Skip to main content

Nanotechnology for Material Development on Future Energy Storage

  • Chapter
  • First Online:
Electrochemical Nanotechnologies

Abstract

Various kinds of energy devices have been developed as power sources for portable electronic devices and electric vehicles. Fuel cell, rechargeable lithium ion battery, and super capacitor are the most interesting devices, and they have been extensively studied to improve their electrochemical performance around the world [1, 2]. In these electrochemical devices, chemical energy is directly converted to electric energy through charge transfer process occurring at an interface between electrode and electrolyte. The electrochemical reactions take place at the interface and their reaction rates strongly depend on the nature of interface consisting of electrode and electrolyte materials. In some case, the electrode reaction is so slow that the electrode reaction kinetics should be carefully investigated in order to improve charge transfer reaction rate. On the other hand, the slow electrode reaction can be technically overcome by a large interface area for the electrode reaction, leading to an improvement of apparent reaction rate. For example, the true surface area of the porous electrode used in practical battery and fuel cell is much larger than that of flat electrode. When the surface area is 100 times larger than that of flat electrode, the apparent electrode reaction rate is also 100 times. However, this is too simple to estimate the advantage of the porous electrode. The porous electrode has so many problems that the reaction rate may not become 100 times [3]. Figure 4.1 shows the electrode reaction occurring on flat electrode and porous electrode. In the case of the flat electrode, the electrode reaction takes place uniformly on an entire electrode surface. On the other hand, the electrode reaction taking place on the porous electrode surface has a distribution of electrode reaction rate depending on its porous nature and a kind of electrode material. For example, both electronic and ionic conductivities of porous electrode are very important properties to establish an electrochemical interface and to realize apparently high charge transfer rate. One of the key technologies for porous electrodes used in electrochemical energy conversion system is a fabrication process of porous electrode with three-dimensionally ordered porous structures. Recently, three-dimensionally ordered macroporous materials have been extensively studied on various application fields, such as catalyst, photonic material, sensor, and so on [4–11]. At first silica porous materials have been prepared by using colloidal crystal templating method. This study has inspired a lot of scientists working in the field of material science. So far, many kinds of macroporous materials, such as zirconia, titania, carbon, and so on, have been successfully prepared and applied to various applications. In this section, three applications of three-dimensionally ordered materials to electrochemical energy conversion systems are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  2. Savadogo O (1998) J New Mater Electrochem Syst 90:47

    Google Scholar 

  3. Newman J, Electrochemical Systems, Third Edition, John Wiley and Sons, New York

    Google Scholar 

  4. Stein A, Schroden RC (2001) Curr Opin Solid State Mater Sci 5:553

    Article  CAS  Google Scholar 

  5. Holland BT, Blanford CF, Stein A (1998) Science 281:538

    Article  CAS  Google Scholar 

  6. Subramanian G, Manoharan VN, Thorne JD, Pine DJ (1999) Adv Mater 11:1261

    Article  CAS  Google Scholar 

  7. Velev OD, Kaler EW (2000) Adv Mater 12:531

    Article  CAS  Google Scholar 

  8. Bartlett PN, Baumberg JJ, Birkin PR, Ghanem MA, Netti MC (2002) Chem Mater 14:2199

    Article  CAS  Google Scholar 

  9. Jiang P, Cizeron J, Bertone JF, Colvin VL (1999) J Am Chem Soc 121:7957

    Article  CAS  Google Scholar 

  10. Jiang P, Hwang KS, Mittleman DM, Bertone JF, Colvin VL (1999) J Am Chem Soc 121:11630

    Article  CAS  Google Scholar 

  11. Zakhidov AA, Baughman RH, Iqbal Z, Cui C, Khayrullin I, Dantas SO, Marti J, Ralchenko VG (1998) Science 282:897

    Article  Google Scholar 

  12. Dokko K, Akutagawa N, Isshiki Y, Hoshina K, Kanamura K (2005) Solid State Ionics 176:2345

    Article  CAS  Google Scholar 

  13. Kanamura K, Mitsui T, Rho YH, Umegaki T (2002) Key Engineering Materials 228–229:285

    Article  Google Scholar 

  14. Rho Young Ho, Kanamura K, Umegaki T (2003) J Electrochem Soc 150(1):A107

    Article  Google Scholar 

  15. Ohzuku T, Ueda A (1994) J Electrochem Soc 141:2972

    Article  CAS  Google Scholar 

  16. Long JW, Dunn B, Rolison DR, White HS (2004) Chem Rev 104:4463

    Article  CAS  Google Scholar 

  17. Gierke TD, Munn GE, Wilson FC (1981) J Polym Sci Polym Phys Ed 19:1687

    Article  CAS  Google Scholar 

  18. Heitner-Wirguin C (1996) J Membr Sci 120:1

    Article  CAS  Google Scholar 

  19. Ren X, Springer TE, Zawodzinski TA, Gottesfeld S (2000) J Electrochem Soc 147:466

    Article  Google Scholar 

  20. Jung DH, Cho SY, Peck DH, Shin DR, Kim JS (2002) J Power Sourc 106:173

    Article  CAS  Google Scholar 

  21. Bauer F, Willert-Porada M (2004) J Membr Sci 233:141

    Article  CAS  Google Scholar 

  22. Yamaguchi T, Miyata F, Nakao S (2003) J Membr Sci 214:283

    Article  CAS  Google Scholar 

  23. Zhou J, Childs RF, Mika AM (2005) J Membr Sci 254:89

    Article  CAS  Google Scholar 

  24. Kikukawa T, Kuraoka K, Kawabe K, Yamashita M, Fukumi K, Hirao K, Yazawa T (2005) J Membr Sci 259:161

    Article  CAS  Google Scholar 

  25. Velev OD, Jede TA, Lobo RF, Lenhoff AM (1998) Chem Mater 10:3597

    Article  CAS  Google Scholar 

  26. Cassagneau T, Caruso F (2002) Adv Mater 14:34

    Article  CAS  Google Scholar 

  27. Conway BE (1999) Electrochemical Super Capacitors. Kluwer Academic/Plenum Publisers, New York

    Book  Google Scholar 

  28. Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) J Electrochem Soc 147:2486

    Article  CAS  Google Scholar 

  29. Endo M, Maeda T, Takeda T, Kim YJ, Koshiba K, Hara H, Dresselhaus MS (2001) J Electrochem Soc 148:A910

    Article  Google Scholar 

  30. Shiraishi S, Kurihara H, Shi L, Nakayama T, Oya A (2002) J Electrochem Soc 149:A855

    Article  Google Scholar 

  31. Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Beguin F (2002) Chem Phys Lett 361:35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kanamura, K., Munakata, H., Dokko, K. (2010). Nanotechnology for Material Development on Future Energy Storage. In: Osaka, T., Datta, M., Shacham-Diamand, Y. (eds) Electrochemical Nanotechnologies. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1424-8_4

Download citation

Publish with us

Policies and ethics