwa, H., et al. (2005). Expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation. Diabetes, 54, 3349–3357.

    Article  CAS  PubMed  Google Scholar 

  4. Huo, Y., Guo, X., Honggui, L., et al. (2010). Disruption of inducible 6-phosphofructo-2-kinase ameliorates diet-induced adiposity but exacerbates sustemic insulin resistance and adipose tissue inflammatory response. Journal of Biological Chemistry, 285, 3713–3721.

    Article  CAS  PubMed  Google Scholar 

  5. Tornheim, K. (1997). Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes, 46, 1375–1380.

    Article  CAS  PubMed  Google Scholar 

  6. Getty-Kaushik, L., Viereck, J.C., Goodman, J.M., et al. (2010). Mice deficient in phosphofructokinase-M have greatly decreased fat stores. Obesity, 18, 434–440.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, R.J., Perez-Pozo, S.E., Sautin, Y.Y., et al. (2009). Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocrine Review, 30, 96–116.

    Article  CAS  Google Scholar 

  8. Matsumoto, M., & Accili, D. (2006). The tangled path to glucose production. Nature Medicine, 12, 33–34.

    Article  CAS  PubMed  Google Scholar 

  9. Vidal-Puig, A., & O’Rahilly, S. (2001). Controlling the glucose factory. Nature, 413, 125–126.

    Article  CAS  PubMed  Google Scholar 

  10. Aragón, J.J., & Lowenstein, J.M. (1980). The purine-nucleotide cycle: Comparison of the levels of citric acid cycle intermediates with the operation of the purine nucleotide cycle in rat skeletal muscle during exercise and recovery from exercise. European Journal of Biochemistry, 110, 371–377.

    Article  PubMed  Google Scholar 

  11. Rothman, D.L., Magnusson, I., Cline, G., et al. (1995). Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proceedings of the National Academy of Science USA, 92, 983–987.

    Article  CAS  Google Scholar 

  12. Rossetti, L., & Giaccari, A. (1990). Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake: A dose-response euglycemic clamp study in normal and diabetic rats. Journal of Clinical Investigation, 85, 1785–1792.

    Article  CAS  PubMed  Google Scholar 

  13. Bollen, M., Keppens, S., Stalmans, W. (1998). Specific features of glycogen metabolism in the liver. Biochemical Journal, 336, 19–31.

    CAS  PubMed  Google Scholar 

  14. Yoneshiro, T., Aita, S., Matsushita, M., et al. (2010). Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity [Epub ahead of print].

    Google Scholar 

  15. Ravussin, E. (2010). The presence and role of brown fat in adult humans. Current Diabetic Reports, 10, 90–92.

    Article  CAS  Google Scholar 

  16. Ahmed, K., Tunaru, S., Tang, C., et al. (2010). An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metabolism, 11, 311–319.

    Article  CAS  PubMed  Google Scholar 

  17. Richter, E.A., & Ruderman, N.B. (2009). AMPK and the biochemistry of exercise: Implications for human health and disease. Biochemical Journal, 418, 261–275.

    Article  CAS  PubMed  Google Scholar 

  18. Yaney, G.C., & Corkey, B.E. (2003). Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia, 46, 1297–1312.

    Article  CAS  PubMed  Google Scholar 

  19. Nye, C.K., Hanson, R.W., Kalhan, S.C. (2008). Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. Journal of Biological Chemistry, 283, 27565–27574.

    Article  CAS  PubMed  Google Scholar 

  20. Berg, J.M., Tymoczko, J.L., Stryer, L. (2006). Biochemistry (6th ed.). New York: WH Freeman.

    Google Scholar 

  21. Hardie, D.G., & Carling, D. (1997). The AMP-activated protein kinase – fuel gauge of the mammalian cell? European Journal of Biochemistry, 246, 259–273.

    Article  CAS  PubMed  Google Scholar 

  22. Towler, M.C., & Hardie, D.G. (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circulation Research, 100, 328–341.

    Article  CAS  PubMed  Google Scholar 

  23. Ruderman, N., & Prentki, M. (2004). AMP kinase and malonyl-CoA: Targets for therapy of the metabolic syndrome. Nature Reviews Drug Discovery, 3, 340–351.

    Article  CAS  PubMed  Google Scholar 

  24. Ruderman, N.B., Xu, X.J., Nelson, L., et al. (2010). AMPK and SIRT1: A long-standing partnership? American Journal of Physiology: Endocrinology Metabolism, 298, 751–760.

    Article  Google Scholar 

  25. Cantó, C., Jiang, L.Q., Deshmukh, A.S., et al. (2010). Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metabolism, 11, 213–219.

    Article  PubMed  Google Scholar 

  26. Filozof, C., & Gonzalez, C. (2000). Predictors of weight gain: The biological-behavioural debate. Obesity Review, 1, 21–26.

    Article  CAS  Google Scholar 

  27. Ellis, A.C., Hyatt, T.C., Hunter, G.R., Gower, B.A. (May 6, 2010). Respiratory quotient predicts fat mass gain in premenopausal women. Obesity [Epub ahead of print].

    Google Scholar 

  28. Ruderman, N.B., Saha, A.K., Kraegen, E.W. (2003). Minireview: Malonyl CoA, AMP-activated protein kinase, and adiposity. Endocrinology, 144, S166–S171.

    Article  Google Scholar 

  29. Biddinger, S.B., & Kahn, C.R. (2006). From mice to men: Insights into the insulin resistance syndromes. Annual Review of Physiology, 68, 123–158.

    Article  CAS  PubMed  Google Scholar 

  30. Herman, M.A., & Kahn, B.B. (2006). Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. Journal of Clinical Investigation, 116, 1767–1775.

    Article  CAS  PubMed  Google Scholar 

  31. Walsh, K. (2009). Adipokines, myokines and cardiovascular disease. Circulatory Journal, 73, 13–18.

    Article  Google Scholar 

  32. Haller, J.F., Smith, C., Liu, D., et al. (2010). Isolation of novel animal cell lines defective in glycerolipid biosynthesis reveals mutations in glucose-6-phosphate isomerase. Journal of Biological Chemistry, 285, 866–877.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Tornheim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tornheim, K., Ruderman, N.B. (2011). Intermediary Metabolism of Carbohydrate, Protein, and Fat. In: Ahima, R. (eds) Metabolic Basis of Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1607-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1607-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1606-8

  • Online ISBN: 978-1-4419-1607-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics