Skip to main content

Electrochemical and Magnetic Technologies for Bio Applications

  • Chapter
  • First Online:
Electrochemical Nanotechnologies

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1647 Accesses

Abstract

The electrochemical and magnetic biosensors have an advantage because of the easy miniaturization of electric device components as compared with photometric instruments. These technologies have been applied to develop portable, compact and inexpensive biochip devices. A commercially successful example is the glucose sensor using enzyme transducers, which was originally reported by Clark and Lyons [1] to measure glucose by detecting the decrease in oxygen by pO2 electrode when glucose is converted to gluconic acid and hydrogen peroxide. Electrochemical biosensors can be separated into three typical assay systems using amperometric, potentiometric or conductometric transducers. Furthermore, various magnetosensors using magnetic particles have been developed over a decade in place of photometric biosensors. In this chapter, recent advances in electrochemical and magnetic biosensors toward development of portable, compact and inexpensive biochip devices have been focused.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark LCJ, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  2. Vernon SD, Farkas DH, Unger ER et al (2003) Bioelectronic DNA detection of human papillomaviruses using eSensor: a model system for detection of multiple pathogens. BMC Infect Dis 3:12

    Article  Google Scholar 

  3. Yu CJ, Wan Y, Yowanto H et al (2001) Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. J Am Chem Soc 123:11155–11161

    Article  CAS  Google Scholar 

  4. Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA 100:9134–9137

    Article  CAS  Google Scholar 

  5. Umek RM, Lin SW, Vielmetter J et al (2001) Electronic detection of nucleic acids: a versatile platform for molecular diagnostics. J Mol Diagn 3:74–84

    Article  CAS  Google Scholar 

  6. Burmeister J, Bazilyanska V, Grothe K et al (2004) Single nucleotide polymorphism analysis by chip-based hybridization and direct current electrical detection of gold-labeled DNA. Anal Bioanal Chem 379:391–398

    Article  CAS  Google Scholar 

  7. Kara P, Ozkan D, Kerman K et al (2002) DNA sensing on glassy carbon electrodes by using hemin as the electrochemical hybridization label. Anal Bioanal Chem 373:710–716

    Article  CAS  Google Scholar 

  8. Wang J, Liu G, Merkoci A (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc 125:3214–3215

    Article  CAS  Google Scholar 

  9. Lim TK, Imai S, Matsunaga T (2002) Miniaturized amperometric flow immunoassay system using a glass fiber membrane modified with anion. Biotechnol Bioeng 77:758–763

    Article  CAS  Google Scholar 

  10. Lim TK, Ohta H, Matsunaga T (2003) Microfabricated on-chip-type electrochemical flow immunoassay system for the detection of histamine released in whole blood samples. Anal Chem 75:3316–3321

    Article  CAS  Google Scholar 

  11. Wang J, Ibanez A, Chatrathi MP (2002) Microchip-based amperometric immunoassays using redox tracers. Electrophoresis 23:3744–3749

    Article  CAS  Google Scholar 

  12. Takenaka S, Yamashita K, Takagi M, Uto Y, Kondo H (2000) DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Anal Chem 72:1334–1341

    Article  CAS  Google Scholar 

  13. Takenaka S, Ohtuka K, Miyahara H, Nojima T, Takagi M (2002) An anthracene derivative carrying ferrocenyl moieties at its 9 and 10 positions as a new electrochemically active threading intercalator. Nucleic Acids Res Suppl; 291–2

    Google Scholar 

  14. Wang J, Li J, Baca AJ et al (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945

    Article  CAS  Google Scholar 

  15. Degani Y, Heller A (1988) Direct electrical communication between chemically modified enzymes and metal electrodes. 2. Methods for bonding electron-transfer relays to glucose oxidase and D-amino-acid oxidase. J Am Chem Soc 110:2615–2620

    Article  CAS  Google Scholar 

  16. Gleria KD, Hill HA, Mcneil CJ, Green MJ (1986) Homogeneous ferrocene-mediated amperometric immunoassay. Anal Chem 58:1203–1205

    Article  Google Scholar 

  17. Suzawa T, Ikariyama Y, Aizawa M (1994) Multilabeling of ferrocenes to a glucose oxidase-digoxin conjugate for the development of a homogeneous electroenzymatic immunoassay. Anal Chem 66:3889–3894

    Article  CAS  Google Scholar 

  18. Okochi M, Ohta H, Tanaka T, Matsunaga T (2005) Electrochemical probe for on-chip type flow immunoassay: immunoglobulin G labeled with ferrocenecarboaldehyde. Biotechnol Bioeng 90:14–19

    Article  CAS  Google Scholar 

  19. Mak WC, Cheung KY, Trau D et al (2005) Electrochemical bioassay utilizing encapsulated electrochemical active microcrystal biolabels. Anal Chem 77:2835–2841

    Article  CAS  Google Scholar 

  20. Jenkins DM, Chami B, Kreuzer M et al (2006) Hybridization probe for femtomolar quantification of selected nucleic acid sequences on a disposable electrode. Anal Chem 78:2314–2318

    Article  CAS  Google Scholar 

  21. Inouye M, Ikeda R, Takase M, Tsuri T, Chiba J (2005) Single-nucleotide polymorphism detection with “wire-like” DNA probes that display quasi “on-off” digital action. Proc Natl Acad Sci U S A 102:11606–11610

    Article  CAS  Google Scholar 

  22. Enpuku K, Minotani T, Gima T et al (1999) Detection of magnetic nanoparticles with superconducting quantum interference device (SQUID) magnetometer and application to immunoassays. Jpn J Appl Phys 38:L1102–L1105

    Article  Google Scholar 

  23. Enpuku K, Minotani T, Hotta M, Nakahodo A (2001) Application of High Tc SQUID magnetometer to biological immunoassays. IEEE Trans on Appl Supercond 11:661–664

    Article  Google Scholar 

  24. Chemla YR, Grossman HL, Poon Y et al (2000) Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci U S A 97:14268–14272

    Article  CAS  Google Scholar 

  25. Grossman HL, Myers WR, Vreeland VJ et al (2004) Detection of bacteria in suspension by using a superconducting quantum interference device. Proc Natl Acad Sci U S A 101:129–134

    Article  CAS  Google Scholar 

  26. Baselt DR, Lee GU, Natesan M, et al (1998) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13:731–739

    Google Scholar 

  27. Edelstein RL, Tamanaha CR, Sheehan PE et al (2000) The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron 14:805–813

    Article  CAS  Google Scholar 

  28. Schotter J, Kamp PB, Becker A et al (2004) Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens Bioelectron 19:1149–1156

    Article  CAS  Google Scholar 

  29. Megens M, Prins M (2005) Magnetic biochips: a newoption for sensitive diagnostics. J Magn Magn Mater 293:702–708

    Article  CAS  Google Scholar 

  30. Graham DL, Ferreira HA, Freitas PP, Cabral JM (2003) High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors. Biosens Bioelectron 18:483–488

    Article  CAS  Google Scholar 

  31. Kriz CB, Rådevik K, Kriz D (1996) Magnetic permeability measurements in bioanalysis and biosensors. Anal Chem 68:1966–1970

    Article  CAS  Google Scholar 

  32. Kriz K, Gehrke J, Kriz D (1998) Advancements toward magneto immunoassays. Biosens Bioelectron 13:817–823

    Article  CAS  Google Scholar 

  33. Kriz K, Ibraimi F, Lu M, Hansson LO, Kriz D (2005) Detection of C-reactive protein utilizing magnetic permeability detection based immunoassays. Anal Chem 77:5920–5924

    Article  CAS  Google Scholar 

  34. Lu M, Ibraimi F, Kriz D, Kriz K (2006) A combination of magnetic permeability detection with nanometer-scaled superparamagnetic tracer and its application for one-step detection of human urinary albumin in undiluted urine. Biosens Bioelectron 21:2248–2254

    Article  CAS  Google Scholar 

  35. Amemiya Y, Tanaka T, Yoza B, Matsunaga T (2005) Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol 120:308–314

    Article  CAS  Google Scholar 

  36. Arakaki A, Hideshima S, Nakagawa T et al (2004) Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles. Biotechnol Bioeng 88:543–546

    Article  CAS  Google Scholar 

  37. Matsunaga T, Sakaguchi T, Tadokoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651–655

    Article  CAS  Google Scholar 

  38. Sakaguchi T, Burgess JG, Matsunaga T (1993) Magnetite formation by a sulphate-reducing bacterium. Nature (London) 365:47–49

    Article  CAS  Google Scholar 

  39. Nakamura N, Matsunaga T (1993) Highly sensitive detection of allergen using bacterial magnetic particles. Anal Chim Acta 281:585–589

    Article  CAS  Google Scholar 

  40. Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Magnetic cell separation using antibody binding with protein a expressed on bacterial magnetic particles. Anal Chem 76:6207–6213

    Article  CAS  Google Scholar 

  41. Tanaka T, Matsunaga T (2000) Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes. Anal Chem 72:3518–3522

    Article  CAS  Google Scholar 

  42. Matsunaga T, Maeda Y, Yoshino T et al (2007) Fully automated immunoassay for detection of prostate-specific antigen using nano-magnetic beads and micro-polystyrene bead composites, ‘Beads on Beads’. Anal Chim Acta 597:331–339

    Article  CAS  Google Scholar 

  43. Matsunaga T, Takahashi M, Yoshino T, Kuhara M, Takeyama H (2006) Magnetic separation of CD14+ cells using antibody binding with protein A expressed on bacterial magnetic particles for generating dendritic cells. Biochem Biophys Res Commun 350:1019–1025

    Article  CAS  Google Scholar 

  44. Yoshino T, Takahashi M, Takeyama H et al (2004) Assembly of G protein-coupled receptors onto nanosized bacterial magnetic particles using Mms16 as an anchor molecule. Appl Environ Microbiol 70:2880–2885

    Article  CAS  Google Scholar 

  45. Yoshino T, Tanaka T, Takeyama H, Matsunaga T (2003) Single nucleotide polymorphism genotyping of aldehyde dehydrogenase 2 gene using a single bacterial magnetic particle. Biosens Bioelectron 18:661–666

    Article  CAS  Google Scholar 

  46. Wacker R, Schroder H, Niemeyer CM (2004) Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study. Anal Biochem 330:281–287

    Article  CAS  Google Scholar 

  47. Saleh OA, Sohn LL (2003) Direct detection of antibody-antigen binding using an on-chip artificial pore. Proc Natl Acad Sci U S A 100:820–824

    Article  CAS  Google Scholar 

  48. Sato K, Yamanaka M, Takahashi H et al (2002) Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-gamma. Electrophoresis 23:734–739

    Article  CAS  Google Scholar 

  49. Soo Ko J, Yoon HC, Yang H et al (2003) A polymer-based microfluidic device for immunosensing biochips. Lab Chip 3:106–13

    Article  Google Scholar 

  50. Wu J, Tang J, Dai Z et al (2006) A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosens Bioelectron 22:102–108

    Article  CAS  Google Scholar 

  51. Zeravik J, Ruzgas T, Franek M (2003) A highly sensitive flow-through amperometric immunosensor based on the Peroxidase chip and enzyme-channeling principle. Biosens Bioelectron 18:1321–1327

    Article  CAS  Google Scholar 

  52. Lim TK, Matsunaga T (2001) Construction of electrochemical flow immunoassay system using capillary columns and ferrocene conjugated immunoglobulin G for detection of human chorionic gonadotrophin. Biosens Bioelectron 16:1063–1069

    Article  CAS  Google Scholar 

  53. Allen DW, Schroeder WA, Balog J (1958) Observation on the chromatographic heterogeneity of normal adult and fetal human hemoglobin: a study of the effects of crystallization and chromatography on the heterogeneity and isoleucine content. J Am Chem Soc 80:1628–1634

    Article  CAS  Google Scholar 

  54. Clegg MD, Schroeder WA (1959) A chromatographic study of the minor components of normal adult haemoglobin including a comparison of haemoglobin from normal and phenylketamine individuals. J Am Chem Soc 81:6065–6069

    Article  CAS  Google Scholar 

  55. Schneck AG, Schroeder WA (1961) The relation between the minor components of normal adult haemoglobin sa isolated by chromatography and starch block electrophoresis. J Am Chem Soc 83:1472–1478

    Article  Google Scholar 

  56. Bunn HF, Haney DN, Gabbay KH, Gallop PM (1975) Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem Biophys Res Commun 67:103–109

    Article  CAS  Google Scholar 

  57. Hoelzel W, Weykamp C, Jeppsson JO et al (2004) IFCC reference system for measurement of hemoglobin A1c in human blood and the national standardization schemes in the United States, Japan, and Sweden: a method-comparison study. Clin Chem 50:166–174

    Article  CAS  Google Scholar 

  58. St John A, Davis TM, Goodall I, Townsend MA, Price CP (2006) Nurse-based evaluation of point-of-care assays for glycated haemoglobin. Clin Chim Acta 365:257–63

    Article  CAS  Google Scholar 

  59. Tanaka T, Matsunaga T (2001) Detection of HbA(1c) by boronate affinity immunoassay using bacterial magnetic particles. Biosens Bioelectron 16:1089–1094

    Article  CAS  Google Scholar 

  60. Tanaka T, Tsukube S, Izawa K et al (2007) Electrochemical detection of HbA1c, a marker [correction of maker] for diabetes, using a flow immunoassay system. Biosens Bioelectron 22:2051–2056

    Article  CAS  Google Scholar 

  61. Boom R, Sol CJ, Salimans MM et al (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    CAS  Google Scholar 

  62. Hawkins TL, O’Connor-Morin T, Roy A, Santillan C (1994) DNA purification and isolation using a solid-phase. Nucleic Acids Res 22:4543–4544

    Article  CAS  Google Scholar 

  63. Lis JT (1980) Fractionation of DNA fragments by polyethylene glycol induced precipitation. Methods Enzymol 65:347–353

    Article  CAS  Google Scholar 

  64. Hawkins TL, Mckernan KJ, Jacotot LB et al (1997) A magnetic attraction to high-throughput genomics. Science 276:1887–1889

    Article  CAS  Google Scholar 

  65. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831

    Article  CAS  Google Scholar 

  66. Hayes MA, Polson TN, Phayre AN, Garcia AA (2001) Flow-based microimmunoassay. Anal Chem 73:5896–5902

    Article  CAS  Google Scholar 

  67. Zhao W, Yao S, Hsing IM (2006) A microsystem compatible strategy for viable Escherichia coli detection. Biosens Bioelectron 21:1163–1170

    Article  CAS  Google Scholar 

  68. Zaytseva NV, Goral VN, Montagna RA, Baeumner AJ (2005) Development of a microfluidic biosensor module for pathogen detection. Lab Chip 5:805–811

    Article  CAS  Google Scholar 

  69. Christel LA, Petersen K, Mcmillan W, Northrup MA (1999) Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration. J Biomech Eng 121:22–27

    Article  CAS  Google Scholar 

  70. Cady NC, Stelick S, Batt CA (2003) Nucleic acid purification using microfabricated silicon structures. Biosens Bioelectron 19:59–66

    Article  CAS  Google Scholar 

  71. Xu Y, Vaidya B, Patel AB et al (2003) Solid-phase reversible immobilization in microfluidic chips for the purification of dye-labeled DNA sequencing fragments. Anal Chem 75:2975–2984

    Article  CAS  Google Scholar 

  72. Adey NB, Lei M, Howard MT et al (2002) Gains in sensitivity with a device that mixes microarray hybridization solution in a 25-microm-thick chamber. Anal Chem 74:6413–6417

    Article  CAS  Google Scholar 

  73. Liu RH, Lenigk R, Druyor-Sanchez RL, Yang J, Grodzinski P (2003) Hybridization enhancement using cavitation microstreaming. Anal Chem 75:1911–1917

    Article  CAS  Google Scholar 

  74. Mcquain MK, Seale K, Peek J et al (2004) Chaotic mixer improves microarray hybridization. Anal Biochem 325:215–226

    Article  CAS  Google Scholar 

  75. Yoza B, Matsumoto M, Matsunaga T (2002) DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol 94:217–224

    Article  CAS  Google Scholar 

  76. Nakagawa T, Hashimoto R, Maruyama K et al (2006) Capture and release of DNA using aminosilane-modified bacterial magnetic particles for automated detection system of single nucleotide polymorphisms. Biotechnol Bioeng 94:862–868

    Article  CAS  Google Scholar 

  77. Nakagawa T, Tanaka T, Niwa D et al (2005) Fabrication of amino silane-coated microchip for DNA extraction from whole blood. J Biotechnol 116:105–111

    Article  CAS  Google Scholar 

  78. Yoza B, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2003) Fully automated DNA extraction from blood using magnetic particles modified with hyperbranched polyamidoamine dendrimer. J Biosci Bioeng 95:21–26

    CAS  Google Scholar 

  79. Yoza B, Arakaki A, Matsunaga T (2003) DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J Biotechnol 101:219–228

    Article  CAS  Google Scholar 

  80. Voss KJ (2000) Physics of low light level detectors. Methods Enzymol 305:53–61

    Article  CAS  Google Scholar 

  81. Kamei T, Paegel BM, Scherer JR et al (2003) Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices. Anal Chem 75:5300–5305

    Article  CAS  Google Scholar 

  82. Kamei T, Toriello NM, Lagally ET et al (2005) Microfluidic Genetic Analysis with an Integrated a-Si:H Detector. Biomed Microdevices 7:147–152

    Article  CAS  Google Scholar 

  83. Chabinyc ML, Chiu DT, Mcdonald JC et al (2001) An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem 73:4491–4498

    Article  CAS  Google Scholar 

  84. Song JM, Culha M, Kasili PM, Griffin GD, Vo-Dinh T (2005) A compact CMOS biochip immunosensor towards the detection of a single bacteria. Biosens Bioelectron 20:2203–2209

    Article  CAS  Google Scholar 

  85. Vo-Dinh T, Alarie JP, Isola N et al (1999) DNA biochip using a phototransistor integrated circuit. Anal Chem 71:358–363

    Article  CAS  Google Scholar 

  86. Mallard F, Marchand G, Ginot F, Campagnolo R (2005) Opto-electronic DNA chip: high performance chip reading with an all-electric interface. Biosens Bioelectron 20:1813–1820

    Article  CAS  Google Scholar 

  87. Ho WJ, Chen JS, Ker MD et al (2007) Fabrication of a miniature CMOS-based optical biosensor. Biosens Bioelectron 22:3008–3013

    Article  CAS  Google Scholar 

  88. Lamture JB, Beattie KL, Burke BE et al (1994) Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res 22:2121–2125

    Article  CAS  Google Scholar 

  89. Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR (2002) Electronic detection of DNA by its intrinsic molecular charge. Proc Natl Acad Sci U S A 99:14142–14146

    Article  CAS  Google Scholar 

  90. Kim DS, Jeong YT, Park HJ et al (2004) An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens Bioelectron 20:69–74

    Article  CAS  Google Scholar 

  91. Guiducci C, Stagni C, Zuccheri G et al (2004) DNA detection by integrable electronics. Biosens Bioelectron 19:781–787

    Article  CAS  Google Scholar 

  92. Wong ELE, Gooding JJ (2006) Charge transfer through DNA: a selective electrochemical DNA biosensor. Anal Chem 78:2183–2244

    Google Scholar 

  93. Zhang Q, Subramanian V (2007) DNA hybridization detection with organic thin film transistors: toward fast and disposable DNA microarray chips. Biosens Bioelectron 22:3182–3187

    Article  CAS  Google Scholar 

  94. Tanaka T, Hatakeyama K, Sawaguchi M et al (2006) Oligonucleotide-arrayed TFT photosensor applicable for DNA chip technology. Biotechnol Bioeng 95:22–28

    Article  CAS  Google Scholar 

  95. Chen WJ, Loh EW, Hsu YP, Cheng AT (1997) Alcohol dehydrogenase and aldehyde dehydrogenase genotypes and alcoholism among Taiwanese aborigines. Biol Psychiatry 41:703–709

    Article  CAS  Google Scholar 

  96. Maruyama K, Takeyama H, NEMOTO E et al (2004) Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis. Biotechnol Bioeng 87:687–694

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Matsunaga, T., Tanaka, T. (2010). Electrochemical and Magnetic Technologies for Bio Applications. In: Osaka, T., Datta, M., Shacham-Diamand, Y. (eds) Electrochemical Nanotechnologies. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1424-8_11

Download citation

Publish with us

Policies and ethics