Skip to main content

Clocks, Brain Function, and Dysfunction

  • Chapter
  • First Online:
The Circadian Clock

Part of the book series: Protein Reviews ((PRON,volume 12))

  • 1885 Accesses

Abstract

Circadian clocks are present in nearly all tissues of an organism, including the brain. The brain is not only the site of the master coordinator of circadian rhythms located in the suprachiasmatic nuclei (SCN), but also contains SCN-independent oscillators that regulate various functions such as feeding and mood-related behavior. Understanding how clocks receive and integrate environmental information and in turn control physiology under normal conditions is of importance because chronic disturbance of circadian rhythmicity can lead to serious health problems. Genetic modifications leading to disruption of normal circadian gene functions have been linked to a variety of psychiatric conditions including depression, seasonal affective disorder, feeding disorders and alcoholism. It appears that clock genes play an important role in limbic regions of the brain and influence the development of drug addiction. Furthermore, analyses of clock gene polymorphisms in diseases of the central nervous system (CNS) suggest a direct or indirect influence of circadian clock genes on brain function. In this chapter, we discuss the current knowledge and highlight the gaps of our understanding of how circadian timing influences the brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206

    Article  PubMed  CAS  Google Scholar 

  2. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  PubMed  CAS  Google Scholar 

  3. Van den Pol AN (1980) The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol 191:661–702

    Article  PubMed  Google Scholar 

  4. Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7:1626–1638

    PubMed  CAS  Google Scholar 

  5. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  PubMed  CAS  Google Scholar 

  6. Guilding C, Piggins HD (2007) Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J NeuroSci 25:3195–3216

    Article  PubMed  Google Scholar 

  7. Abraham U, Prior JL, Granados-Fuentes D, Piwnica-Worms DR, Herzog ED (2005) Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro. J Neurosci 25:8620–8626

    Article  PubMed  CAS  Google Scholar 

  8. Asai M, Yoshinobu Y, Kaneko S, Mori A, Nikaido T, Moriya T, Akiyama M, Shibata S (2001) Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J Neurosci Res 66:1133–1139

    Article  PubMed  CAS  Google Scholar 

  9. Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J NeuroSci 13:1190–1196

    Article  PubMed  CAS  Google Scholar 

  10. Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Circadian rhythms in isolated brain regions. J Neurosci 22:350–356

    PubMed  CAS  Google Scholar 

  11. Granados-Fuentes D, Prolo LM, Abraham U, Herzog ED (2004) The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb. J Neurosci 24:615–619

    Article  PubMed  CAS  Google Scholar 

  12. Namihira M, Honma S, Abe H, Tanahashi Y, Ikeda M, Honma K (1999) Daily variation and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the pineal body and different areas of brain in rats. Neurosci Lett 267:69–72

    Article  PubMed  CAS  Google Scholar 

  13. Shieh KR, Yang SC, Lu XY, Akil H, Watson SJ (2005) Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock, in the rat brain. J Biomed Sci 12:209–217

    Article  PubMed  CAS  Google Scholar 

  14. Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–1011

    Article  PubMed  CAS  Google Scholar 

  15. Herichova I, Mravec B, Stebelova K, Krizanova O, Jurkovicova D, Kvetnansky R, Zeman M (2007) Rhythmic clock gene expression in heart, kidney and some brain nuclei involved in blood pressure control in hypertensive TGR(mREN-2)27 rats. Mol Cell Biochem 296:25–34

    Article  PubMed  CAS  Google Scholar 

  16. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  PubMed  CAS  Google Scholar 

  17. Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14:2289–2295

    Article  PubMed  CAS  Google Scholar 

  18. Amir S, Lamont EW, Robinson B, Stewart J (2004) A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J Neurosci 24:781–790

    Article  PubMed  CAS  Google Scholar 

  19. Lamont EW, Robinson B, Stewart J, Amir S (2005) The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci U S A 102:4180–4184

    Article  PubMed  CAS  Google Scholar 

  20. Angeles-Castellanos M, Mendoza J, Escobar C (2007) Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience 144:344–355

    Article  PubMed  CAS  Google Scholar 

  21. Feillet CA, Mendoza J, Albrecht U, Pevet P, Challet E (2008) Forebrain oscillators ticking with different clock hands. Mol Cell Neurosci 37:209–221

    Article  PubMed  CAS  Google Scholar 

  22. Guillaumond F, Dardente H, Giguere V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20:391–403

    Article  PubMed  CAS  Google Scholar 

  23. Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191

    Article  PubMed  CAS  Google Scholar 

  24. Mikkelsen JD, Larsen PJ, O’Hare MM, Wiegand SJ (1991) Gastrin releasing peptide in the rat suprachiasmatic nucleus: an immunohistochemical, chromatographic and radioimmunological study. Neuroscience 40:55–66

    Article  PubMed  CAS  Google Scholar 

  25. Provencio I, Cooper HM, Foster RG (1998) Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 395:417–439

    Article  PubMed  CAS  Google Scholar 

  26. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  PubMed  CAS  Google Scholar 

  27. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O’Hara BF (2002) Role of melanopsin in circadian responses to light. Science 298:2211–2213

    Article  PubMed  CAS  Google Scholar 

  28. Semo M, Lupi D, Peirson SN, Butler JN, Foster RG (2003) Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rdcl) mice. Eur J NeuroSci 18:3007–3017

    Article  PubMed  Google Scholar 

  29. Castel M, Belenky M, Cohen S, Ottersen OP, Storm-Mathisen J (1993) Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur J NeuroSci 5:368–381

    Article  PubMed  CAS  Google Scholar 

  30. Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, Mikkelsen JD (1997) Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci 17:2637–2644

    PubMed  CAS  Google Scholar 

  31. Harrington ME, Nance DM, Rusak B (1985) Neuropeptide Y immunoreactivity in the hamster geniculo-suprachiasmatic tract. Brain Res Bull 15:465–472

    Article  PubMed  Google Scholar 

  32. Harrington ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 21:705–727

    Article  PubMed  CAS  Google Scholar 

  33. Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150:112–116

    Article  PubMed  CAS  Google Scholar 

  34. Card JP, Moore RY (1989) Organization of lateral geniculate-hypothalamic connections in the rat. J Comp Neurol 284:135–147

    Article  PubMed  CAS  Google Scholar 

  35. Moore RY, Card JP (1994) Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 344:403–430

    Article  PubMed  CAS  Google Scholar 

  36. Morin LP, Blanchard J, Moore RY (1992) Intergeniculate leaflet and suprachiasmatic nucleus organization and connections in the golden hamster. Vis Neurosci 8:219–230

    Article  PubMed  CAS  Google Scholar 

  37. van Esseveldt KE, Lehman MN, Boer GJ (2000) The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Res Brain Res Rev 33:34–77

    Article  PubMed  Google Scholar 

  38. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci U S A 92:8734–8738

    Article  PubMed  CAS  Google Scholar 

  39. Masana MI, Dubocovich ML (2001) Melatonin receptor signaling: finding the path through the dark. Sci STKE 2001:PE39

    Article  PubMed  CAS  Google Scholar 

  40. Hakansson ML, Brown H, Ghilardi N, Skoda RC, Meister B (1998) Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J Neurosci 18:559–572

    PubMed  CAS  Google Scholar 

  41. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548

    Article  PubMed  CAS  Google Scholar 

  42. Unger J, McNeill TH, Moxley RT 3 rd, White M, Moss A, Livingston JN (1989) Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 31:143–157

    Article  PubMed  CAS  Google Scholar 

  43. Cutler DJ, Haraura M, Reed HE, Shen S, Sheward WJ, Morrison CF, Marston HM, Harmar AJ, Piggins HD (2003) The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro. Eur J NeuroSci 17:197–204

    Article  PubMed  Google Scholar 

  44. Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC, Kelly JS, Maywood ES, Hastings MH (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508

    Article  PubMed  CAS  Google Scholar 

  45. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476–483

    PubMed  CAS  Google Scholar 

  46. Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA, McMahon DG, Harmar AJ, Okamura H, Hastings MH (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16:599–605

    Article  PubMed  CAS  Google Scholar 

  47. Meijer JH, Rietveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671–707

    PubMed  CAS  Google Scholar 

  48. Daan S, Aschoff J (2001) The entrainment of circadian systems. In Handbook of behavioural neurobiology, Volume 12 Circadian clocks, J.S. Takahashi, F.W. Turek and R.Y. Moore, eds. Kluwer academics / Plenum publishers, New York

    Google Scholar 

  49. Mrosovsky N (1996) Locomotor activity and non-photic influences on circadian clocks. Biol Rev Camb Philos Soc 71:343–372

    Article  PubMed  CAS  Google Scholar 

  50. Armstrong SM, Cassone VM, Chesworth MJ, Redman JR, Short RV (1986) Synchronization of mammalian circadian rhythms by melatonin. J Neural Transm Suppl 21:375–394

    PubMed  CAS  Google Scholar 

  51. Redman J, Armstrong S, Ng KT (1983) Free-running activity rhythms in the rat: entrainment by melatonin. Science 219:1089–1091

    Article  PubMed  CAS  Google Scholar 

  52. Pitrosky B, Kirsch R, Malan A, Mocaer E, Pevet P (1999) Organization of rat circadian rhythms during daily infusion of melatonin or S20098, a melatonin agonist. Am J Physiol 277:R812–R828

    PubMed  CAS  Google Scholar 

  53. Van Reeth O, Turek FW (1990) Daily injections of triazolam induce long-term changes in hamster circadian period. Am J Physiol 259:R514–R520

    PubMed  Google Scholar 

  54. Cutrera RA, Kalsbeek A, Pevet P (1994) Specific destruction of the serotonergic afferents to the suprachiasmatic nuclei prevents triazolam-induced phase advances of hamster activity rhythms. Behav Brain Res 62:21–28

    Article  PubMed  CAS  Google Scholar 

  55. Marchant EG, Mistlberger RE (1997) Anticipation and entrainment to feeding time in intact and SCN-ablated C57BL/6j mice. Brain Res 765:273–282

    Article  PubMed  CAS  Google Scholar 

  56. Reebs SG, Mrosovsky N (1989) Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J Biol Rhythms 4:39–48

    Article  PubMed  CAS  Google Scholar 

  57. Bobrzynska KJ, Mrosovsky N (1998) Phase shifting by novelty-induced running: activity dose-response curves at different circadian times. J Comp Physiol [A] 182:251–258

    Article  CAS  Google Scholar 

  58. Miller JD, Morin LP, Schwartz WJ, Moore RY (1996) New insights into the mammalian circadian clock. Sleep 19:641–667

    PubMed  CAS  Google Scholar 

  59. Challet E, Pevet P, Lakhdar-Ghazal N, Malan A (1997) Ventromedial nuclei of the hypothalamus are involved in the phase advance of temperature and activity rhythms in food-restricted rats fed during daytime. Brain Res Bull 43:209–218

    Article  PubMed  CAS  Google Scholar 

  60. Challet E, Pevet P, Malan A (1996) Intergeniculate leaflet lesion and daily rhythms in food-restricted rats fed during daytime. Neurosci Lett 216:214–218

    Article  PubMed  CAS  Google Scholar 

  61. Schuhler S, Pitrosky B, Saboureau M, Lakhdar-Ghazal N, Pevet P (1999) Role of the thalamic intergeniculate leaflet and its 5-HT afferences in the chronobiological properties of 8-OH-DPAT and triazolam in syrian hamster. Brain Res 849:16–24

    Article  PubMed  CAS  Google Scholar 

  62. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  PubMed  CAS  Google Scholar 

  63. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  PubMed  CAS  Google Scholar 

  64. Shibata S, Liou SY, Ueki S, Oomura Y (1983) Effects of restricted feeding on single neuron activity of suprachiasmatic neurons in rat hypothalamic slice preparation. Physiol Behav 31:523–528

    Article  PubMed  CAS  Google Scholar 

  65. Mistlberger RE (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 18:171–195

    Article  PubMed  CAS  Google Scholar 

  66. Castillo MR, Hochstetler KJ, Tavernier RJ Jr, Greene DM, Bult-Ito A (2004) Entrainment of the master circadian clock by scheduled feeding. Am J Physiol Regul Integr Comp Physiol 287:R551–R555

    PubMed  CAS  Google Scholar 

  67. Abe H, Kida M, Tsuji K, Mano T (1989) Feeding cycles entrain circadian rhythms of locomotor activity in CS mice but not in C57BL/6J mice. Physiol Behav 45:397–401

    Article  PubMed  CAS  Google Scholar 

  68. Challet E, Malan A, Pevet P (1996) Daily hypocaloric feeding entrains circadian rhythms of wheel-running and body temperature in rats kept in constant darkness. Neurosci Lett 211:1–4

    Article  PubMed  CAS  Google Scholar 

  69. Mendoza J, Angeles-Castellanos M, Escobar C (2005) Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats. Behav Brain Res 158:133–142

    Article  PubMed  Google Scholar 

  70. Holloway WR Jr, Tsui HW, Grota LJ, Brown GM (1979) Melatonin and corticosterone regulation: feeding time or the light:dark cycle? Life Sci 25:1837–1842

    Article  PubMed  CAS  Google Scholar 

  71. Chik CL, Ho AK, Brown GM (1987) Effect of food restriction on 24-h serum and pineal melatonin content in male rats. Acta Endocrinol (Copenh) 115:507–513

    CAS  Google Scholar 

  72. Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, Bittman EL (1999) Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140:207–218

    Article  PubMed  CAS  Google Scholar 

  73. Sollars PJ, Kimble DP, Pickard GE (1995) Restoration of circadian behavior by anterior hypothalamic heterografts. J Neurosci 15:2109–2122

    PubMed  CAS  Google Scholar 

  74. Boer GJ, van Esseveldt LE, Rietveld WJ (1998) Cellular requirements of suprachiasmatic nucleus transplants for restoration of circadian rhythm. Chronobiol Int 15:551–566

    Article  PubMed  CAS  Google Scholar 

  75. Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68

    Article  PubMed  CAS  Google Scholar 

  76. Uhl GR, Reppert SM (1986) Suprachiasmatic nucleus vasopressin messenger RNA: circadian variation in normal and Brattleboro rats. Science 232:390–393

    Article  PubMed  CAS  Google Scholar 

  77. Cagampang FR, Yang J, Nakayama Y, Fukuhara C, Inouye ST (1994) Circadian variation of arginine-vasopressin messenger RNA in the rat suprachiasmatic nucleus. Brain Res Mol Brain Res 24:179–184

    Article  PubMed  CAS  Google Scholar 

  78. Tominaga K, Shinohara K, Otori Y, Fukuhara C, Inouye ST (1992) Circadian rhythms of vasopressin content in the suprachiasmatic nucleus of the rat. NeuroReport 3:809–812

    Article  PubMed  CAS  Google Scholar 

  79. Yamase K, Takahashi S, Nomura K, Haruta K, Kawashima S (1991) Circadian changes in arginine vasopressin level in the suprachiasmatic nuclei in the rat. Neurosci Lett 130:255–258

    Article  PubMed  CAS  Google Scholar 

  80. Mueller CR, Maire P, Schibler U (1990) DBP, a liver-enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally. Cell 61:279–291

    Article  PubMed  CAS  Google Scholar 

  81. Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U (1997) The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. Embo J 16:6762–6771

    Article  PubMed  CAS  Google Scholar 

  82. Ripperger JA, Shearman LP, Reppert SM, Schibler U (2000) CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 14:679–689

    PubMed  CAS  Google Scholar 

  83. Perreau-Lenz S, Pevet P, Buijs RM, Kalsbeek A (2004) The biological clock: the bodyguard of temporal homeostasis. Chronobiol Int 21:1–25

    Article  PubMed  Google Scholar 

  84. Swaab DF, Nijveldt F, Pool CW (1975) Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus. J Endocrinol 67:461–462

    Article  PubMed  CAS  Google Scholar 

  85. Vandesande F, Dierickx K, DeMey J (1975) Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei. Cell Tissue Res 156:377–380

    PubMed  CAS  Google Scholar 

  86. van den Pol AN, Tsujimoto KL (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience 15:1049–1086

    Article  PubMed  Google Scholar 

  87. Romijn HJ, Sluiter AA, Pool CW, Wortel J, Buijs RM (1996) Differences in colocalization between Fos and PHI, GRP, VIP and VP in neurons of the rat suprachiasmatic nucleus after a light stimulus during the phase delay versus the phase advance period of the night. J Comp Neurol 372:1–8

    Article  PubMed  CAS  Google Scholar 

  88. Ingram CD, Snowball RK, Mihai R (1996) Circadian rhythm of neuronal activity in suprachiasmatic nucleus slices from the vasopressin-deficient Brattleboro rat. Neuroscience 75:635–641

    Article  PubMed  CAS  Google Scholar 

  89. Mihai R, Juss TS, Ingram CD (1994) Suppression of suprachiasmatic nucleus neurone activity with a vasopressin receptor antagonist: possible role for endogenous vasopressin in circadian activity cycles in vitro. Neurosci Lett 179:95–99

    Article  PubMed  CAS  Google Scholar 

  90. Card JP, Brecha N, Karten HJ, Moore RY (1981) Immunocytochemical localization of vasoactive intestinal polypeptide-containing cells and processes in the suprachiasmatic nucleus of the rat: light and electron microscopic analysis. J Neurosci 1:1289–1303

    PubMed  CAS  Google Scholar 

  91. Card JP, Fitzpatrick-McElligott S, Gozes I, Baldino F Jr (1988) Localization of vasopressin-, vasoactive intestinal polypeptide-, peptide histidine isoleucine- and somatostatin-mRNA in rat suprachiasmatic nucleus. Cell Tissue Res 252:307–315

    Article  PubMed  CAS  Google Scholar 

  92. Kilcoyne MM, Hoffman DL, Zimmerman EA (1980) Immunocytochemical localization of angiotensin II and vasopressin in rat hypothalamus: evidence for production in the same neuron. Clin Sci (Lond) 59(Suppl. 6):57s–60s

    CAS  Google Scholar 

  93. Lind RW, Swanson LW, Ganten D (1985) Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study. Neuroendocrinology 40:2–24

    Article  PubMed  CAS  Google Scholar 

  94. Block CH, Santos RA, Brosnihan KB, Ferrario CM (1988) Immunocytochemical localization of angiotensin-(1–7) in the rat forebrain. Peptides 9:1395–1401

    Article  PubMed  CAS  Google Scholar 

  95. Park HT, Baek SY, Kim BS, Kim JB, Kim JJ (1993) Calcitonin gene-related peptide-like immunoreactive (CGRPI) elements in the circadian system of the mouse: an immunohistochemistry combined with retrograde transport study. Brain Res 629:335–341

    Article  PubMed  CAS  Google Scholar 

  96. Skofitsch G, Jacobowitz DM (1985) Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6:509–546

    Article  PubMed  CAS  Google Scholar 

  97. Mai JK, Kedziora O, Teckhaus L, Sofroniew MV (1991) Evidence for subdivisions in the human suprachiasmatic nucleus. J Comp Neurol 305:508–525

    Article  PubMed  CAS  Google Scholar 

  98. Silver R, Romero MT, Besmer HR, Leak R, Nunez JM, LeSauter J (1996) Calbindin-D28K cells in the hamster SCN express light-induced Fos. NeuroReport 7:1224–1228

    Article  PubMed  CAS  Google Scholar 

  99. Ikeda M, Allen CN (2003) Developmental changes in calbindin-D28k and calretinin expression in the mouse suprachiasmatic nucleus. Eur J NeuroSci 17:1111–1118

    Article  PubMed  Google Scholar 

  100. Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515

    Article  PubMed  CAS  Google Scholar 

  101. Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, Weaver DR, Leslie FM, Zhou QY (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417:405–410

    Article  PubMed  CAS  Google Scholar 

  102. Kraves S, Weitz CJ (2006) A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat Neurosci 9:212–219

    Article  PubMed  CAS  Google Scholar 

  103. Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC, Okamura H (1997) Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91:1043–1053

    Article  PubMed  CAS  Google Scholar 

  104. Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269

    Article  PubMed  CAS  Google Scholar 

  105. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–844

    Article  PubMed  CAS  Google Scholar 

  106. Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064

    Article  PubMed  CAS  Google Scholar 

  107. Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105:683–694

    Article  PubMed  CAS  Google Scholar 

  108. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102

    Article  PubMed  CAS  Google Scholar 

  109. Shibata S, Cassone VM, Moore RY (1989) Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 97:140–144

    Article  PubMed  CAS  Google Scholar 

  110. Stehle J, Vanecek J, Vollrath L (1989) Effects of melatonin on spontaneous electrical activity of neurons in rat suprachiasmatic nuclei: an in vitro iontophoretic study. J Neural Transm 78:173–177

    Article  PubMed  CAS  Google Scholar 

  111. McArthur AJ, Gillette MU, Prosser RA (1991) Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res 565:158–161

    Article  PubMed  CAS  Google Scholar 

  112. Poirel VJ, Boggio V, Dardente H, Pevet P, Masson-Pevet M, Gauer F (2003) Contrary to other non-photic cues, acute melatonin injection does not induce immediate changes of clock gene mRNA expression in the rat suprachiasmatic nuclei. Neuroscience 120:745–755

    Article  PubMed  CAS  Google Scholar 

  113. Agez L, Laurent V, Pevet P, Masson-Pevet M, Gauer F (2007) Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 144:522–530

    Article  PubMed  CAS  Google Scholar 

  114. Maywood ES, Mrosovsky N, Field MD, Hastings MH (1999) Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proc Natl Acad Sci U S A 96:15211–15216

    Article  PubMed  CAS  Google Scholar 

  115. Mendoza J, Graff C, Dardente H, Pevet P, Challet E (2005) Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci 25:1514–1522

    Article  PubMed  CAS  Google Scholar 

  116. Inouye ST, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 76:5962–5966

    Article  PubMed  CAS  Google Scholar 

  117. Green DJ, Gillette R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245:198–200

    Article  PubMed  CAS  Google Scholar 

  118. Shibata S, Oomura Y, Kita H, Hattori K (1982) Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res 247:154–158

    Article  PubMed  CAS  Google Scholar 

  119. Gillette MU, Reppert SM (1987) The hypothalamic suprachiasmatic nuclei: circadian patterns of vasopressin secretion and neuronal activity in vitro. Brain Res Bull 19:135–139

    Article  PubMed  CAS  Google Scholar 

  120. Nakamura W, Honma S, Shirakawa T, Honma K (2001) Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J NeuroSci 14:666–674

    Article  PubMed  CAS  Google Scholar 

  121. Albus H, Bonnefont X, Chaves I, Yasui A, Doczy J, van der Horst GT, Meijer JH (2002) Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei. Curr Biol 12:1130–1133

    Article  PubMed  CAS  Google Scholar 

  122. Quintero JE, Kuhlman SJ, McMahon DG (2003) The biological clock nucleus: a multiphasic oscillator network regulated by light. J Neurosci 23:8070–8076

    PubMed  CAS  Google Scholar 

  123. Watts AG, Swanson LW (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258:230–252

    Article  PubMed  CAS  Google Scholar 

  124. Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258:204–229

    Article  PubMed  CAS  Google Scholar 

  125. Kalsbeek A, Rikkers M, Vivien-Roels B, Pevet P (1993) Vasopressin and vasoactive intestinal peptide infused in the paraventricular nucleus of the hypothalamus elevate plasma melatonin levels. J Pineal Res 15:46–52

    Article  PubMed  CAS  Google Scholar 

  126. Saeb-Parsy K, Lombardelli S, Khan FZ, McDowall K, Au-Yong IT, Dyball RE (2000) Neural connections of hypothalamic neuroendocrine nuclei in the rat. J Neuroendocrinol 12:635–648

    Article  PubMed  CAS  Google Scholar 

  127. Buijs RM, Hermes MH, Kalsbeek A (1998) The suprachiasmatic nucleus–paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system. Prog Brain Res 119:365–382

    Article  PubMed  CAS  Google Scholar 

  128. Buijs RM, van Eden CG, Goncharuk VD, Kalsbeek A (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177:17–26

    Article  PubMed  CAS  Google Scholar 

  129. Luiten PG, ter Horst GJ, Steffens AB (1987) The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol 28:1–54

    Article  PubMed  CAS  Google Scholar 

  130. Phillipson OT, Griffiths AC (1985) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16:275–296

    Article  PubMed  CAS  Google Scholar 

  131. Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228

    Article  PubMed  CAS  Google Scholar 

  132. Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55:325–395

    Article  PubMed  CAS  Google Scholar 

  133. Larsen PJ (1999) Tracing autonomic innervation of the rat pineal gland using viral transneuronal tracing. Microsc Res Tech 46:296–304

    Article  PubMed  CAS  Google Scholar 

  134. Teclemariam-Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM (1999) Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J Comp Neurol 406:171–182

    Article  PubMed  CAS  Google Scholar 

  135. Kalsbeek A, Garidou ML, Palm IF, Van Der Vliet J, Simonneaux V, Pevet P, Buijs RM (2000) Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur J NeuroSci 12:3146–3154

    Article  PubMed  CAS  Google Scholar 

  136. Garidou ML, Bartol I, Calgari C, Pevet P, Simonneaux V (2001) In vivo observation of a non-noradrenergic regulation of arylalkylamine N-acetyltransferase gene expression in the rat pineal complex. Neuroscience 105:721–729

    Article  PubMed  CAS  Google Scholar 

  137. Perreau-Lenz S, Kalsbeek A, Garidou ML, Wortel J, van der Vliet J, van Heijningen C, Simonneaux V, Pevet P, Buijs RM (2003) Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms. Eur J NeuroSci 17:221–228

    Article  PubMed  Google Scholar 

  138. Kalsbeek A, Buijs RM (2002) Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res 309:109–118

    Article  PubMed  CAS  Google Scholar 

  139. La Fleur SE, Kalsbeek A, Wortel J, Buijs RM (1999) A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. J Neuroendocrinol 11:643–652

    Article  PubMed  Google Scholar 

  140. Kalsbeek A, Ruiter M, La Fleur SE, Cailotto C, Kreier F, Buijs RM (2006) The hypothalamic clock and its control of glucose homeostasis. Prog Brain Res 153:283–307

    Article  PubMed  CAS  Google Scholar 

  141. Kalsbeek A, Foppen E, Schalij I, Van Heijningen C, van der Vliet J, Fliers E, Buijs RM (2008) Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS One 3:e3194

    Article  PubMed  CAS  Google Scholar 

  142. Escobar C, Diaz-Munoz M, Encinas F, Aguilar-Roblero R (1998) Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am J Physiol 274:R1309–R1316

    PubMed  CAS  Google Scholar 

  143. Satinoff E, Prosser RA (1988) Suprachiasmatic nuclear lesions eliminate circadian rhythms of drinking and activity, but not of body temperature, in male rats. J Biol Rhythms 3:1–22

    Article  PubMed  CAS  Google Scholar 

  144. Wachulec M, Li H, Tanaka H, Peloso E, Satinoff E (1997) Suprachiasmatic nuclei lesions do not eliminate homeostatic thermoregulatory responses in rats. J Biol Rhythms 12:226–234

    Article  PubMed  CAS  Google Scholar 

  145. Osborne AR, Refinetti R (1995) Effects of hypothalamic lesions on the body temperature rhythm of the golden hamster. NeuroReport 6:2187–2192

    Article  PubMed  CAS  Google Scholar 

  146. Rosenwasser AM, Boulos Z, Terman M (1981) Circadian organization of food intake and meal patterns in the rat. Physiol Behav 27:33–39

    Article  PubMed  CAS  Google Scholar 

  147. Clarke JD, Coleman GJ (1986) Persistent meal-associated rhythms in SCN-lesioned rats. Physiol Behav 36:105–113

    Article  PubMed  CAS  Google Scholar 

  148. Meijer JH (2001) Photic entrainment in mammals. In Handbook of behavioural neurobiology, Volume 12 Circadian clocks, J.S. Takahashi, F.W. Turek and R.Y. Moore, eds. Kluwer academic / Plenum publishers, New York

    Google Scholar 

  149. Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272:419–421

    Article  PubMed  CAS  Google Scholar 

  150. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653

    Article  PubMed  CAS  Google Scholar 

  151. Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N (1998) Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun 253:199–203

    Article  PubMed  CAS  Google Scholar 

  152. Kamphuis W, Cailotto C, Dijk F, Bergen A, Buijs RM (2005) Circadian expression of clock genes and clock-controlled genes in the rat retina. Biochem Biophys Res Commun 330:18–26

    Article  PubMed  CAS  Google Scholar 

  153. Ruan GX, Zhang DQ, Zhou T, Yamazaki S, McMahon DG (2006) Circadian organization of the mammalian retina. Proc Natl Acad Sci U S A 103:9703–9708

    Article  PubMed  CAS  Google Scholar 

  154. Granados-Fuentes D, Tseng A, Herzog ED (2006) A circadian clock in the olfactory bulb controls olfactory responsivity. J Neurosci 26:12219–12225

    Article  PubMed  CAS  Google Scholar 

  155. Stephan FK, Swann JM, Sisk CL (1979) Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behav Neural Biol 25:545–554

    Article  PubMed  CAS  Google Scholar 

  156. Mistlberger RE, Rechtschaffen A (1984) Recovery of anticipatory activity to restricted feeding in rats with ventromedial hypothalamic lesions. Physiol Behav 33:227–235

    Article  PubMed  CAS  Google Scholar 

  157. Boulos Z, Rosenwasser AM, Terman M (1980) Feeding schedules and the circadian organization of behavior in the rat. Behav Brain Res 1:39–65

    Article  PubMed  CAS  Google Scholar 

  158. Nelson W, Scheving L, Halberg F (1975) Circadian rhythms in mice fed a single daily meal at different stages of lighting regimen. J Nutr 105:171–184

    PubMed  CAS  Google Scholar 

  159. Recabarren MP, Valdes JL, Farias P, Seron-Ferre M, Torrealba F (2005) Differential effects of infralimbic cortical lesions on temperature and locomotor activity responses to feeding in rats. Neuroscience 134:1413–1422

    Article  PubMed  CAS  Google Scholar 

  160. Krieger DT (1974) New studies on the experimental alteration of the circadian periodicity of plasma corticosteroid levels in the rat. Chronobiologia 1(Suppl 1):82–90

    PubMed  Google Scholar 

  161. Feillet CA, Mendoza J, Pevet P, Challet E (2008) Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats. Eur J NeuroSci 28:2451–2458

    Article  PubMed  Google Scholar 

  162. Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal F Jr, Krueger JM (2004) Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol 287:R1071–R1079

    PubMed  CAS  Google Scholar 

  163. Martinez-Merlos MT, Angeles-Castellanos M, Diaz-Munoz M, Aguilar-Roblero R, Mendoza J, Escobar C (2004) Dissociation between adipose tissue signals, behavior and the food-entrained oscillator. J Endocrinol 181:53–63

    Article  PubMed  CAS  Google Scholar 

  164. Diaz-Munoz M, Vazquez-Martinez O, Aguilar-Roblero R, Escobar C (2000) Anticipatory changes in liver metabolism and entrainment of insulin, glucagon, and corticosterone in food-restricted rats. Am J Physiol Regul Integr Comp Physiol 279:R2048–R2056

    PubMed  CAS  Google Scholar 

  165. Honma KI, Honma S, Hiroshige T (1983) Critical role of food amount for prefeeding corticosterone peak in rats. Am J Physiol 245:R339–R344

    PubMed  CAS  Google Scholar 

  166. Stephan FK (1983) Circadian rhythms in the rat: constant darkness, entrainment to T cycles and to skeleton photoperiods. Physiol Behav 30:451–462

    Article  PubMed  CAS  Google Scholar 

  167. Coleman GJ, Harper S, Clarke JD, Armstrong S (1982) Evidence for a separate meal-associated oscillator in the rat. Physiol Behav 29:107–115

    Article  PubMed  CAS  Google Scholar 

  168. Ruis JF, Talamini LM, Buys JP, Rietveld WJ (1989) Effects of time of feeding on recovery of food-entrained rhythms during subsequent fasting in SCN-lesioned rats. Physiol Behav 46:857–866

    Article  PubMed  CAS  Google Scholar 

  169. Stephan FK (1984) Phase shifts of circadian rhythms in activity entrained to food access. Physiol Behav 32:663–671

    Article  PubMed  CAS  Google Scholar 

  170. Stephan FK (1981) Limits of entrainment to periodic feeding in rats with suprachiasmatic lesions. J Comp Physiol [A] 143:401–410

    Article  Google Scholar 

  171. Challet E, Pevet P, Vivien-Roels B, Malan A (1997) Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime. J Biol Rhythms 12:65–79

    Article  PubMed  CAS  Google Scholar 

  172. Abe H, Honma S, Honma K (2007) Daily restricted feeding resets the circadian clock in the suprachiasmatic nucleus of CS mice. Am J Physiol Regul Integr Comp Physiol 292:R607–R615

    PubMed  CAS  Google Scholar 

  173. Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythms 17:284–292

    PubMed  Google Scholar 

  174. Rosenwasser AM, Schulkin J, Adler NT (1985) Circadian wheel-running activity of rats under schedules of limited daily access to salt. Chronobiol Int 2:115–119

    Article  PubMed  CAS  Google Scholar 

  175. Mistlberger RE, Houpt TA, Moore-Ede MC (1990) Food-anticipatory rhythms under 24-hour schedules of limited access to single macronutrients. J Biol Rhythms 5:35–46

    Article  PubMed  CAS  Google Scholar 

  176. Mistlberger RE, Mumby DG (1992) The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies. Behav Brain Res 47:159–168

    Article  PubMed  CAS  Google Scholar 

  177. Mistlberger RE (1993) Effects of scheduled food and water access on circadian rhythms of hamsters in constant light, dark, and light:dark. Physiol Behav 53:509–516

    Article  PubMed  CAS  Google Scholar 

  178. Mistlberger R, Rusak B (1987) Palatable daily meals entrain anticipatory activity rhythms in free-feeding rats: dependence on meal size and nutrient content. Physiol Behav 41:219–226

    Article  PubMed  CAS  Google Scholar 

  179. Mendoza J, Angeles-Castellanos M, Escobar C (2005) A daily palatable meal without food deprivation entrains the suprachiasmatic nucleus of rats. Eur J NeuroSci 22:2855–2862

    Article  PubMed  Google Scholar 

  180. Yoshihara T, Honma S, Mitome M, Honma K (1997) Independence of feeding-associated circadian rhythm from light conditions and meal intervals in SCN lesioned rats. Neurosci Lett 222:95–98

    Article  PubMed  CAS  Google Scholar 

  181. Stephan FK (1986) Coupling between feeding- and light-entrainable circadian pacemakers in the rat. Physiol Behav 38:537–544

    Article  PubMed  CAS  Google Scholar 

  182. Pitts S, Perone E, Silver R (2003) Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. Am J Physiol Regul Integr Comp Physiol 285:R57–R67

    PubMed  CAS  Google Scholar 

  183. Reick M, Garcia JA, Dudley C, McKnight SL (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293:506–509

    Article  PubMed  CAS  Google Scholar 

  184. Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S, McKnight SL (2003) Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301:379–383

    Article  PubMed  CAS  Google Scholar 

  185. Iijima M, Yamaguchi S, van der Horst GT, Bonnefont X, Okamura H, Shibata S (2005) Altered food-anticipatory activity rhythm in Cryptochrome-deficient mice. Neurosci Res 52:166–173

    Article  PubMed  CAS  Google Scholar 

  186. Feillet CA, Ripperger JA, Magnone MC, Dulloo A, Albrecht U, Challet E (2006) Lack of food anticipation in Per2 mutant mice. Curr Biol 16:2016–2022

    Article  PubMed  CAS  Google Scholar 

  187. Fuller PM, Lu J, Saper CB (2008) Differential rescue of light- and food-entrainable circadian rhythms. Science 320:1074–1077

    Article  PubMed  CAS  Google Scholar 

  188. Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278

    Article  PubMed  CAS  Google Scholar 

  189. Escobar C, Mendoza JY, Salazar-Juarez A, Avila J, Hernandez-Munoz R, Diaz-Munoz M, Aguilar-Roblero R (2002) Rats made cirrhotic by chronic CCl4 treatment still exhibit anticipatory activity to a restricted feeding schedule. Chronobiol Int 19:1073–1086

    Article  PubMed  CAS  Google Scholar 

  190. Davidson AJ, Stokkan KA, Yamazaki S, Menaker M (2002) Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats. Physiol Behav 76:21–26

    Article  PubMed  CAS  Google Scholar 

  191. Davidson AJ, Poole AS, Yamazaki S, Menaker M (2003) Is the food-entrainable circadian oscillator in the digestive system? Genes Brain Behav 2:32–39

    Article  PubMed  CAS  Google Scholar 

  192. Miki H, Yano M, Iwanaga H, Tsujinaka T, Nakayama M, Kobayashi M, Oishi K, Shiozaki H, Ishida N, Nagai K, Monden M (2003) Total parenteral nutrition entrains the central and peripheral circadian clocks. NeuroReport 14:1457–1461

    Article  PubMed  Google Scholar 

  193. Moreira AC, Krieger DT (1982) The effects of subdiaphragmatic vagotomy on circadian corticosterone rhythmicity in rats with continuous or restricted food access. Physiol Behav 28:787–790

    Article  PubMed  CAS  Google Scholar 

  194. Comperatore CA, Stephan FK (1990) Effects of vagotomy on entrainment of activity rhythms to food access. Physiol Behav 47:671–678

    Article  PubMed  CAS  Google Scholar 

  195. Davidson AJ, Stephan FK (1998) Circadian food anticipation persists in capsaicin deafferented rats. J Biol Rhythms 13:422–429

    PubMed  CAS  Google Scholar 

  196. Davidson AJ, Aragona BJ, Werner RM, Schroeder E, Smith JC, Stephan FK (2001) Food-anticipatory activity persists after olfactory bulb ablation in the rat. Physiol Behav 72:231–235

    Article  PubMed  CAS  Google Scholar 

  197. Honma S, Honma K, Nagasaka T, Hiroshige T (1987) The ventromedial hypothalamic nucleus is not essential for the prefeeding corticosterone peak in rats under restricted daily feeding. Physiol Behav 39:211–215

    Article  PubMed  CAS  Google Scholar 

  198. Challet E, Pevet P, Malan A (1997) Lesion of the serotonergic terminals in the suprachiasmatic nuclei limits the phase advance of body temperature rhythm in food-restricted rats fed during daytime. J Biol Rhythms 12:235–244

    Article  PubMed  CAS  Google Scholar 

  199. Mistlberger RE, Rusak B (1988) Food anticipatory circadian rhythms in rats with paraventricular and lateral hypothalamic ablations. J Biol Rhythms 3:277–291

    Article  Google Scholar 

  200. Mistlberger RE, Antle MC (1999) Neonatal monosodium glutamate alters circadian organization of feeding, food anticipatory activity and photic masking in the rat. Brain Res 842:73–83

    Article  PubMed  CAS  Google Scholar 

  201. Landry GJ, Yamakawa GR, Mistlberger RE (2007) Robust food anticipatory circadian rhythms in rats with complete ablation of the thalamic paraventricular nucleus. Brain Res 1141:108–118

    Article  PubMed  CAS  Google Scholar 

  202. Davidson AJ, Aragona BJ, Houpt TA, Stephan FK (2001) Persistence of meal-entrained circadian rhythms following area postrema lesions in the rat. Physiol Behav 74:349–354

    Article  PubMed  CAS  Google Scholar 

  203. Davidson AJ, Cappendijk SL, Stephan FK (2000) Feeding-entrained circadian rhythms are attenuated by lesions of the parabrachial region in rats. Am J Physiol Regul Integr Comp Physiol 278:R1296–R1304

    PubMed  CAS  Google Scholar 

  204. Davidson AJ, Stephan FK (1999) Feeding-entrained circadian rhythms in hypophysectomized rats with suprachiasmatic nucleus lesions. Am J Physiol 277:R1376–R1384

    PubMed  CAS  Google Scholar 

  205. Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9:398–407

    Article  PubMed  CAS  Google Scholar 

  206. Landry GJ, Simon MM, Webb IC, Mistlberger RE (2006) Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am J Physiol Regul Integr Comp Physiol 290:R1527–R1534

    PubMed  CAS  Google Scholar 

  207. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A 103:12150–12155

    Article  PubMed  CAS  Google Scholar 

  208. Mistlberger RE, Yamazaki S, Pendergast JS, Landry GJ, Takumi T, Nakamura W (2008) Comment on “Differential rescue of light- and food-entrainable circadian rhythms”. Science 322:675 author reply 675

    Article  PubMed  CAS  Google Scholar 

  209. Angeles-Castellanos M, Aguilar-Roblero R, Escobar C (2004) c-Fos expression in hypothalamic nuclei of food-entrained rats. Am J Physiol Regul Integr Comp Physiol 286:R158–R165

    PubMed  CAS  Google Scholar 

  210. Angeles-Castellanos M, Mendoza J, Diaz-Munoz M, Escobar C (2005) Food entrainment modifies the c-Fos expression pattern in brain stem nuclei of rats. Am J Physiol Regul Integr Comp Physiol 288:R678–R684

    PubMed  CAS  Google Scholar 

  211. Inzunza O, Seron-Ferre MJ, Bravo H, Torrealba F (2000) Tuberomammillary nucleus activation anticipates feeding under a restricted schedule in rats. Neurosci Lett 293:139–142

    Article  PubMed  CAS  Google Scholar 

  212. de Vasconcelos AP, Bartol-Munier I, Feillet CA, Gourmelen S, Pevet P, Challet E (2006) Modifications of local cerebral glucose utilization during circadian food-anticipatory activity. Neuroscience 139:741–748

    Article  PubMed  CAS  Google Scholar 

  213. Beaule C, Amir S (1999) Photic entrainment and induction of immediate-early genes within the rat circadian system. Brain Res 821:95–100

    Article  PubMed  CAS  Google Scholar 

  214. Edelstein K, Beaule C, D’Abramo R, Amir S (2000) Expression profiles of JunB and c-Fos proteins in the rat circadian system. Brain Res 870:54–65

    Article  PubMed  CAS  Google Scholar 

  215. Janik D, Mrosovsky N (1992) Gene expression in the geniculate induced by a nonphotic circadian phase shifting stimulus. NeuroReport 3:575–578

    Article  PubMed  CAS  Google Scholar 

  216. Mikkelsen JD, Vrang N, Mrosovsky N (1998) Expression of Fos in the circadian system following nonphotic stimulation. Brain Res Bull 47:367–376

    Article  PubMed  CAS  Google Scholar 

  217. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

    Article  PubMed  CAS  Google Scholar 

  218. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347

    Article  PubMed  CAS  Google Scholar 

  219. Vujovic N, Davidson AJ, Menaker M (2008) Sympathetic input modulates, but does not determine, phase of peripheral circadian oscillators. Am J Physiol Regul Integr Comp Physiol 295:R355–R360

    PubMed  CAS  Google Scholar 

  220. Iijima M, Nikaido T, Akiyama M, Moriya T, Shibata S (2002) Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse. Eur J NeuroSci 16:921–929

    Article  PubMed  Google Scholar 

  221. Waddington Lamont E, Harbour VL, Barry-Shaw J, Renteria Diaz L, Robinson B, Stewart J, Amir S (2007) Restricted access to food, but not sucrose, saccharine, or salt, synchronizes the expression of Period2 protein in the limbic forebrain. Neuroscience 144:402–411

    Article  PubMed  CAS  Google Scholar 

  222. Wasielewski JA, Holloway FA (2001) Alcohol’s interactions with circadian rhythms. A focus on body temperature. Alcohol Res Health 25:94–100

    PubMed  CAS  Google Scholar 

  223. Jones EM, Knutson D, Haines D (2003) Common problems in patients recovering from chemical dependency. Am Fam Physician 68:1971–1978

    PubMed  Google Scholar 

  224. Morgan PT, Pace-Schott EF, Sahul ZH, Coric V, Stickgold R, Malison RT (2006) Sleep, sleep-dependent procedural learning and vigilance in chronic cocaine users: Evidence for occult insomnia. Drug Alcohol Depend 82:238–249

    Article  PubMed  CAS  Google Scholar 

  225. Raymond RC, Warren M, Morris RW, Leikin JB (1992) Periodicity of presentations of drugs of abuse and overdose in an emergency department. J Toxicol Clin Toxicol 30:467–478

    Article  PubMed  CAS  Google Scholar 

  226. Bunney WE, Bunney BG (2000) Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology 22:335–345

    Article  PubMed  CAS  Google Scholar 

  227. Kandel DB, Huang FY, Davies M (2001) Comorbidity between patterns of substance use dependence and psychiatric syndromes. Drug Alcohol Depend 64:233–241

    Article  PubMed  CAS  Google Scholar 

  228. Grandin LD, Alloy LB, Abramson LY (2006) The social zeitgeber theory, circadian rhythms, and mood disorders: review and evaluation. Clin Psychol Rev 26:679–694

    Article  PubMed  Google Scholar 

  229. McGrath RE, Yahia M (1993) Preliminary data on seasonally related alcohol dependence. J Clin Psychiatry 54:260–262

    PubMed  CAS  Google Scholar 

  230. Wirz-Justice A, Richter R (1979) Seasonality in biochemical determinations: a source of variance and a clue to the temporal incidence of affective illness. Psychiatry Res 1:53–60

    Article  PubMed  CAS  Google Scholar 

  231. Shibley HL, Malcolm RJ, Veatch LM (2008) Adolescents with insomnia and substance abuse: consequences and comorbidities. J Psychiatr Pract 14:146–153

    Article  PubMed  Google Scholar 

  232. Rosenwasser AM, Fecteau ME, Logan RW, Reed JD, Cotter SJ, Seggio JA (2005) Circadian activity rhythms in selectively bred ethanol-preferring and nonpreferring rats. Alcohol 36:69–81

    Article  PubMed  CAS  Google Scholar 

  233. Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159

    Article  PubMed  CAS  Google Scholar 

  234. LŸscher C (2007) Drugs of abuse. In: Katzung BG (ed) Basic and clinical pharmacology, 10th edn. New York, McGraw Hill, pp 511–525

    Google Scholar 

  235. Baird TJ, Gauvin D (2000) Characterization of cocaine self-administration and pharmacokinetics as a function of time of day in the rat. Pharmacol Biochem Behav 65:289–299

    Article  PubMed  CAS  Google Scholar 

  236. Abarca C, Albrecht U, Spanagel R (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci U S A 99:9026–9030

    Article  PubMed  CAS  Google Scholar 

  237. Andretic R, Chaney S, Hirsh J (1999) Requirement of circadian genes for cocaine sensitization in Drosophila. Science 285:1066–1068

    Article  PubMed  CAS  Google Scholar 

  238. Yuferov V, Kroslak T, Laforge KS, Zhou Y, Ho A, Kreek MJ (2003) Differential gene expression in the rat caudate putamen after “binge” cocaine administration: advantage of triplicate microarray analysis. Synapse 48:157–169

    Article  PubMed  CAS  Google Scholar 

  239. Sanchis-Segura C, Spanagel R (2006) Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 11:2–38

    Article  PubMed  Google Scholar 

  240. Uz T, Ahmed R, Akhisaroglu M, Kurtuncu M, Imbesi M, Dirim Arslan A, Manev H (2005) Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience 134:1309–1316

    Article  PubMed  CAS  Google Scholar 

  241. Andretic R, Hirsh J (2000) Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc Natl Acad Sci U S A 97:1873–1878

    Article  PubMed  CAS  Google Scholar 

  242. Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–40

    Article  PubMed  Google Scholar 

  243. Doi M, Yujnovsky I, Hirayama J, Malerba M, Tirotta E, Sassone-Corsi P, Borrelli E (2006) Impaired light masking in dopamine D2 receptor-null mice. Nat Neurosci 9:732–734

    Article  PubMed  CAS  Google Scholar 

  244. Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc Natl Acad Sci U S A 103:6386–6391

    Article  PubMed  CAS  Google Scholar 

  245. McClung CA, Sidiropoulou K, Vitaterna M, Takahashi JS, White FJ, Cooper DC, Nestler EJ (2005) Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci U S A 102:9377–9381

    Article  PubMed  CAS  Google Scholar 

  246. Roybal K, Theobold D, Graham A, Dinieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J, Oehrlein N, Birnbaum S, Vitaterna MH, Orsulak P, Takahashi JS, Nestler EJ, Carlezon WA Jr, McClung CA (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A 104(15):6406–6411

    Article  PubMed  CAS  Google Scholar 

  247. Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, Brunk I, Spanagel R, Ahnert-Hilger G, Meijer JH, Albrecht U (2008) Regulation of monoamine oxidase a by circadian-clock components implies clock influence on mood. Curr Biol 18:678–683

    Article  PubMed  CAS  Google Scholar 

  248. Partonen T, Treutlein J, Alpman A, Frank J, Johansson C, Depner M, Aron L, Rietschel M, Wellek S, Soronen P, Paunio T, Koch A, Chen P, Lathrop M, Adolfsson R, Persson ML, Kasper S, Schalling M, Peltonen L, Schumann G (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 39:229–238

    Article  PubMed  CAS  Google Scholar 

  249. Honma K, Honma S, Hiroshige T (1986) Disorganization of the rat activity rhythm by chronic treatment with methamphetamine. Physiol Behav 38:687–695

    Article  PubMed  CAS  Google Scholar 

  250. Honma K, Honma S, Hiroshige T (1987) Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine. Physiol Behav 40:767–774

    Article  PubMed  CAS  Google Scholar 

  251. Masubuchi S, Honma S, Abe H, Nakamura W, Honma K (2001) Circadian activity rhythm in methamphetamine-treated Clock mutant mice. Eur J NeuroSci 14:1177–1180

    Article  PubMed  CAS  Google Scholar 

  252. Honma S, Yasuda T, Yasui A, van der Horst GT, Honma K (2008) Circadian behavioral rhythms in Cry1/Cry2 double-deficient mice induced by methamphetamine. J Biol Rhythms 23:91–94

    Article  PubMed  CAS  Google Scholar 

  253. Tataroglu O, Davidson AJ, Benvenuto LJ, Menaker M (2006) The methamphetamine-sensitive circadian oscillator (MASCO) in mice. J Biol Rhythms 21:185–194

    Article  PubMed  CAS  Google Scholar 

  254. Nikaido T, Akiyama M, Moriya T, Shibata S (2001) Sensitized increase of period gene expression in the mouse caudate/putamen caused by repeated injection of methamphetamine. Mol Pharmacol 59:894–900

    PubMed  CAS  Google Scholar 

  255. Yamamoto H, Imai K, Takamatsu Y, Kamegaya E, Kishida M, Hagino Y, Hara Y, Shimada K, Yamamoto T, Sora I, Koga H, Ikeda K (2005) Methamphetamine modulation of gene expression in the brain: analysis using customized cDNA microarray system with the mouse homologues of KIAA genes. Brain Res Mol Brain Res 137:40–46

    Article  PubMed  CAS  Google Scholar 

  256. Brower KJ (2001) Alcohol’s effects on sleep in alcoholics. Alcohol Res Health 25:110–125

    PubMed  CAS  Google Scholar 

  257. Devaney M, Graham D, Greeley J (2003) Circadian variation of the acute and delayed response to alcohol: investigation of core body temperature variations in humans. Pharmacol Biochem Behav 75:881–887

    Article  PubMed  CAS  Google Scholar 

  258. Fonzi S, Solinas GP, Costelli P, Parodi C, Murialdo G, Bo P, Albergati A, Montalbetti L, Savoldi F, Polleri A (1994) Melatonin and cortisol circadian secretion during ethanol withdrawal in chronic alcoholics. Chronobiologia 21:109–112

    PubMed  CAS  Google Scholar 

  259. Imatoh N, Nakazawa Y, Ohshima H, Ishibashi M, Yokoyama T (1986) Circadian rhythm of REM sleep of chronic alcoholics during alcohol withdrawal. Drug Alcohol Depend 18:77–85

    Article  PubMed  CAS  Google Scholar 

  260. Kawano Y, Pontes CS, Abe H, Takishita S, Omae T (2002) Effects of alcohol consumption and restriction on home blood pressure in hypertensive patients: serial changes in the morning and evening records. Clin Exp Hypertens 24:33–39

    Article  PubMed  Google Scholar 

  261. Liu Y, Higuchi S, Motohashi Y (2000) Time-of-day effects of ethanol consumption on EEG topography and cognitive event-related potential in adult males. J Physiol Anthropol Appl Human Sci 19:249–254

    Article  PubMed  CAS  Google Scholar 

  262. Rosenwasser AM, Wirz-Justice A (1997) Circadian rhythms and depression: clinical and experimental models. In: Redfern PH, Lemmer B (eds) Physiology and Pharmacology of Biological Rhythms. Berlin, Springer, pp 457–486

    Google Scholar 

  263. Driessen M, Meier S, Hill A, Wetterling T, Lange W, Junghanns K (2001) The course of anxiety, depression and drinking behaviours after completed detoxification in alcoholics with and without comorbid anxiety and depressive disorders. Alcohol Alcohol 36:249–255

    PubMed  CAS  Google Scholar 

  264. Drummond SP, Gillin JC, Smith TL, DeModena A (1998) The sleep of abstinent pure primary alcoholic patients: natural course and relationship to relapse. Alcohol Clin Exp Res 22:1796–1802

    PubMed  CAS  Google Scholar 

  265. Landolt HP, Gillin JC (2001) Sleep abnormalities during abstinence in alcohol-dependent patients. Aetiology and management. CNS Drugs 15:413–425

    Article  CAS  Google Scholar 

  266. Rosenwasser AM, Fecteau ME, Logan RW (2005) Effects of ethanol intake and ethanol withdrawal on free-running circadian activity rhythms in rats. Physiol Behav 84:537–542

    Article  PubMed  CAS  Google Scholar 

  267. Chen CP, Kuhn P, Advis JP, Sarkar DK (2004) Chronic ethanol consumption impairs the circadian rhythm of pro-opiomelanocortin and period genes mRNA expression in the hypothalamus of the male rat. J Neurochem 88:1547–1554

    Article  PubMed  CAS  Google Scholar 

  268. Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400:169–173

    Article  PubMed  CAS  Google Scholar 

  269. Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, Lascorz J, Depner M, Holzberg D, Soyka M, Schreiber S, Matsuda F, Lathrop M, Schumann G, Albrecht U (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11:35–42

    Article  PubMed  CAS  Google Scholar 

  270. Mann K, Lehert P, Morgan MY (2004) The efficacy of acamprosate in the maintenance of abstinence in alcohol-dependent individuals: results of a meta-analysis. Alcohol Clin Exp Res 28:51–63

    Article  PubMed  Google Scholar 

  271. Trinkoff AM, Storr CL (1998) Work schedule characteristics and substance use in nurses. Am J Ind Med 34:266–271

    Article  PubMed  CAS  Google Scholar 

  272. Rogers HL, Reilly SM (2002) A survey of the health experiences of international business travelers. Part One – physiological aspects. Aaohn J 50:449–459

    PubMed  Google Scholar 

  273. Pelissier AL, Gantenbein M, Bruguerolle B (1998) Nicotine-induced perturbations on heart rate, body temperature and locomotor activity daily rhythms in rats. J Pharm Pharmacol 50:929–934

    PubMed  CAS  Google Scholar 

  274. Yugar-Toledo JC, Ferreira-Melo SE, Sabha M, Nogueira EA, Coelho OR, Consolin Colombo FM, Irigoyen MC, Moreno H Jr (2005) Blood pressure circadian rhythm and endothelial function in heavy smokers: acute effects of transdermal nicotine. J Clin Hypertens (Greenwich) 7:721–728

    Article  CAS  Google Scholar 

  275. Wittmann M, Dinich J, Merrow M, Roenneberg T (2006) Social jetlag: misalignment of biological and social time. Chronobiol Int 23:497–509

    Article  PubMed  Google Scholar 

  276. McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nat Neurosci 3:587–592

    Article  PubMed  CAS  Google Scholar 

  277. Turek FW, Losee-Olson S (1986) A benzodiazepine used in the treatment of insomnia phase-shifts the mammalian circadian clock. Nature 321:167–168

    Article  PubMed  CAS  Google Scholar 

  278. Wee BE, Turek FW (1989) Midazolam, a short-acting benzodiazepine, resets the circadian clock of the hamster. Pharmacol Biochem Behav 32:901–906

    Article  PubMed  CAS  Google Scholar 

  279. Copinschi G, Van Onderbergen A, L’Hermite-Baleriaux M, Szyper M, Caufriez A, Bosson D, L’Hermite M, Robyn C, Turek FW, Van Cauter E (1990) Effects of the short-acting benzodiazepine triazolam, taken at bedtime, on circadian and sleep-related hormonal profiles in normal men. Sleep 13:232–244

    PubMed  CAS  Google Scholar 

  280. Akiyama M, Kirihara T, Takahashi S, Minami Y, Yoshinobu Y, Moriya T, Shibata S (1999) Modulation of mPer1 gene expression by anxiolytic drugs in mouse cerebellum. Br J Pharmacol 128:1616–1622

    Article  PubMed  CAS  Google Scholar 

  281. Pallier PN, Maywood ES, Zheng Z, Chesham JE, Inyushkin AN, Dyball R, Hastings MH, Morton AJ (2007) Pharmacological imposition of sleep slows cognitive decline and reverses dysregulation of circadian gene expression in a transgenic mouse model of Huntington’s disease. J Neurosci 27:7869–7878

    Article  PubMed  CAS  Google Scholar 

  282. Willoughby JO, Medvedev A (1996) Opioid receptor activation resets the hypothalamic clock generating growth hormone secretory bursts in the rat. J Endocrinol 148:149–155

    Article  PubMed  CAS  Google Scholar 

  283. Vansteensel MJ, Magnone MC, van Oosterhout F, Baeriswyl S, Albrecht U, Albus H, Dahan A, Meijer JH (2005) The opioid fentanyl affects light input, electrical activity and Per gene expression in the hamster suprachiasmatic nuclei. Eur J NeuroSci 21:2958–2966

    Article  PubMed  Google Scholar 

  284. Liu Y, Wang Y, Wan C, Zhou W, Peng T, Wang Z, Li G, Cornelisson G, Halberg F (2005) The role of mPer1 in morphine dependence in mice. Neuroscience 130:383–388

    Article  PubMed  CAS  Google Scholar 

  285. Liu Y, Wang Y, Jiang Z, Wan C, Zhou W, Wang Z (2007) The extracellular signal-regulated kinase signaling pathway is involved in the modulation of morphine-induced reward by mPer1. Neuroscience 146:265–271

    Article  PubMed  CAS  Google Scholar 

  286. Motzkus D, Maronde E, Grunenberg U, Lee CC, Forssmann W, Albrecht U (2000) The human PER1 gene is transcriptionally regulated by multiple signaling pathways. FEBS Lett 486:315–319

    Article  PubMed  CAS  Google Scholar 

  287. Akashi M, Hayasaka N, Yamazaki S, Node K (2008) Mitogen-activated protein kinase is a functional component of the autonomous circadian system in the suprachiasmatic nucleus. J Neurosci 28:4619–4623

    Article  PubMed  CAS  Google Scholar 

  288. Perron RR, Tyson RL, Sutherland GR (2001) Delta9-tetrahydrocannabinol increases brain temperature and inverts circadian rhythms. NeuroReport 12:3791–3794

    Article  PubMed  CAS  Google Scholar 

  289. Walther S, Mahlberg R, Eichmann U, Kunz D (2006) Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology (Berl) 185:524–528

    Article  CAS  Google Scholar 

  290. Sanford AE, Castillo E, Gannon RL (2008) Cannabinoids and hamster circadian activity rhythms. Brain Res 1222:141–148

    Article  PubMed  CAS  Google Scholar 

  291. Lapierre O, Montplaisir J, Lamarre M, Bedard MA (1990) The effect of gamma-hydroxybutyrate on nocturnal and diurnal sleep of normal subjects: further considerations on REM sleep-triggering mechanisms. Sleep 13:24–30

    PubMed  CAS  Google Scholar 

  292. Meerlo P, Westerveld P, Turek FW, Koehl M (2004) Effects of gamma-hydroxybutyrate (GHB) on vigilance states and EEG in mice. Sleep 27:899–904

    PubMed  Google Scholar 

  293. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    Article  PubMed  CAS  Google Scholar 

  294. Albrecht U, Zheng B, Larkin D, Sun ZS, Lee CC (2001) MPer1 and mper2 are essential for normal resetting of the circadian clock. J Biol Rhythms 16:100–104

    Article  PubMed  CAS  Google Scholar 

  295. van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630

    Article  PubMed  Google Scholar 

  296. Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  CAS  Google Scholar 

  297. Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, Turek FW (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20:8138–8143

    PubMed  CAS  Google Scholar 

  298. Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28:395–409

    PubMed  Google Scholar 

  299. Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, Edgar DM, Franken P (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20

    Article  PubMed  Google Scholar 

  300. Franken P, Lopez-Molina L, Marcacci L, Schibler U, Tafti M (2000) The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J Neurosci 20:617–625

    PubMed  CAS  Google Scholar 

  301. Hu WP, Li JD, Zhang C, Boehmer L, Siegel JM, Zhou QY (2007) Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 30:247–256

    PubMed  Google Scholar 

  302. Kopp C, Albrecht U, Zheng B, Tobler I (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur J NeuroSci 16:1099–1106

    Article  PubMed  Google Scholar 

  303. Shiromani PJ, Xu M, Winston EM, Shiromani SN, Gerashchenko D, Weaver DR (2004) Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes. Am J Physiol Regul Integr Comp Physiol 287:R47–R57

    PubMed  CAS  Google Scholar 

  304. Garcia JA, Zhang D, Estill SJ, Michnoff C, Rutter J, Reick M, Scott K, Diaz-Arrastia R, McKnight SL (2000) Impaired cued and contextual memory in NPAS2-deficient mice. Science 288:2226–2230

    Article  PubMed  CAS  Google Scholar 

  305. Zueger M, Urani A, Chourbaji S, Zacher C, Lipp HP, Albrecht U, Spanagel R, Wolfer DP, Gass P (2006) mPer1 and mPer2 mutant mice show regular spatial and contextual learning in standardized tests for hippocampus-dependent learning. J Neural Transm 113:347–356

    Article  PubMed  CAS  Google Scholar 

  306. Cain SW, Ralph MR (2008) Circadian modulation of conditioned place preference in hamsters does not require the suprachiasmatic nucleus. Neurobiol Learn Mem 91:81–84

    Google Scholar 

  307. Ruby NF, Hwang CE, Wessells C, Fernandez F, Zhang P, Sapolsky R, Heller HC (2008) Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci U S A 105:15593–15598

    Article  PubMed  Google Scholar 

  308. Van der Zee EA, Havekes R, Barf RP, Hut RA, Nijholt IM, Jacobs EH, Gerkema MP (2008) Circadian time-place learning in mice depends on Cry genes. Curr Biol 18:844–848

    Article  PubMed  CAS  Google Scholar 

  309. Easton A, Arbuzova J, Turek FW (2003) The circadian Clock mutation increases exploratory activity and escape-seeking behavior. Genes Brain Behav 2:11–19

    Article  PubMed  CAS  Google Scholar 

  310. Karl T, Burne TH, Herzog H (2006) Effect of Y1 receptor deficiency on motor activity, exploration, and anxiety. Behav Brain Res 167:87–93

    Article  PubMed  CAS  Google Scholar 

  311. Wersinger SR, Caldwell HK, Christiansen M, Young WS III (2007) Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav 6:653–660

    Article  PubMed  CAS  Google Scholar 

  312. Karl T, Duffy L, Herzog H (2008) Behavioural profile of a new mouse model for NPY deficiency. Eur J NeuroSci 28:173–180

    Article  PubMed  Google Scholar 

  313. Iitaka C, Miyazaki K, Akaike T, Ishida N (2005) A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem 280:29397–29402

    Article  PubMed  CAS  Google Scholar 

  314. Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311:1002–1005

    Article  PubMed  CAS  Google Scholar 

  315. Kaladchibachi SA, Doble B, Anthopoulos N, Woodgett JR, Manoukian AS (2007) Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. J Circadian Rhythms 5:3

    Article  PubMed  CAS  Google Scholar 

  316. Hampp G, Albrecht U (2008) The circadian clock and mood-related behavior. Commun Integr Biol 1:1–3

    Article  PubMed  CAS  Google Scholar 

  317. Randrup A, Braestrup C (1977) Uptake inhibition of biogenic amines by newer antidepressant drugs: relevance to the dopamine hypothesis of depression. Psychopharmacology (Berl) 53:309–314

    Article  CAS  Google Scholar 

  318. Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    Article  PubMed  CAS  Google Scholar 

  319. Klemfuss H (1992) Rhythms and the pharmacology of lithium. Pharmacol Ther 56:53–78

    Article  PubMed  CAS  Google Scholar 

  320. Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, Mueller PS, Newsome DA, Wehr TA (1984) Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 41:72–80

    PubMed  CAS  Google Scholar 

  321. Yan L, Silver R (2002) Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur J NeuroSci 16:1531–1540

    Article  PubMed  Google Scholar 

  322. Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, Jones B, Czajkowski L, Ptacek LJ (1999) Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5:1062–1065

    Article  PubMed  CAS  Google Scholar 

  323. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    Article  PubMed  CAS  Google Scholar 

  324. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu YH (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    Article  PubMed  CAS  Google Scholar 

  325. Okawa M, Uchiyama M (2007) Circadian rhythm sleep disorders: characteristics and entrainment pathology in delayed sleep phase and non-24-h sleep-wake syndrome. Sleep Med Rev 11:485–496

    Article  PubMed  Google Scholar 

  326. Takano A, Uchiyama M, Kajimura N, Mishima K, Inoue Y, Kamei Y, Kitajima T, Shibui K, Katoh M, Watanabe T, Hashimotodani Y, Nakajima T, Ozeki Y, Hori T, Yamada N, Toyoshima R, Ozaki N, Okawa M, Nagai K, Takahashi K, Isojima Y, Yamauchi T, Ebisawa T (2004) A missense variation in human casein kinase I epsilon gene that induces functional alteration and shows an inverse association with circadian rhythm sleep disorders. Neuropsychopharmacology 29:1901–1909

    Article  PubMed  CAS  Google Scholar 

  327. Castro RM, Barbosa AA, Pedrazzoli M, Tufik S (2008) Casein kinase I epsilon (CKIvarepsilon) N408 allele is very rare in the Brazilian population and is not involved in susceptibility to circadian rhythm sleep disorders. Behav Brain Res 193:156–157

    Article  PubMed  CAS  Google Scholar 

  328. Boivin DB (2000) Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders. J Psychiatry Neurosci 25:446–458

    PubMed  CAS  Google Scholar 

  329. Wirz-Justice A (2006) Biological rhythm disturbances in mood disorders. Int Clin Psychopharmacol 21(Suppl 1):S11–S15

    Article  PubMed  Google Scholar 

  330. Wirz-Justice A, Van den Hoofdakker RH (1999) Sleep deprivation in depression: what do we know, where do we go? Biol Psychiatry 46:445–453

    Article  PubMed  CAS  Google Scholar 

  331. Lam RW, Levitan RD (2000) Pathophysiology of seasonal affective disorder: a review. J Psychiatry Neurosci 25:469–480

    PubMed  CAS  Google Scholar 

  332. Levitan RD (2007) The chronobiology and neurobiology of winter seasonal affective disorder. Dialogues Clin Neurosci 9:315–324

    PubMed  Google Scholar 

  333. Magnusson A, Boivin D (2003) Seasonal affective disorder: an overview. Chronobiol Int 20:189–207

    Article  PubMed  Google Scholar 

  334. Volicer L, Harper DG, Manning BC, Goldstein R, Satlin A (2001) Sundowning and circadian rhythms in Alzheimer’s disease. Am J Psychiatry 158:704–711

    Article  PubMed  CAS  Google Scholar 

  335. Huitron-Resendiz S, Sanchez-Alavez M, Gallegos R, Berg G, Crawford E, Giacchino JL, Games D, Henriksen SJ, Criado JR (2002) Age-independent and age-related deficits in visuospatial learning, sleep-wake states, thermoregulation and motor activity in PDAPP mice. Brain Res 928:126–137

    Article  PubMed  CAS  Google Scholar 

  336. Wisor JP, Edgar DM, Yesavage J, Ryan HS, McCormick CM, Lapustea N, Murphy GM Jr (2005) Sleep and circadian abnormalities in a transgenic mouse model of Alzheimer’s disease: a role for cholinergic transmission. Neuroscience 131:375–385

    Article  PubMed  CAS  Google Scholar 

  337. Ambree O, Touma C, Gortz N, Keyvani K, Paulus W, Palme R, Sachser N (2006) Activity changes and marked stereotypic behavior precede Abeta pathology in TgCRND8 Alzheimer mice. Neurobiol Aging 27:955–964

    Article  PubMed  CAS  Google Scholar 

  338. Van Dam D, D’Hooge R, Staufenbiel M, Van Ginneken C, Van Meir F, De Deyn PP (2003) Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur J NeuroSci 17:388–396

    Article  PubMed  Google Scholar 

  339. Landolt HP, Glatzel M, Blattler T, Achermann P, Roth C, Mathis J, Weis J, Tobler I, Aguzzi A, Bassetti CL (2006) Sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease. Neurology 66:1418–1424

    Article  PubMed  Google Scholar 

  340. Plazzi G, Schutz Y, Cortelli P, Provini F, Avoni P, Heikkila E, Tinuper P, Solieri L, Lugaresi E, Montagna P (1997) Motor overactivity and loss of motor circadian rhythm in fatal familial insomnia: an actigraphic study. Sleep 20:739–742

    PubMed  CAS  Google Scholar 

  341. Portaluppi F, Cortelli P, Avoni P, Vergnani L, Maltoni P, Pavani A, Sforza E, Degli Uberti EC, Gambetti P, Lugaresi E (1994) Progressive disruption of the circadian rhythm of melatonin in fatal familial insomnia. J Clin Endocrinol Metab 78:1075–1078

    Article  PubMed  CAS  Google Scholar 

  342. Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, Moser M, Oesch B, McBride PA, Manson JC (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380:639–642

    Article  PubMed  CAS  Google Scholar 

  343. Morton AJ, Wood NI, Hastings MH, Hurelbrink C, Barker RA, Maywood ES (2005) Disintegration of the sleep-wake cycle and circadian timing in Huntington’s disease. J Neurosci 25:157–163

    Article  PubMed  CAS  Google Scholar 

  344. Nygard M, Hill RH, Wikstrom MA, Kristensson K (2005) Age-related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro. Brain Res Bull 65:149–154

    Article  PubMed  Google Scholar 

  345. Valentinuzzi VS, Scarbrough K, Takahashi JS, Turek FW (1997) Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. Am J Physiol 273:R1957–R1964

    PubMed  CAS  Google Scholar 

  346. Oster H, Baeriswyl S, Van Der Horst GT, Albrecht U (2003) Loss of circadian rhythmicity in aging mPer1−/−mCry2−/− mutant mice. Genes Dev 17:1366–1379

    Article  PubMed  CAS  Google Scholar 

  347. Oster H, van der Horst GT, Albrecht U (2003) Daily variation of clock output gene activation in behaviorally arrhythmic mPer/mCry triple mutant mice. Chronobiol Int 20:683–695

    Article  PubMed  CAS  Google Scholar 

  348. Kolker DE, Vitaterna MH, Fruechte EM, Takahashi JS, Turek FW (2004) Effects of age on circadian rhythms are similar in wild-type and heterozygous Clock mutant mice. Neurobiol Aging 25:517–523

    Article  PubMed  Google Scholar 

  349. De Leersnyder H, De Blois MC, Claustrat B, Romana S, Albrecht U, Von Kleist-Retzow JC, Delobel B, Viot G, Lyonnet S, Vekemans M, Munnich A (2001) Inversion of the circadian rhythm of melatonin in the Smith–Magenis syndrome. J Pediatr 139:111–116

    Article  PubMed  Google Scholar 

  350. De Leersnyder H, Bresson JL, de Blois MC, Souberbielle JC, Mogenet A, Delhotal-Landes B, Salefranque F, Munnich A (2003) Beta 1-adrenergic antagonists and melatonin reset the clock and restore sleep in a circadian disorder, Smith-Magenis syndrome. J Med Genet 40:74–78

    Article  PubMed  Google Scholar 

  351. De Leersnyder H, Claustrat B, Munnich A, Verloes A (2006) Circadian rhythm disorder in a rare disease: Smith–Magenis syndrome. Mol Cell Endocrinol 252:88–91

    Article  PubMed  CAS  Google Scholar 

  352. Potocki L, Glaze D, Tan DX, Park SS, Kashork CD, Shaffer LG, Reiter RJ, Lupski JR (2000) Circadian rhythm abnormalities of melatonin in Smith–Magenis syndrome. J Med Genet 37:428–433

    Article  PubMed  CAS  Google Scholar 

  353. Walz K, Spencer C, Kaasik K, Lee CC, Lupski JR, Paylor R (2004) Behavioral characterization of mouse models for Smith–Magenis syndrome and dup(17)(p11.2p11.2). Hum Mol Genet 13:367–378

    Article  PubMed  CAS  Google Scholar 

  354. Harvey MT, Kennedy CH (2002) Polysomnographic phenotypes in developmental disabilities. Int J Dev Neurosci 20:443–448

    Article  PubMed  Google Scholar 

  355. McKay SM, Angulo-Barroso RM (2006) Longitudinal assessment of leg motor activity and sleep patterns in infants with and without Down syndrome. Infant Behav Dev 29:153–168

    Article  PubMed  Google Scholar 

  356. Cotton S, Richdale A (2006) Brief report: parental descriptions of sleep problems in children with autism, Down syndrome, and Prader–Willi syndrome. Res Dev Disabil 27:151–161

    Article  PubMed  Google Scholar 

  357. Colas D, London J, Gharib A, Cespuglio R, Sarda N (2004) Sleep-wake architecture in mouse models for Down syndrome. Neurobiol Dis 16:291–299

    Article  PubMed  CAS  Google Scholar 

  358. Stewart LS, Persinger MA, Cortez MA, Snead OC 3 rd (2007) Chronobiometry of behavioral activity in the Ts65Dn model of Down syndrome. Behav Genet 37:388–398

    Article  PubMed  Google Scholar 

  359. Goldstone AP (2004) Prader–Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol Metab 15:12–20

    Article  PubMed  CAS  Google Scholar 

  360. Nixon GM, Brouillette RT (2002) Sleep and breathing in Prader–Willi syndrome. Pediatr Pulmonol 34:209–217

    Article  PubMed  Google Scholar 

  361. Vgontzas AN, Kales A, Seip J, Mascari MJ, Bixler EO, Myers DC, Vela-Bueno AV, Rogan PK (1996) Relationship of sleep abnormalities to patient genotypes in Prader–Willi syndrome. Am J Med Genet 67:478–482

    Article  PubMed  CAS  Google Scholar 

  362. Kozlov SV, Bogenpohl JW, Howell MP, Wevrick R, Panda S, Hogenesch JB, Muglia LJ, Van Gelder RN, Herzog ED, Stewart CL (2007) The imprinted gene Magel2 regulates normal circadian output. Nat Genet 39:1266–1272

    Article  PubMed  CAS  Google Scholar 

  363. Braam W, Smits MG, Didden R, Curfs LM (2008) Melatonin is effective in treating sleep problems in Angelman syndrome but problems in metabolising melatonin may be part of the Angelman phenotype. J Intellect Disabil Res 52:814

    Article  Google Scholar 

  364. Colas D, Wagstaff J, Fort P, Salvert D, Sarda N (2005) Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome. Neurobiol Dis 20:471–478

    Article  PubMed  CAS  Google Scholar 

  365. Hagerman RJ (1996) Fragile X syndrome: diagnosis, treatment, and research, 2nd edn. Johns Hopkins University Press, Baltimore, pp 3–87

    Google Scholar 

  366. Gould EL, Loesch DZ, Martin MJ, Hagerman RJ, Armstrong SM, Huggins RM (2000) Melatonin profiles and sleep characteristics in boys with fragile X syndrome: a preliminary study. Am J Med Genet 95:307–315

    Article  PubMed  CAS  Google Scholar 

  367. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914

    Article  PubMed  CAS  Google Scholar 

  368. Zhang J, Fang Z, Jud C, Vansteensel MJ, Kaasik K, Lee CC, Albrecht U, Tamanini F, Meijer JH, Oostra BA, Nelson DL (2008) Fragile X-related proteins regulate mammalian circadian behavioral rhythms. Am J Hum Genet 83:43–52

    Article  PubMed  CAS  Google Scholar 

  369. Malow BA (2004) Sleep disorders, epilepsy, and autism. Ment Retard Dev Disabil Res Rev 10:122–125

    Article  PubMed  Google Scholar 

  370. Melke J, Goubran Botros H, Chaste P, Betancur C, Nygren G, Anckarsater H, Rastam M, Stahlberg O, Gillberg IC, Delorme R, Chabane N, Mouren-Simeoni MC, Fauchereau F, Durand CM, Chevalier F, Drouot X, Collet C, Launay JM, Leboyer M, Gillberg C, Bourgeron T (2008) Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry 13:90–98

    Article  PubMed  CAS  Google Scholar 

  371. Ogawa S, Kwon CH, Zhou J, Koovakkattu D, Parada LF, Sinton CM (2007) A seizure-prone phenotype is associated with altered free-running rhythm in Pten mutant mice. Brain Res 1168:112–123

    Article  PubMed  CAS  Google Scholar 

  372. Cruciani F, Trombetta B, Labuda D, Modiano D, Torroni A, Costa R, Scozzari R (2008) Genetic diversity patterns at the human clock gene period 2 are suggestive of population-specific positive selection. Eur J Hum Genet 16:1526–1534

    Article  PubMed  CAS  Google Scholar 

  373. Ciarleglio CM, Ryckman KK, Servick SV, Hida A, Robbins S, Wells N, Hicks J, Larson SA, Wiedermann JP, Carver K, Hamilton N, Kidd KK, Kidd JR, Smith JR, Friedlaender J, McMahon DG, Williams SM, Summar ML, Johnson CH (2008) Genetic differences in human circadian clock genes among worldwide populations. J Biol Rhythms 23:330–340

    Article  PubMed  CAS  Google Scholar 

  374. Hawkins GA, Meyers DA, Bleecker ER, Pack AI (2008) Identification of coding polymorphisms in human circadian rhythm genes PER1, PER2, PER3, CLOCK, ARNTL, CRY1, CRY2 and TIMELESS in a multi-ethnic screening panel. DNA Seq 19:44–49

    PubMed  CAS  Google Scholar 

  375. Pedrazzoli M, Louzada FM, Pereira DS, Benedito-Silva AA, Lopez AR, Martynhak BJ, Korczak AL, Koike Bdel V, Barbosa AA, D’Almeida V, Tufik S (2007) Clock polymorphisms and circadian rhythms phenotypes in a sample of the Brazilian population. Chronobiol Int 24:1–8

    Article  PubMed  CAS  Google Scholar 

  376. Carpen JD, von Schantz M, Smits M, Skene DJ, Archer SN (2006) A silent polymorphism in the PER1 gene associates with extreme diurnal preference in humans. J Hum Genet 51:1122–1125

    Article  PubMed  CAS  Google Scholar 

  377. Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M, Watanabe T, Sekimoto M, Shibui K, Kim K, Kudo Y, Ozeki Y, Sugishita M, Toyoshima R, Inoue Y, Yamada N, Nagase T, Ozaki N, Ohara O, Ishida N, Okawa M, Takahashi K, Yamauchi T (2001) Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2:342–346

    Article  PubMed  CAS  Google Scholar 

  378. Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, von Schantz M (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26:413–415

    PubMed  Google Scholar 

  379. Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, von Schantz M, Dijk DJ (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17:613–618

    Article  PubMed  CAS  Google Scholar 

  380. Benedetti F, Radaelli D, Bernasconi A, Dallaspezia S, Falini A, Scotti G, Lorenzi C, Colombo C, Smeraldi E (2008) Clock genes beyond the clock: CLOCK genotype biases neural correlates of moral valence decision in depressed patients. Genes Brain Behav 7:20–25

    PubMed  CAS  Google Scholar 

  381. Sookoian S, Gemma C, Gianotti TF, Burgueno A, Castano G, Pirola CJ (2008) Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr 87:1606–1615

    PubMed  CAS  Google Scholar 

  382. Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppa T, Lichtermann D, Praschak-Rieder N, Neumeister A, Nilsson LG, Kasper S, Peltonen L, Adolfsson R, Schalling M, Partonen T (2003) Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28:734–739

    Article  PubMed  CAS  Google Scholar 

  383. Woon PY, Kaisaki PJ, Braganca J, Bihoreau MT, Levy JC, Farrall M, Gauguier D (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci U S A 104:14412–14417

    Article  PubMed  CAS  Google Scholar 

  384. Peng ZW, Chen XG, Wei Z (2007) Cryptochrome1 maybe a candidate gene of schizophrenia. Med Hypotheses 69:849–851

    Article  PubMed  CAS  Google Scholar 

  385. Nievergelt CM, Kripke DF, Remick RA, Sadovnick AD, McElroy SL, Keck PE Jr, Kelsoe JR (2005) Examination of the clock gene Cryptochrome 1 in bipolar disorder: mutational analysis and absence of evidence for linkage or association. Psychiatr Genet 15:45–52

    Article  PubMed  Google Scholar 

  386. Simerly R (2006) Feeding signals and drugs meet in the midbrain. Nat Med 12:1244–1246

    Article  PubMed  CAS  Google Scholar 

  387. Van Someren EJ (2000) Circadian rhythms and sleep in human aging. Chronobiol Int 17:233–243

    Article  PubMed  Google Scholar 

  388. Dijk DJ, Duffy JF, Czeisler CA (2000) Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol Int 17:285–311

    Article  PubMed  CAS  Google Scholar 

  389. Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptacek LJ (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128:59–70

    Article  PubMed  CAS  Google Scholar 

  390. McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114:222–232

    Article  PubMed  CAS  Google Scholar 

  391. Ferreira JJ, Desboeuf K, Galitzky M, Thalamas C, Brefel-Courbon C, Fabre N, Senard JM, Montastruc JL, Sampaio C, Rascol O (2006) Sleep disruption, daytime somnolence and “sleep attacks” in Parkinson’s disease: a clinical survey in PD patients and age-matched healthy volunteers. Eur J Neurol 13:209–214

    Article  PubMed  CAS  Google Scholar 

  392. Fleming SM, Chesselet MF (2006) Behavioral phenotypes and pharmacology in genetic mouse models of Parkinsonism. Behav Pharmacol 17:383–391

    Article  PubMed  Google Scholar 

  393. Barnard AR, Nolan PM (2008) When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet 4:e1000040

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sonja Langmesser for editing and critically reading the manuscript. Our work is supported by the European Molecular Biology Organization (EMBO) (CF), the Swiss National Science Foundation and the European Union Project EUCLOCK (UA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Albrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feillet, C., Albrecht, U. (2010). Clocks, Brain Function, and Dysfunction. In: Albrecht, U. (eds) The Circadian Clock. Protein Reviews, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1262-6_10

Download citation

Publish with us

Policies and ethics