Skip to main content

Regulatory T-Cells, FoxP3 and Atherosclerosis

  • Chapter
Forkhead Transcription Factors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 665))

Abstract

Innate immune responses follow accumulation of modified lipids within the arterial wall thereby influencing atherosclerotic plaque progression. One of the mechanisms evolved in maintaining immunologic self-tolerance involves upregulation of regulatory T-cells, among which the CD4+CD25+ FoxP3+ regulatory T-cells (Treg) are best characterized. The putative important role of Treg in the initiation of atherosclerotic lesions as well as in the progression towards unstable plaques leading to ischemic events, supported by human studies and, indirectly, by murine models. Herein, we summarize the experimental approaches taken in order to study the possible mechanisms of Treg involvement in atherosclerosis as well as the beneficial clinical potential of Treg in stabilizing atherosclerotic plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansson GK. Inflammation, atherosclerosis and coronary artery disease. N Engl J Med 2005; 352(16):1685–95.

    Article  CAS  PubMed  Google Scholar 

  2. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2006; 6(7):508–19.

    Article  CAS  PubMed  Google Scholar 

  3. Benagiano M, Azzurri A, Ciervo A et al. T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions. Proc Natl Acad Sci USA 2003; 100(11):6658–63.

    Article  CAS  PubMed  Google Scholar 

  4. Frostegård J, Ulfgren AK, Nyberg P et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999; 145(1):33–43.

    Article  PubMed  Google Scholar 

  5. Hansson GK, Robertson AK, Soderberg-Naucler C. Inflammation and atherosclerosis. Annu Rev Parhol 2006; 1:297–329.

    Article  CAS  Google Scholar 

  6. Kleindienst R, Xu Q, Willeit J et al. Immunology of atherosclerosis._Demonstration of heat shock protein 60 expression and T-lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 1993; 142(6):1927–37.

    CAS  PubMed  Google Scholar 

  7. Stemme S, Holm J, Hansson GK. T-lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler Thromb 1992; 12(2):206–11.

    CAS  PubMed  Google Scholar 

  8. Jonasson L, Holm J, Skalli O et al. Regional accumulations of T-cells, macrophages and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986; 6(2):131–8.

    CAS  PubMed  Google Scholar 

  9. van der Wal AC, Das PK, Bentz van de Berg D et al. Atherosclerotic lesions in humans. In situ immunophenotypic analysis suggesting an immune mediated response. Lab Invest 1989; 61(2):166–70.

    PubMed  Google Scholar 

  10. Choi JI, Chung SW, Kang HS et al. Establishment of Porphyromonas gingivalis heat-shock-protein-specific T-cell lines from atherosclerosis patients. J Dent Res 2002; 81(5):344–8.

    Article  PubMed  Google Scholar 

  11. Metzler B, Mayr M, Dietrich H et al. Inhibition of arteriosclerosis by T-cell depletion in normocholesterolemic rabbits immunized with heat shock protein 65. Arterioscler Thromb Vasc Biol 1999; 19(8):1905–11.

    CAS  PubMed  Google Scholar 

  12. Stemme S, Faber B, Holm J et al. T-lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 1995; 92(9):3893–7.

    Article  CAS  PubMed  Google Scholar 

  13. Gotsman I, Gupta R, Lichtman AH. The influence of the regulatory T-lymphocytes on atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27(12):2493–5.

    Article  CAS  PubMed  Google Scholar 

  14. Fehervari Z, Sakaguchi S. CD4+ Tregs and immune control. J Clin Invest 2004; 114(9):1209–17.

    CAS  PubMed  Google Scholar 

  15. Gorelik L, Flavell RA. Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2002; 2(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  16. Sakaguchi S. Naturally arising CD4+ regulatory T-cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22:531–62.

    Article  CAS  PubMed  Google Scholar 

  17. Miyara M, Sakaguchi S. Natural regulatory T-cells: mechanisms of suppression. Trends Mol Med 2007; 13(3):108–16.

    Article  CAS  PubMed  Google Scholar 

  18. Ronchetti S, Zollo O, Bruscoli S et al. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T-lymphocyte subpopulations. Eur J Immunol 2004; 34(3):613–22.

    Article  CAS  PubMed  Google Scholar 

  19. Huang CT, Workman CJ, Flies D et al. Role of LAG-3 in regulatory T-cells. Immunity 2004; 21(4):503–13.

    Article  CAS  PubMed  Google Scholar 

  20. Huehn J, Siegmund K, Lehmann JC et al. Developmental stage, phenotype and migration distinguish naive-and effector/memory-like CD4+ regulatory T-cells. J Exp Med 2004; 199(3):303–13.

    Article  CAS  PubMed  Google Scholar 

  21. Yurchenko E, Tritt M, Hay V et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T-cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med 2006; 203(11):2451–60.

    Article  CAS  PubMed  Google Scholar 

  22. Apostolou I, Sarukhan A, Klein L et al. Origin of regulatory T-cells with known specificity for antigen. Nat Immunol 2002; 3(8):756–63.

    CAS  PubMed  Google Scholar 

  23. Paust S, Lu L, McCarty N et al. Engagement of B7 on effector T-cells by regulatory T-cells prevents autoimmune disease. Proc Natl Acad Sci USA 2004; 101(28):10398–403.

    Article  CAS  PubMed  Google Scholar 

  24. Pandiyan P, Zheng L, Ishihara S et al. CD4+CD25+Foxp3+ regulatory T-cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T-cells. Nat Immunol 2007; 8(12):1353–62.

    Article  CAS  PubMed  Google Scholar 

  25. Collison LW, Workman CJ, Kuo TT et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007; 450(7169):566–9.

    Article  CAS  PubMed  Google Scholar 

  26. Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis and tolerance of T-cells by regulatory T-cell-dependent and-independent mechanisms. Immunity 2006; 25(3):455–71.

    Article  CAS  PubMed  Google Scholar 

  27. Marie C, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T-cell-specific targeting of transforming growth factor-beta receptor. Immunity 2006; 25(3):441–54.

    Article  CAS  PubMed  Google Scholar 

  28. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T-cells. Nat Immunol 2003; 4(4):330–6.

    Article  CAS  PubMed  Google Scholar 

  29. Hori S, Nomura T, Sakaguchi S. Control of regulatory T-cell development by the transcription factor Foxp3. Science 2003; 299(5609):1057–61.

    Article  CAS  PubMed  Google Scholar 

  30. Brunkow ME, Jeffery EW, Hjerrild KA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  31. Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 2003; 15(4):430–5.

    Article  CAS  PubMed  Google Scholar 

  32. Roncador G, Brown PJ, Maestre L et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T-cells at the single-cell level. Eur J Immunol 2005; 35(6):1681–91.

    Article  CAS  PubMed  Google Scholar 

  33. Lages CS, Suffia I, Velilla PA et al. Functional regulatory T-cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol 2008; 181(3):1835–48.

    CAS  PubMed  Google Scholar 

  34. Zhou X, Jeker LT, Fife BT et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 2008; 205(9):1983–91.

    Article  CAS  PubMed  Google Scholar 

  35. Curiel TJ. Regulatory T-cell development: is Foxp3 the decider? Nat Med 2007; 13(3):250–3.

    Article  CAS  PubMed  Google Scholar 

  36. George J, Shoenfeld Y, Harats D._The involvement of beta2-glycoprotein I (beta2-GPI) in human and murine atherosclerosis. J Autoimmun 1999; 13(1):57–60.

    Article  CAS  PubMed  Google Scholar 

  37. Palinski W, Rosenfeld ME, Ylä-Herttuala S et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989; 86(4):1372–6.

    Article  CAS  PubMed  Google Scholar 

  38. Xu Q, Luef G, Weimann S et al. Staining of endothelial cells and macrophages in atherosclerotic lesions with human heat-shock protein-reactive antisera. Arterioscler Thromb 1993; 13(12):1763–9.

    CAS  PubMed  Google Scholar 

  39. George J, Afek A, Gilburd B et al. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J Am Coll Cardiol 2001; 38(3):900–5.

    Article  CAS  PubMed  Google Scholar 

  40. George J, Harats D, Gilburd B et al. Adoptive transfer of beta(2)-glycoprotein I-reactive lymphocytes enhances early atherosclerosis in LDL receptor-deficient mice. Circulation 2000; 102(15):1822–7.

    CAS  PubMed  Google Scholar 

  41. Zhou X, Nicoletti A, Elhage R et al. Transfer of CD4(+) T-cells aggravates atherosclerosis in immuno-deficient apolipoprotein E knockout mice. Circulation 2000; 102(24):2919–22.

    CAS  PubMed  Google Scholar 

  42. Harats D, Yacov N, Gilburd B et al. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J Am Coll Cardiol 2002; 40(7):1333–8.

    Article  CAS  PubMed  Google Scholar 

  43. Maron R, Sukhova G, Faria AM et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 2002; 106(13):1708–15.

    Article  CAS  PubMed  Google Scholar 

  44. van Puijvelde GH, van Es T, van Wanrooij EJ et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T-cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27(12):2677–83.

    Article  PubMed  Google Scholar 

  45. Almeida AR, Legrand N, Papiernik M et al. Homeostasis of peripheral CD4+ T-cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T-cell numbers. J Immunol 2002; 169(9):4850–60.

    PubMed  Google Scholar 

  46. Zhang SH, Reddick RL, Piedrahita JA et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992; 258(5081):468–71.

    Article  CAS  PubMed  Google Scholar 

  47. Mallat Z, Gojova A, Brun V et al. Induction of a regulatory T-cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 2003; 108(10):1232–7.

    Article  CAS  PubMed  Google Scholar 

  48. Stoll G, Bendszus M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 2006; 37(7):1923–32.

    Article  CAS  PubMed  Google Scholar 

  49. Ishibashi S, Goldstein JL, Brown MS et al. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 1994; 93(5):1885–93.

    Article  CAS  PubMed  Google Scholar 

  50. Ait-Oufella H, Salomon BL, Potteaux S et al. Natural regulatory T-cells control the development of atherosclerosis in mice. Nat Med 2006; 12(2):178–80.

    Article  CAS  PubMed  Google Scholar 

  51. Mor A, Planer D, Luboshits G et al. Role of naturally occurring CD4+ CD25+ regulatory T-cells in experimental atherosclerosis. Arterioscler Thromb Vase Biol 2007; 27(4):893–900.

    Article  CAS  Google Scholar 

  52. Buono C, Pang H, Uchida Y et al. B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 2004; 109(16):2009–15.

    Article  CAS  PubMed  Google Scholar 

  53. Gotsman I, Grabie N, Gupta R et al. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 2006; 114(19):2047–55.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang L, Peppel K, Sivashanmugam P et al. Expression of tumor necrosis factor receptor-1 in arterial wall cells promotes atherosclerosis. Arterioscler Thromb Vase Biol 2007; 27(5):1087–94.

    Google Scholar 

  55. Ben-Shoshan J, Maysel-Auslender S, Mor A et al. Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible facror-1alpha. Eur J Immunol 2008; 38(9):2412–8.

    Article  CAS  PubMed  Google Scholar 

  56. Schwartz SM, Galis ZS, Rosenfeld M E et al. Plaque rupture in humans and mice. Arterioscler Thromb Vase Biol 2007; 27(4):705–13.

    Article  CAS  Google Scholar 

  57. Naghavi M, Libby P, Falk E et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 2003; 108(15):1772–8.

    Article  PubMed  Google Scholar 

  58. Naghavi M, Libby P, Falk E et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108(14):1664–72.

    Article  PubMed  Google Scholar 

  59. Hosono M, de Boer OJ, van der Wal AC et al. Increased expression of T-cell activation markers (CD25, CD26, CD40L and CD69) in atherectomy specimens of patients with unstable angina and acute myocardial infarction. Atherosclerosis 2003; 168(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  60. van der Wal AC, Piek JJ, de Boer OJ et al. Recent activation of the plaque immune response in coronary lesions underlying acute coronary syndromes. Heart 1998; 80( 1):14–8.

    PubMed  Google Scholar 

  61. Mor A, Luboshits G, Planer D et al. Altered status of CD4(+)CD25(+) regulatory T-cells in patients with acute coronary syndromes. Eur Heart J 2006; 27(21):2530–7.

    Article  CAS  PubMed  Google Scholar 

  62. Sardella G, De Luca L, Francavilla V et al. Frequency of naturally-occurring regulatory T-cells is reduced in patients with ST-segment elevation myocardial infarction. Thromb Res 2007; 120(4):631–4.

    Article  CAS  PubMed  Google Scholar 

  63. de Boer OJ, van der Meer JJ, Teeling P et al. Low numbers of FOXP3 positive regulatory T-cells are present in all developmental stages of human atherosclerotic lesions. PLoS ONE 2007; 2(1):e779.

    Article  Google Scholar 

  64. De Palma R, Del Galdo F, Abbate G et al. Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque: evidence for a local, intracoronary immunologic mechanism. Circulation 2006; 113(5):640–6.

    Article  PubMed  Google Scholar 

  65. Shevach EM._From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 2006; 25(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  66. Mausner-Fainberg K, Luboshits G, Mor A et al. The effect of HMG-CoA reductase inhibitors on naturally occurring CD4+CD25+ T-cells. Atherosclerosis 2008; 197(2):829–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer+Business Media

About this chapter

Cite this chapter

Entin-Meer, M., Afek, A., George, J. (2009). Regulatory T-Cells, FoxP3 and Atherosclerosis. In: Maiese, K. (eds) Forkhead Transcription Factors. Advances in Experimental Medicine and Biology, vol 665. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1599-3_8

Download citation

Publish with us

Policies and ethics