Skip to main content

Part of the book series: Annals of Information Systems ((AOIS,volume 7))

Abstract

Information on biomedical data has increased exponentially in the recent years. In consequence, publicly available data of various types are dispersed across a large number of web-based repositories that are dedicated to specific research issues. Additionally, increasing access to this biomedical information has given rise to numerous developments of advanced methods and tools in the field of computational biology. Web service technology has been developed in order to allow a direct and automated access to those distributed data resources and tools. Web services are software systems that support the communication and interoperability between machines independent of computer platforms or computer languages; the transfer of biological data using SOAP (Simple Object Access Protocol) in combination with the Web Service Description Language (WSDL) is one of the major standards in the bioinformatics community. The combination of distributed web services is used to generate even complex workflows that are able to address the increasingly complex questions of biomedical research. The purpose of this review is to introduce to SOAP/WSDL-based web services and to demonstrate their usage, from both the provider’s and the user’s perspectives. We introduce the basic standards and technology, describe the combination of web services into workflows, present use cases of web services and workflows related to health care and describe the utility of web services for biomedicine.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-4419-1274-9_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Wide Web Consortium W3C. http://www.w3.org. Accessed on 24 February 2009.

  2. Stein LD. Integrating biological databases. Nat Rev Genet 2003; doi:10.1038/nrg1065.

    Google Scholar 

  3. Neerincx PB, Leunissen JA. Evolution of web services in bioinformatics. Brief Bioinform 2005;6:178–188.

    Article  CAS  PubMed  Google Scholar 

  4. Stockinger H, Attwood T, Chohan SN et al. Experience using web services for biological sequence analysis. Brief Bioinform 2008; doi:10.1093/bib/bbn029.

    Google Scholar 

  5. Burgun A, Bodenreider O. Accessing and integrating data and knowledge for biomedical research. Yearb Med Inform 2008;3:91–101.

    Google Scholar 

  6. Kim JJ, Rebholz-Schuhmann D. Categorization of services for seeking information in biomedical literature: a typology for improvement of practice. Brief Bioinform 2008; doi:10.1093/bib/bbn032.

    Google Scholar 

  7. Vittorini P, Michetti M, di Orio F. A SOA statistical engine for biomedical data. Comput Methods Programs Biomed 2008; doi:10.1016/j.cmpb.2008.06.006.

    Google Scholar 

  8. Gonzalez G, Balasooriya J. Web service orchestration for bioinformatics systems: challenges and current workflow definition approaches. IEEE Int Conf Web Services (ICWS) 2007; doi:10.1109/ICWS.2007.202.

    Google Scholar 

  9. Web Services Interoperability Organization WS-I. http://www.ws-i.org. Accessed on 24 February 2009.

  10. Rice PM, Bleasby AJ, Haider SA et al. EMBRACE: Bioinformatics data and analysis tool services for e-Science. IEEE Int Conf e-Sci Grid Comput 2006; doi:10.1109/E-SCIENCE.2006.57.

    Google Scholar 

  11. Hull D, Wolstencroft K, Stevens R et al. Taverna: a tool for building and running workflows of services. Nucleic Acids Res 2006; doi:10.1093/nar/gkl320.

    Google Scholar 

  12. Romano P, Bartocci E, Bertolini G et al. Biowep: a workflow enactment portal for bioinformatics applications. BMC Bioinform 2007; doi:10.1186/1471-2105-8-S1-S19.

    Google Scholar 

  13. Altintas I, Berkley C, Jaeger E et al. Kepler: an extensible system for design and execution of scientific workflows. International Conference on Scientific and Statistical Database Management 2004; doi:10.1109/SSDM.2004.1311241.

    Google Scholar 

  14. Churches D, Gombas G, Harrison A et al. Programming scientific and distributed workflow with Triana services. Concurrency Comput Pract Exper 2006; doi:10.1002/cpe.992.

    Google Scholar 

  15. Romano P. Automation of in-silico data analysis processes through workflow management systems. Brief Bioinform 2008; doi:10.1093/bib/bbm056.

    Google Scholar 

  16. Romano P, Marra D, Milanesi L. Web services and workflow management for biological resources. BMC Bioinform 2005; doi:10.1186/1471-2105-6-S4-S24.

    Google Scholar 

  17. de Knikker R, Guo Y, Li JL et al. A web services choreography scenario for interoperating bioinformatics applications. BMC Bioinform 2004; doi:10.1186/1471-2105-5-25.

    Google Scholar 

  18. Cheung KH, de Knikker R, Guo Y et al. Biosphere: the interoperation of web services in microarray cluster analysis. Appl Bioinform 2004;3:253–256.

    Article  CAS  Google Scholar 

  19. myExperiment Workflow Repository. http://www.myexperiment.org. Accessed on 24 February 2009.

  20. Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids Res 2006; doi:10.1093/nar/gkj126.

    Google Scholar 

  21. Lee DY, Saha R, Yusufi FN et al. Web-based applications for building, managing and analysing kinetic models of biological systems. Brief Bioinform 2009; doi:10.1093/ bib/bbn039.

    Google Scholar 

  22. Shabo A, Dotan D. The seventh layer of the clinical-genomics information infrastructure. IBM Syst J 2007; doi:10.1147/sj.461.0057.

    Google Scholar 

  23. Amberger J, Bocchini CA, Scott AF et al. McKusick's online Mendelian inheritance in man (OMIM). Nucleic Acids Res 2009; doi:10.1093/nar/gkn665.

    Google Scholar 

  24. Fernandez JM, Hoffmann R, Valencia A. iHOP web services. Nucleic Acids Res 2007; doi:10.1093/nar/gkm298.

    Google Scholar 

  25. MPI for Molecular Genetics GenomeMatrix. http://genomematrix.molgen.mpg.de. Accessed on 24 February 2009.

  26. Kamburov A, Wierling C, Lehrach H et al. ConsensusPathDB – a database for integrating human functional interaction networks. Nucleic Acids Res 2009; doi:10.1093/nar/gkn698.

    Google Scholar 

  27. Kanehisa M, Goto S, Hattori M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006; doi:10.1093/nar/gkj102.

    Google Scholar 

  28. Matthews L, Gopinath G, Gillespie M et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 2009; doi:10.1093/nar/gkn863.

    Google Scholar 

  29. Rojas I, Golebiewski M, Kania R et al. Storing and annotating of kinetic data. In Silico Biol 2007;7:37–44.

    Google Scholar 

  30. Wierling C, Herwig R, Lehrach H. Resources, standards and tools for systems biology. Brief Funct Genomic Proteomic 2007; doi:10.1093/bfgp/elm027.

    Google Scholar 

  31. Kaldoudi E, Karaiskakis D. A service based approach for medical image distribution in healthcare Intranets. Comput Methods Programs Biomed 2006; doi:10.1016/j.cmpb.2005.09.007.

    Google Scholar 

  32. Klimes D, Kubasek M, Smid R et al. Internet-based system for anti-tumor chemotherapy evaluation. Comput Methods Programs Biomed 2009; doi:10.1016/j.cmpb.2008.10.013.

    Google Scholar 

  33. Kopecky J, Vitvar T, Bournez C et al. SAWSDL: Semantic annotations for WSDL and XML schema. IEEE Internet Comput 2007; doi:10.1109/MIC.2007.134.

    Google Scholar 

  34. Berners-Lee T, Hendler J, Lassila O. The semantic web. Scientific American Magazine 2001; http://www.sciam.com/article.cfm?id=the-semantic-web. Accessed on 24 February 2009.

  35. Shadbolt N, Hall W, Berners-Lee T. The semantic web revisited. IEEE Intell Syst 2006; doi:10.1109/MIS.2006.62.

    Google Scholar 

  36. Rubin DL, Lewis SE, Mungall CJ et al. National Center for Biomedical Ontology: advancing biomedicine through structured organization of scientific knowledge. Omics 2006; doi:10.1089/omi.2006.10.185.

    Google Scholar 

  37. W3C OWL Reference. http://www.w3.org/TR/owl-ref/. Accessed on 24 February 2009.

  38. Wolstencroft K, Alper P, Hull D et al. The myGrid ontology: bioinformatics service discovery. Int J Bioinform Res Appl 2007;3:303–325.

    Article  CAS  PubMed  Google Scholar 

  39. Ceresa M, Masseroli M. Clinical and biomolecular ontologies for E-Health. In: Lazakidou AA, Siassiakos KM (eds.), Handbook of Research on Distributed Medical Informatics and E-Health. Hershey: IGI Publishing, 2008.

    Google Scholar 

  40. Paolucci M, Kawamura T, Payne TR et al. Semantic matching of web services capabilities. In: The Semantic Web – ISWC 2002. Berlin/Heidelberg: Springer, 2002.

    Google Scholar 

  41. Li W, Guo W. Semantic-based web service matchmaking algorithm in biomedicine. International Conference on BioMedical Engineering and Informatics 2008; doi:10.1109/ BMEI.2008.278.

    Google Scholar 

  42. Harkema H, Roberts I, Gaizauskas R et al. A web service for biomedical term look-up. Comp Funct Genomics 2005; doi:10.1002/cfg.459.

    Google Scholar 

  43. Knublauch H, Dameron O, Musen MA. Weaving the biomedical semantic web with the Protege OWL plugin. In: Hahn U (ed.), International Workshop on Formal Biomedical Knowledge Representation 2004. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-102/knublauch.pdf. Accessed on 24 February 2009.

  44. Jonquet C, Musen MA, Shah NH. Help will be provided for this task: Ontology-based annotator web service. Technical Report 2008. http://www.bioontology.org/publications.html. Accessed on 24 February 2009.

  45. Chen H, Wang Y, Wu Z. Introduction to semantic e-Science in biomedicine. BMC Bioinform 2007; doi:10.1186/1471-2105-8-S3-S1.

    Google Scholar 

  46. Zhang Z, Cheung KH, Townsend JP. Bringing Web 2.0 to bioinformatics. Brief Bioinform 2009; doi:10.1093/bib/bbn041.

    Google Scholar 

  47. Deus HF, Stanislaus R, Veiga DF et al. A semantic web management model for integrative biomedical informatics. PLoS ONE 2008; doi:10.1371/journal.pone.0002946.

    Google Scholar 

  48. Pettifer S, Thorne D, McDermott P et al. The embrace registry. EMBnet.news 2008;14:58–62.

    Google Scholar 

  49. Stein LD. Towards a cyberinfrastructure for the biological sciences: progress, visions and challenges. Nat Rev Genet 2008; doi:10.1038/nrg2414.

    Google Scholar 

  50. Ruttenberg A, Clark T, Bug W et al. Advancing translational research with the Semantic Web. BMC Bioinform 2007; 8:Suppl 3. doi:10.1186/1471-2105-8-S3-S250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Meinel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meinel, T., Wig, R.H. (2010). SOAP/WAD-Based Web Services for Biomedicine. In: Lazakidou, A. (eds) Web-Based Applications in Healthcare and Biomedicine. Annals of Information Systems, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1274-9_7

Download citation

Publish with us

Policies and ethics