Skip to main content

Glutamic Acid Decarboxylase (GAD) as a Biomarker of GABAergic Activity in Autism: Impact on Cerebellar Circuitry and Function

  • Chapter
The Neurochemical Basis of Autism

Abstract

Basic circuits in the brain involve excitatory and inhibitory mechanisms. Inhibition in the brain is primarily sustained by the inhibitory neurotransmitter, gamma-amino-butyric acid (GABA). Neurons that use GABA as their neurotransmitter selectively express the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD). This review focuses on recent studies showing abnormalities in the expression of two GAD isoforms, GAD65 and GAD67, by cerebellar GABAergic neurons in postmortem brain tissue sections from individuals with autism. The region of the cerebellum involved in these studies is in the lateral hemisphere, a part of the neocerebellum, in the Crus II region. This region of interest was chosen because of its abundant inputs from the frontal lobe, a region that is important for motor and cognitive processing including high-order executive function and set-shifting behavior tasks. These studies suggest that inhibitory mechanisms may be deeply altered in autism. Specifically, Purkinje cells that are decreased in some autism brains have a large decrease in GAD67 mRNA levels; basket cells, a type of inhibitory interneuron in the molecular layer of the cerebellum contains increased GAD67 mRNA levels; dentate neurons, from the dentate nucleus, a type of deep cerebellar nuclei, contain decreased GAD65 mRNA levels; whereas a large inhibitory neuron type in the granular layer of the cerebellum, Golgi type II cells have normal GAD67 mRNA levels. The chapter describes possible alterations of the normal functioning of cerebellar circuitry which may impact motor and/or cognitive behaviors related to the autistic phenotype. The possibility that these changes could also be a causal role in the disease process is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta MT (2004) Pharmacotherapy in autism: where to start? Drug Discovery Today 9: 474.

    Article  PubMed  Google Scholar 

  • Andersen P, Eccles JC, Voorhoeve PE (1964) Postsynaptic inhibition of cerebellar Purkinje cells. J Neurophysiol 27: 1138–1153.

    CAS  PubMed  Google Scholar 

  • Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K (1997a) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun 229: 891–895.

    Article  Google Scholar 

  • Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K (1997b) Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94: 6496–6499.

    Article  CAS  PubMed  Google Scholar 

  • Askalan R, Mackay M, Brian J, Otsubo H, McDermott C, Bryson S, Boyd J, Carter S, Roberts W, Weiss S (2003) Prospective preliminary analysis of the development of autism and epilepsy in children with infantile autism. J Child Neurol 18: 165–170.

    Article  PubMed  Google Scholar 

  • Bailey CD, Brien JF, Reynolds JN (2004) Chronic prenatal ethanol exposure alters the proportion of GABAergic neurons in layers II/III of the adult guinea pig somatosensory cortex. Neurotoxicology and Teratology 26: 59–63.

    Article  CAS  PubMed  Google Scholar 

  • Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121(Pt5): 889–905.

    Article  PubMed  Google Scholar 

  • Battaglioli G, Liu H, Martin DL (2003) Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis. J Neurochem 86:879–887.

    Article  CAS  PubMed  Google Scholar 

  • Bauman ML, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874.

    CAS  PubMed  Google Scholar 

  • Bauman ML, Kemper TL (1994) Neuroanatomic observations of the brain in autism. In ML Bauman and TL Kemper (eds.), The Neurobiology of Autism, pp. 119–145. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL. 1989. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 416: 303–325.

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated ‘menage à trois’. Trends Neurosci 20: 523–529.

    Article  CAS  PubMed  Google Scholar 

  • Benevento LA, Bakkum BW, Cohen RS (1995) gamma-Aminobutyric acid and somatostatin immunoreactivity in the visual cortex of normal and dark-reared rats. Brain Res 689: 172–182.

    Article  CAS  PubMed  Google Scholar 

  • Benson DL, Isackson PJ, Hendry SH, Jones EG (1989) Expression of glutamic acid decarboxylase mRNA in normal and monocularly deprived cat visual cortex. Brain Res Mol Brain Res 5: 279–287.

    Article  CAS  PubMed  Google Scholar 

  • Blatt, GJ, Fitzgerald, CM, Guptill, JT, Booker, AB, Kemper, TL, Bauman, ML (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 31: 537–43.

    Article  CAS  PubMed  Google Scholar 

  • Blatt GJ, Yip J, Soghomonian J-J, Whitney E, Thevarkunnel S, Bauman ML, Kemper TL (2007) An emerging GABA/glutamate hypothesis of cerebellar dysfunction in autism. Int Meet Autism Res 6: 144.

    Google Scholar 

  • Bowers G, Cullinan WE, Herman JP (1998) Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci 18: 5938-5947.

    CAS  PubMed  Google Scholar 

  • Boyar FZ, Whitney MM, Lossie AC, Gray BA, Keller KL, Stalker HJ, Zori RT, Geffken G, Mutch J, Edge PJ, Voeller KS, Williams CA, Driscoll DJ (2001) A family with a grand maternally derived interstitial duplication of proximal 15q. Clin Genet 60: 421–30.

    Article  CAS  PubMed  Google Scholar 

  • Buxbaum JD, Silverman JM, Smith CJ, Greenberg DA, Kilifarski M, Reichert J, Cook EH Jr, Fang Y, Song CY, Vitale R (2002) Association between a GABRB3 polymorphism and autism. Mol Psychiatry 7: 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Chan SO, Lyman WD, Chiu FC (1997) Temporal and spatial expression of glutamic acid decarboxylases in human fetal brain. Brain Res Mol Brain Res 46: 318–320.

    Article  CAS  PubMed  Google Scholar 

  • Chan-Palay, V (1977) Cerebellar Dentate Nucleus: Organization, Cytology and Transmitters. Springer, Berlin.

    Google Scholar 

  • Chattopadhyaya B, Di Cristo G, Higashiyama H, Knott GW, Kuhlman SJ, Welker E, Huang ZJ (2004) Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci 24:9598-9611.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyaya B, Di Cristo G, Wu CZ, Knott G, Kuhlman S, Fu Y, Palmiter RD, Huang ZJ (2007) GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54:889–903.

    Article  CAS  PubMed  Google Scholar 

  • Chessler SD, Lernmark A (2000) Alternative splicing of GAD67 results in the synthesis of a third form of glutamic-acid decarboxylase in human islets and other non-neural tissues. J Biol Chem 275:5188-5192.

    Article  CAS  PubMed  Google Scholar 

  • Collins AL, Ma D, Whitehead PL, Martin ER, Wright HH, Abramson RK, Hussman JP, Haines JL, Cuccaro ML, Gilbert JR, Pericak-Vance MA (2006) Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 7:167–174.

    Article  CAS  PubMed  Google Scholar 

  • Cook EH Jr, Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, Lord C, Courchesne E (1997) Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 60: 928–934.

    CAS  PubMed  Google Scholar 

  • Curran S, Roberts S, Thomas, S, Veltman M, Browne J, Medda E, Pickles A, Sham P, Bolton PF (2005) An association analysis of microsatellite markers across the Prader-Willi/Angelman critical region on chromosome 15 9q11-13 and autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet 137B: 25–28.

    Article  PubMed  Google Scholar 

  • De Zeeuw, CI, Holstege, JC, Calkoen, F, Ruigrok, T.J, Voogd, J (1988) A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. Brain Res 447: 369–375.

    Article  PubMed  Google Scholar 

  • De Zeeuw, CI, Lang, EJ, Sugihara, I, Ruigrok, TJ, Eisenman, LM, Mugnaini, E, and Llinás, R (1996) Morphological correlates of bilateral synchrony in the rat cerebellar cortex. J Neurosci 16: 3412–3426.

    PubMed  Google Scholar 

  • De Zeeuw, CI, Simpson, JI, Casper, C, Hoogenraad, CC, Galjart, N, Koekkoek, SKE, Ruigrok, TJH (1998) Microcircuitry and function of the inferior olive. Trend Neurosci 21: 391–400.

    Article  PubMed  Google Scholar 

  • Eccles, JC, Ito M, Szentagothai J (1967) The Cerebellum as a Neuronal Machine. Springer-Verlag Publ, NewYork.

    Google Scholar 

  • Fagiolini M, Hensch TK (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404: 183–186.

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Folsom TD, Reutiman TJ, Thuras PD (2009b) GABA(A) receptor downregulation in brains of subjects with autism. Cerebellum 8: 64–69.

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz, SC, Realmuto, GR (2002) Glutamic acid Carboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psych 52: 805–810.

    Article  CAS  Google Scholar 

  • Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD (2009a) GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 39: 223–230.

    Article  PubMed  Google Scholar 

  • Feldblum S, Erlander MG, Tobin AJ (1993) Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decaboxylases play distinctive functional roles. J Neurosci Res 34: 689–706.

    Article  CAS  PubMed  Google Scholar 

  • Fenalti G, Rowley MJ (2008) GAD65 as a prototypic autoantigen. J Autoimmun 31: 228–232.

    Article  CAS  PubMed  Google Scholar 

  • Freichel C, Potschka H, Ebert U, Brandt C, Löscher W (2006) Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus. Neurosci 141: 2177–2194.

    Article  CAS  Google Scholar 

  • Gabbott PL, Somogyi J, Stewart MG, Hamori J (1986) GABA-immunoreactive neurons in the rat cerebellum: a light and electron microscope study. J Comp Neurol 251:474–490.

    Article  CAS  PubMed  Google Scholar 

  • Gierdalski M, Jablonska B, Siucinska E, Lech M, Skibinska A, Kossut M (2001) Rapid regulation of GAD67 mRNA and protein level in cortical neurons after sensory learning. Cereb Cortex 11: 806–815.

    Article  CAS  PubMed  Google Scholar 

  • Guptill JT, Booker AB, Gibbs TT, Kemper TL, Bauman ML, Blatt GJ (2007) [3H]-flunitrazepam-labeled benzodiazepine binding sites in the hippocampal formation in autism: a multiple concentration autoradiographic study. J Autism Dev Disord 37: 911–920.

    Article  PubMed  Google Scholar 

  • Heldt SA, Green A, Ressler KJ (2004) Prepulse inhibition deficits in GAD65 knockout mice and the effect of antipsychotic treatment. Neuropsychopharmacology 29: 1610–1619.

    Article  CAS  PubMed  Google Scholar 

  • Hokfelt T, Ljungdahl A (1970) Cellular localization of labeled gamma-aminobutyric acid (3H-GABA) in rat cerebellar cortex: an autoradiographic study. Brain Res 22: 391–396.

    Article  CAS  PubMed  Google Scholar 

  • Hsu CC, Davis KM, Jin H, Foos T, Floor E, Chen W, Tyburski JB, Yang CY, Schloss JV, Wu JY (2000) Association of L-glutamic acid decarboxylase to the 70-kDa heat shock protein as a potential anchoring mechanism to synaptic vesicles. J Biol Chem 275: 20822–20828.

    Article  CAS  PubMed  Google Scholar 

  • Hsu CC, Thomas C, Chen W, Davis KM, Foos T, Chen JL, Wu E, Floor E, Schloss JV, Wu JY (1999) Role of synaptic vesicle proton gradient and protein phosphorylation on ATP-mediated activation of membrane-associated brain glutamate decarboxylase. J Biol Chem 274: 24366–24371.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M (1993a) Synaptic plasticity in the cerebellar cortex and its role in motor learning. Can J Neurol Sci 20(Suppl 3): S70–S74.

    PubMed  Google Scholar 

  • Ito, M. (1993b) Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 16: 448–454.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M (1993c) New concepts in cerebellar function. Rev Neurol Paris 149: 596–599.

    CAS  PubMed  Google Scholar 

  • Iwai Y, Fagiolini M, Obata K, Hensch TK (2003) Rapid critical period induction by tonic inhibition in visual cortex. J Neurosci 23: 6695–6702.

    CAS  PubMed  Google Scholar 

  • Kash SF, Johnson RS, Tecott LH, Noebels JL, Mayfield RD, Hanahan D, Baekkeskov S (1997) Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 94: 14060–14065.

    Article  CAS  PubMed  Google Scholar 

  • Kash SF, Tecott LH, Hodge C, Baekkeskov S (1999) Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 96: 1698–1703.

    Article  CAS  PubMed  Google Scholar 

  • Kobori N, Dash PK (2006) Reversal of brain injury-induced prefrontal glutamic acid decarboxylase expression and working memory deficits by D1 receptor antagonism. J Neurosci 26: 4236–4246.

    Article  CAS  PubMed  Google Scholar 

  • Ji F, Obata K (1999) Development of the GABA system in organotypic culture of hippocampal and cerebellar slices from a 67-kDa isoform of glutamic acid decarboxylase (GAD67)-deficient mice. Neurosci Res 33: 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Lariviere K, MacEachern L, Greco V, Majchrzak G, Chiu S, Drouin G, Trudeau VL (2002) GAD65 and GAD67 isoforms of the glutamic acid decarboxylase gene originated before the divergence of cartilaginous fishes. Mol Biol Evol 19: 2325–2329.

    CAS  PubMed  Google Scholar 

  • Lawrence YA, Kemper TL, Bauman ML, Blatt GJ (2009) Parvalbumin-, calbindin- and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurol Scand (in press).

    Google Scholar 

  • Liang F, Jones EG (1996) Peripheral nerve stimulation increases Fos immunoreactivity without affecting type II Ca2+/calmodulin-dependent protein kinase, glutamic acid decarboxylase, or GABAA receptor gene expression in cat spinal cord. Exp Brain Res 111: 326–336.

    Article  CAS  PubMed  Google Scholar 

  • Llinas R, Welsh JP (1993) On the cerebellum and motor learning. Curr Opin Neurobiol 3: 958–965.

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Salyakina D, Jaworski JM, Konidari I, Whitehead PL, Andersen AN, Hoffman JD, Silfer SH, Hedges DJ, Cukier HN, Griswold AJ, McCauley JL, Beecham GW, Wright HH, Abramson RK, Martin ER, Hussman JP, Gilbert JR, Cuccaro ML, Haines JL, Pericak-Vance MA (2009) A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. Ann Hum Genet 73: 263–273.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin BJ, Wood JG, Saito K, Barber R, Vaughn JE, Roberts E, Wu JY (1974) The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. Brain Res 76: 377–391.

    Article  CAS  PubMed  Google Scholar 

  • Mercugliano M, Soghomonian JJ, Qin Y, Nguyen HQ, Feldblum S, Erlander MG, Tobin AJ, Chesselet MF (1992) Comparative distribution of messenger RNAs encoding glutamic acid decarboxylases (Mr 65,000 and Mr 67,000) in the basal ganglia of the rat. J Comp Neurol 318: 245–254.

    Article  CAS  PubMed  Google Scholar 

  • Mohandas TK, Park JP, Spellman RA, Filiano JJ, Mamourian AC, Hawk AB, Belloni DR, Noll WW, Moeschler JB (1999) Paternally derived de novo interstitial duplication of proximal 15q in a patient with developmental delay. Am J Med Genet 82: 294–300.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, BJ, and Mugnaini, E (1989) Origins of GABAergic Inputs to the Inferior Olive. In P. Strata (ed.): The Olivocerebellar System in Motor Control. Berlin, Experimental Brain Research 17: 86–107.

    Google Scholar 

  • Nurmi EL, Bradford Y, Chen Y, Hall J, Arnone B, Gardiner MB, Hutcheson HB, Gilbert JR, Pericak-Vance MA, Copeland-Yates SA, Michaelis RC, Wassink TH, Santagelo SL, Sheffield VC, Piven J, Folstein SE, Haines JL, Sutcliffe JS (2001) Linkage disequilibrium at the Angelman syndrome gene UBE3A in autism families. Genomics 77: 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Obata K, Hirono M, Kume N, Kawaguchi Y, Itohara S, Yanagawa Y (2008) GABA and synaptic inhibition of mouse cerebellum lacking glutamate decarboxylase 67. Biochem Biophys Res Commun 370: 429–433.

    Article  CAS  PubMed  Google Scholar 

  • Oblak A, Gibbs TT, Blatt GJ (2009) Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Aut Res 2:205–219.

    Google Scholar 

  • Oertel WH, Schmechel DE, Mugnani E, Tappaz ML, Kpin IJ (1981) Immunocytochemical localization of glutamate decarboxylase in rat cerebellum with a new antiserum. Neurosci 6:2715–2735.

    Article  CAS  Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) GABA-containing neurons in the thalamus and pretectum of the rodent. An immunocytochemical study. Anat Embryol (Berl) 170: 197–207.

    Article  CAS  Google Scholar 

  • Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA- like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450: 342–353.

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, Atkinson M, Tagle DA (2004) Glutamic acid decarboxylase autoimmunity in Batten disease and other disorders. Neurology 63: 2001–2005.

    CAS  PubMed  Google Scholar 

  • Pedersen AA, Videbaek N, Skak K, Petersen HV, Michelsen BK (2001) Characterization of the rat GAD67 gene promoter reveals elements important for basal transcription and glucose responsiveness. DNA seq 11: 485–499.

    CAS  PubMed  Google Scholar 

  • Pisu MB, Guioli S, Conforti E, Bernocchi G (2003) Signal molecules and receptors in the differential development of cerebellum lobules. Acute effects of cisplatin on nitric oxide and glutamate systems in Purkinje cell population. Brain Res Dev Brain Res 145: 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Radian R, Ottersen OP, Storm-Mathisen J, Castel M, Kanner BI (1990) Immunocytochemical localization of the GABA transporter in rat brain. J Neurosci 10: 1319–1330.

    CAS  PubMed  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7: 511–522.

    Article  CAS  PubMed  Google Scholar 

  • Ribak CE, Vaughn JE, Saito K (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res 140: 315–332.

    Article  CAS  PubMed  Google Scholar 

  • Rout UK, Dhossche DM (2008) A pathogenetic model of autism involving Purkinje cell loss through anti-GAD antibodies. Med Hypotheses 71: 218–221.

    Article  CAS  PubMed  Google Scholar 

  • Saint-Cyr, JA, and Courville, J (1981) Sources of descending afferents to the inferior olive from upper brainstem in the cat as revealed by the retrograde transport of horseradish peroxidase. J Comp Neurol 198: 567–581.

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Barber R, Wu J, Matsuda T, Roberts E, Vaughn JE (1974) Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc Natl Acad Sci USA 71: 269–273.

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD (2001a) The cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion. Int Rev Psychiatry 13: 247–260.

    Article  Google Scholar 

  • Schmahmann JD (2001b) The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. Int Rev Psychiatry 13: 313–322.

    Article  Google Scholar 

  • Schmahmann, JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI Atlas of the Human Cerebellum. Academic Press, San Diego.

    Google Scholar 

  • Schmahmann JD, Killiany RJ, Moore TL, DeMong C, Macmore JP, Moss MB (2004) Cerebellar dentate lesions impair flexibility but not motor function in monkeys. Soc Neursci Abstr 34: 254.12.

    Google Scholar 

  • Scherini E, Bernocchi G (1994) cisDDP treatment and development of the rat cerebellum. Prog Neurobiol 42: 161–196.

    Article  CAS  PubMed  Google Scholar 

  • Schon F, Iversen LL (1972) Selective accumulation of (3 H)GABA by stellate cells in rat cerebellar cortex in vivo. Brain Res 42: 503–507.

    Article  CAS  PubMed  Google Scholar 

  • Schroer RJ, Phelan MC, Michaelis RC, Crawford EC, Skinner SA, Cuccaro M, Simensen RJ, Bishop J, Skinner C, Fender D, Stevensone RE (1998) Autism and maternally derived aberrations of chromosome 15q. Amer J Med Genet 76: 327–336.

    Article  CAS  Google Scholar 

  • Seguela P, Gamrani H, Geffard M, Calas A, Le Moal M (1985) Ultrastructural immunocytochemistry of gamma-aminobutyrate in the cerebral and cerebellar cortex of the rat. Neuroscience 16: 865–874.

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Cuccaro ML, Hauser ER, Raiford KL, Menold MM, Wolpert CM, Ravan SA, Elston L, Decena K, Donnelly SL, Abramson RK, Wright HH, DeLong GR, Gilbert JR, Pericak-Vance MA (2003) Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes. Am J Hum Genet 72: 539–548.

    Article  CAS  PubMed  Google Scholar 

  • Shimura T, Watanabe U, Yanagawa Y, Yamamoto T (2004) Altered taste function in mice deficient in the 65-kDa isoform of glutamate decarboxylase. Neurosci Lett 356: 171–174.

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Hodgson AJ, Chubb IW, Penke B, Erdei A (1985) Antisera to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system. J Histochem Cytochem 33: 240–248

    CAS  PubMed  Google Scholar 

  • Soghomonian JJ, Gonzales C, Chesselet MF (1992) Messenger RNAs encoding glutamate- decarboxylases are differentially affected by nigrostriatal lesions in subpopulations of striatal neurons. Brain Res 576: 68–79.

    Article  CAS  PubMed  Google Scholar 

  • Stork O, Yamanaka H, Stork S, Kume N, Obata K (2003) Altered conditioned fear behavior in glutamate decarboxylase 65 null mutant mice. Genes Brain Behav 2: 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Sultan F, Czubayko U, Thier P (2003) Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis. J Comp Neurol 455: 139–155.

    Article  PubMed  Google Scholar 

  • Thevarkunnel S, Bauman M, Kemper T, Blatt G (2005) Stereological study of the number and size of neurons in the principal olive in autism. Int Meet Aut Res 4: 48.

    Google Scholar 

  • Tian N, Petersen C, Kash S, Baekkeskov S, Copenhagen D, Nicoll R (1999) The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc Natl Acad Sci USA 96: 12911–12916.

    Article  CAS  PubMed  Google Scholar 

  • Tolbert, DL, Bantli, H, Bloedel, JR (1978) Organizational features of the cat and monkey nucleocortical projection. J Comp Neurol 182: 39–56.

    Article  CAS  PubMed  Google Scholar 

  • Vianello M, Tavolato B, Giometto B (2002) Glutamic acid decarboxylase antibodies and neurological disorders. Neurol Sci 23: 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Welsh JP (2002) Functional significance of climbing-fiber synchrony: a population coding and behavioral analysis. Ann N Y Acad Sci 978: 188–204.

    Article  PubMed  Google Scholar 

  • Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ (2008) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 7: 406–416.

    Article  CAS  PubMed  Google Scholar 

  • Wilkin GP, Csillag A, Balazs R, Kingsbury AE, Wilson JE, Johnson AL (1981) Localization of high affinity [3H]glycine transport sites in the cerebellar cortex. Brain Res 216: 11–33.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Jin Y, Buddhala C, Osterhaus G, Cohen E, Jin H, Wei J, Davis K, Obata K, Wu JY (2007) Role of glutamate decarboxylase (GAD) isoform, GAD65, in GABA synthesis and transport into synaptic vesicles-Evidence from GAD65-knockout mice studies. Brain Res 1154: 80–83.

    Article  CAS  PubMed  Google Scholar 

  • Yip J, Soghomonian J-J, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113: 559–568.

    Article  CAS  PubMed  Google Scholar 

  • Yip J, Soghomonian J-J, Blatt GJ (2008) Increased GAD67 mRNA expression in cerebellar interneurons in autism: implications for Purkinje cell dysfunction. J Neurosci Res 86: 525–530.

    Article  CAS  PubMed  Google Scholar 

  • Yip J, Soghomonian J-J, Blatt GJ (2009) Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: an in situ hybridization study. Autism Res 2: 50–59.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene J. Blatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blatt, G.J., Soghomonian, JJ., Yip, J. (2010). Glutamic Acid Decarboxylase (GAD) as a Biomarker of GABAergic Activity in Autism: Impact on Cerebellar Circuitry and Function. In: Blatt, G.J. (eds) The Neurochemical Basis of Autism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1272-5_7

Download citation

Publish with us

Policies and ethics