Skip to main content

Magnetic Heads

  • Chapter
  • First Online:
Electrochemical Nanotechnologies

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Figure 6.1 shows how rapidly the areal density of hard disk drives (HDD) has been increasing over the past 20 years [1]. Several critical innovations were necessary to bring about such rapid progress in the field of magnetic recording [2]. One of the most significant innovations from the viewpoint of material improvement was the electrodeposition of permalloy (Ni80Fe20), which was introduced by IBM in 1979 as the core material of a thin-film inductive head to increase the magnetic recording density [3]. After the introduction of the magneto-resistive (MR) element as the read head and the electrodeposited permalloy as the write head by IBM in 1991 [4], the rate of increase in the recording density of HDDs jumped from 30% per year to 60% per year. Recently, a giant magneto-resistive (GMR) element has been used for the read element instead of the MR element. The rate of increase in the recording density jumped to over 100% per year in 1999, which is an incredible rate of increase. Since 2002, however, the rate of increase has decreased to 30%; thus, new innovations are required to maintain the rate of increase. In 2004, the practical use of perpendicular magnetic recording instead of longitudinal magnetic recording was announced [5]. This system is a critical innovation for developing high-performance HDD systems with high-recording density. The design of the magnetic recording head was changed because of the change of the recording system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osaka T (2000) Electrodeposition of highly functional thin films for magnetic recording devices of the next century. Electrochim Acta 45:3311–3321

    Article  CAS  Google Scholar 

  2. Andricacos PC, Robertson N (1988) Future directions in electroplated materials for thin-film recording heads. IBM J Res Develop 42:671–680

    Article  Google Scholar 

  3. Jones RE Jr (1980) IBM 3370 film head design and fabrication. IBM Disk Storage Technology, pp 6–9

    Google Scholar 

  4. Tsang C et al (1990) Gigabit density recording using dual-element MR inductive heads on thin-film disks. IEEE Trans Magn MAG-26:1689–1693

    Article  Google Scholar 

  5. Tanaka Y (2005) Recording performance and system integration of perpendicular magnetic recording. J Magn Magn Mater 287:468–474

    Article  CAS  Google Scholar 

  6. Osaka T (1998) Development of soft magnetic materials with high Bs by the electroplating method and their application to an MR write head core. J Magn Soc Jpn 22:1182–1188

    CAS  Google Scholar 

  7. Castellani EE et al (1978) U.S. Patent 4102756

    Google Scholar 

  8. Powers JV, Romankiw LT (1972) U.S. Patent 3652442

    Google Scholar 

  9. Hoffmann H (1964) Quantitative calculation of magnetic ripple of uniaxial thin permalloy films. J Appl Phys 35:1790–1798

    Article  Google Scholar 

  10. Bozorth RM (1951) Ferromagnetism. Van Nostrand, New York, NY, p 160

    Google Scholar 

  11. Yoshizawa Y et al (1988) New Fe-based soft magnetic-alloys composed of ultrafine grain-structure. J Appl Phys 64:6044–6046

    Article  CAS  Google Scholar 

  12. Ishiwata N (1987) Magnetic and structural-properties of dual ion-beam sputtered pure iron films. IEEE Trans Magn MAG-23:2152–2154

    Article  Google Scholar 

  13. Todd I et al (2000) Magnetic properties of ultrasoft-nanocomposite FeAlSiBNbCu alloys. J Magn Magn Mater 215:272–275

    Article  Google Scholar 

  14. Huijbregtse J et al (1998) High-frequency permeability of soft-magnetic Fe-Hf-O films with high resistivity. J Appl Phys 83:1569–1574

    Article  CAS  Google Scholar 

  15. Sato T et al (1998) New applications of nanocrystalline Fe(Co–Fe)-Hf-O magnetic films to micromagnetic devices. J Appl Phys 83:6658–6660

    Article  CAS  Google Scholar 

  16. Liao SH (1987) High moment CoFe thin-films by electrodeposition. IEEE Trans Magn MAG-23:2981–2983

    Article  Google Scholar 

  17. Anderson NC, Chesnutt RB (1987) U.S. Pattent 4661216

    Google Scholar 

  18. Shinoura O (1994) Soft magnetic properties of electrodeposited CoNiFe films. J Magn Soc Jpn 18:277–280

    Article  CAS  Google Scholar 

  19. Nakamura A (1996) Preparation and magnetic properties of CoNiFe thin film by electrodeposition. J Surf Finish Soc Jpn 47:934–938

    Article  CAS  Google Scholar 

  20. Takai M (1997) Electrochemical preparation of soft magnetic CoNiFeS film with high saturation magnetic flux density and high resistivity. J Electrochem Soc 144:L203–L204

    Article  Google Scholar 

  21. Takai M (1997) High frequency permeability of electrodeposited CoNiFeS films with high B s and high ρ. J Magn Soc Jpn 21(S2):443–446

    Google Scholar 

  22. Kim DH et al (1996) Electroless Ni-Fe-B alloy plating solution using DMAB as a reducing agent. Plat Surf Finish 83:78–80

    CAS  Google Scholar 

  23. Takai M (1995) Magnetic properties of electroless-deposited NiFeB and electrodeposited NiFe alloy thin films. IEICE Trans Electron E78-C:1530–1535

    Google Scholar 

  24. Osaka T et al (1992) Co-based soft magnetic-films produced by electroless deposition. J Electrochem Soc 139:1311–1314

    Article  CAS  Google Scholar 

  25. Osaka T et al (1994) Preparation of electroless-deposited CoFeB soft-magnetic films with high saturation magnetic-flux density. Denki Kagaku (presently Electrochemistry) 62:987–988

    CAS  Google Scholar 

  26. Osaka T et al (1994) Soft magnetic properties of electroless-deposited CoFeB films. J Magn Soc Jpn 18(S1):183–186

    Google Scholar 

  27. Yokoshima T et al (2000) Electroless CoNiFeB soft magnetic thin films with high corrosion resistance. J Electroanal Chem 491:197–202

    Article  CAS  Google Scholar 

  28. Osaka T et al (1998) A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392:796–798

    Article  CAS  Google Scholar 

  29. Osaka T (1998) New soft magnetic CoNiFe plated films with high Bs=2.0–2.1 T. IEEE Trans Magn 34:1432–1434

    Article  CAS  Google Scholar 

  30. Ohashi K et al (1998) Newly developed inductive write head with electroplated CoNiFe film. IEEE Trans Magn 34:1462–1464

    Article  CAS  Google Scholar 

  31. Osaka T et al (1999) Influence of crystalline structure and sulfur inclusion on corrosion properties of electrodeposited CoNiFe soft magnetic films. J Electrochem Soc 146:2092–2096

    Article  CAS  Google Scholar 

  32. Tabakovic I et al (2000) Organic additives in the electrochemical preparation of soft magnetic CoNiFe films. J Electrochem Soc 147:219–226

    Article  CAS  Google Scholar 

  33. Liu X et al (2000) Electrodeposition of soft, high moment Co–Fe–Ni thin films. J Appl Phys 87:5410–5412

    Article  CAS  Google Scholar 

  34. Kim KH et al (2000) The magnetic properties of nanocrystalline Fe-Co(Cr)-Hf-N thin films. J Appl Phys 87:5248–5250

    Article  CAS  Google Scholar 

  35. Kim SR et al (2000) Soft magnetic properties of as-sputtered Fe–Al–O films. J Magn Magn Mater 215:365–367

    Article  Google Scholar 

  36. Ohnuma S (1996) High-frequency magnetic properties in metal-nonmetal granular films. J Appl Phys 79:5130–5135

    Article  CAS  Google Scholar 

  37. Morikawa T (1998) Soft magnetic properties of Co-Cr-O granular films. J Appl Phys 83:6664–6666

    Article  CAS  Google Scholar 

  38. Ohnuma S et al (2001) Co-Zr-O nano-granular thin films with improved high frequency soft magnetic properties. IEEE Trans Magn 37:2251–2254

    Article  CAS  Google Scholar 

  39. Ohnuma S et al (1999) Magnetostriction and soft magnetic properties of (Co1xFex)–Al–O granular films with high electrical resistivity. J Appl Phys 85:4574–4576

    Article  CAS  Google Scholar 

  40. Wang SX et al (2000) Sandwich films-properties of a new soft magnetic material. Nature 407:150–151

    Article  CAS  Google Scholar 

  41. Sun NX, Wang SX (2000) Soft high saturation magnetization (Fe0.7Co0.3)(1−x)Nx thin films for inductive write heads. IEEE Trans Magn 36:2506–2508

    Article  CAS  Google Scholar 

  42. Shintaku K et al (2003) High-Bs Fe–Co–Al–O soft magnetic films. J Appl Phys 93:6474–6476

    Article  CAS  Google Scholar 

  43. Kim EH et al (2001) Permeability enhancement in Fe/CoNbZr multilayers prepared by Ar/H2 mixed gas sputtering and heat treatment. J Magn Magn Mater 233:L142–L146

    Article  Google Scholar 

  44. McNeill KA et al (2000) Effect of lamination period and deposition angle on FeAlN-Al2O3 multilayers. J Appl Phys 87:5837–5839

    Article  CAS  Google Scholar 

  45. Hong J et al (1999) Magnetic properties and high-frequency responses of high moment FeTaN/AlN laminates for high-data-rate magnetic recording. IEEE Transactions on Magnetics vol 35:2502–2504

    Article  CAS  Google Scholar 

  46. Choi KK et al (2003) High Frequency Properties of CoZrNb/Fe–C Multilayer Films. Trans Magn Soc Jpn 3:55–58

    Article  CAS  Google Scholar 

  47. Chen YJ et al (2000) Laminated FeRhN films for high speed writers. IEEE Trans Magn 36:3476–3478

    Article  CAS  Google Scholar 

  48. Brenner A (1963) Electrodeposition of Alloys. Academic, New York, NY

    Google Scholar 

  49. Dahms H, Croll IM (1965) The anomalous codeposition of iron-nickel alloys. J Electrochem Soc 112:771–775

    Article  CAS  Google Scholar 

  50. Hessami S, Tobias CW (1989) A mathematical-model for anomalous codeposition of nickel-iron on a rotating-disk electrode. J Electrochem Soc 136:3611–3616

    Article  CAS  Google Scholar 

  51. Shinoura O (1995) Electrodeposition of Ni–Fe–Mo multilayered soft-magnetic films with high specific resistance. Denki Kagaku (presently Electrochemistry) 63:473–478

    CAS  Google Scholar 

  52. Takai M et al (1998) Electrodeposition of soft magnetic Ni–Fe-based films with high resistivity. J Surf Finish Soc Jpn 49:292–296

    Article  CAS  Google Scholar 

  53. Takai M (1998) Increasing the resistivity of NiFeP films by means of electrodeposition. J Magn Soc Jpn 22:629–632

    Article  CAS  Google Scholar 

  54. Hoshino K (1999) Magnetic properties and thermal stability of electroplated NiFeCr and NiFeMo films with high resistivity. IEEE Trans Magn 35:3433–3435

    Article  CAS  Google Scholar 

  55. Ohashi K et al (1999) Write performance of heads with a 2.1-tesla CoNiFe pole. IEEE Trans Magn 35:2538–2540

    Article  CAS  Google Scholar 

  56. Nonaka Y et al (2000) Co–Ni–Fe write heads with a 10 μm yoke length for high-speed recording. IEEE Trans Magn 36:2514–2516

    Article  CAS  Google Scholar 

  57. Sogawa Y (2000) Preparation of electrodeposited high-Bs and high-ρ CoNiFe thin films by Mo addition. J Magn Soc Jpn 24:699–702

    Article  CAS  Google Scholar 

  58. Yokoshima T (2003) Effect of carbon inclusion on properties of electrodeposited CoNoFeMo thin films. In: Krongelb S et al (eds) Electrochemical society proceedings, vol 2002–27. The Electrochemical Society Inc, pp 365–375

    Google Scholar 

  59. Yokoshima T et al (1999) Increasing the resistivity of electrodeposited high Bs CoNiFe thin film. IEEE Trans Magn 35:2499–2501

    Article  CAS  Google Scholar 

  60. Kaseda M et al (2000) Preparation and characterization of electrodeposited high-Bs CoNiFe thin films with high resistivity and improvement of their corrosion resistance. In: Romankiw LT et al (eds) Electrochemical society proceedings, vol 99–34. The Electrochemical Society Inc, pp 263–272

    Google Scholar 

  61. Osaka T (2001) Effects of impurities on resistivity of electrodeposited high-Bs CoNiFe-based soft magnetic thin films. IEEE Trans Magn 37:1761–1763

    Article  CAS  Google Scholar 

  62. Osaka T et al (2003) A high moment CoFe soft magnetic thin film prepared by electrodeposition. Electrochem Solid State Lett 6:C53–C55

    Article  Google Scholar 

  63. Yokoshima T et al (2004) Preparation of high-Bs, Co-Fe soft magnetic thin films by electrodeposition. IEEE Trans Magn 40:2332–2334

    Article  CAS  Google Scholar 

  64. Milazzo G, Caroli S (1978) Tables of standard electrode potentials. Wiley, New York, NY, p 320

    Google Scholar 

  65. Chemical Society of Japan (1984) Chemical handbook-basic volume, 3rd edn. Maruzen, Tokyo p. II–179

    Google Scholar 

  66. Kim DH (1994) Preparation of soft magnetic films by electroless Ni-Fe-P plating. J Surf Finish Soc Jpn 45:203–206

    Article  Google Scholar 

  67. Kim DH et al (1995) Soft-magnetic films by electroless Ni–Co–P plating. J Electrochem Soc 142:3763–3767

    Article  CAS  Google Scholar 

  68. Sobue M et al (2002) Increase of the resistivity of electroless-deposited high-Bs CoNiFeB thin films. IEEE Trans Magn 38:2228–2230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokihiko Yokoshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yokoshima, T. (2010). Magnetic Heads. In: Osaka, T., Datta, M., Shacham-Diamand, Y. (eds) Electrochemical Nanotechnologies. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1424-8_6

Download citation

Publish with us

Policies and ethics