Skip to main content

Room Temperature Tryptophan Phosphorescence of Proteins in the Composition of Biological Membranes and Solutions

  • Chapter
Reviews in Fluorescence 2008

Abstract

The room temperature tryptophan phosphorescence (RTTP) technique allows studying slow internal dynamics of proteins in the millisecond and second diapasons. This chapter summarizes the key findings in the field of RTTP spectroscopy, physical nature of this phenomenon, and experimental approaches to analyze the microenvironment of tryptophan residues. Representative examples of RTTP of proteins in human erythrocyte membranes and plant lectins in solutions are discussed in details taking into account the effects of detergents on biological membranes and 3D structures of lectin molecules, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. V. Konev, Fluorescence and phosphorescence of proteins and nucleic acids (Plenum Press, New York, 1967).

    Google Scholar 

  2. A. P. Demchenko, Fluorescence and dynamics in proteins, in Topics in fluorescence spectroscopy, Vol. 3, edited by J. R. Lakowicz (Plenum Press, New York, 1992) pp. 65–111.

    Chapter  Google Scholar 

  3. J. R. Lakowicz, Principles of fluorescence spectroscopy, 2nd edn. (Kluwer Academic/Plenum Publishers, New York, 2000).

    Google Scholar 

  4. S. V. Konev, V. P. Bobrovich, About the phosphorescence spectrums of proteins at different temperatures, Dokl. Acad. Nauk BSSR 10, 786–788 (1966).

    CAS  Google Scholar 

  5. M. L. Saviotti, W. C. Galley, Room temperature phosphorescence and the dynamic aspects of protein structure, Proc. Natl. Acad. Sci. U S A 71(10), 4154–4158 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. V. M. Mazhul’, Yu. S. Ermolaev, V. A. Bobrov, V. P. Nicolskaya, S. V. Konev, About the conformational sensibility of the parameters of tryptophan phosphorescence at room temperature of proteins of membranes and cells, Vesti Acad. Navuk BSSR, Ser. Biyal. Navuk 6, 52–56 (1976).

    Google Scholar 

  7. Y. Kai, K. Imacubo, Temperature dependence of the phosphorescence lifetimes of heterogenous tryptophan residues in globular proteins between 293 and 77 K, Photochem. Photobiol. 29, 261–265 (1979).

    Article  CAS  Google Scholar 

  8. V. M. Mazhul’, Yu. S. Ermolaev, S. V. Konev, Tryptophan phosphorescence at room temperature. A new method for studying the structural state of biological membranes and proteins in cell, J. Appl. Spectrosc. 32 (5), 530–534 (1980).

    Article  Google Scholar 

  9. V. M. Mazhul’, Yu. S. Ermolaev, S. V. Konev, M. A. Martynova, V. P. Nicolskaya, Zh. V. Prokopova, Investigated of internal dynamics of proteins by the method of tryptophan phosphorescence at room temperature, Biofizika 28 (6), 980–988 (1983).

    PubMed  Google Scholar 

  10. J. Vanderkooi, J. W. Berger, Excited triplet states used to study biological macromolecules at room temperature, Biochim. Biophys. Acta 976, 1–27 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. G. B. Strambini, Tryptophan phosphorescence as a monitor of protein flexibility, J. Mol. Liq. 42, 155–165 (1989).

    Article  CAS  Google Scholar 

  12. G. B Strambini, E. Gabellieri, Temperature dependence tryptophan phosphorescence in proteins, Photochem. Photobiol. 51, 643–648 (1990).

    CAS  PubMed  Google Scholar 

  13. G. B Strambini, S. S. Lehrer, Tryptophan phosphorescence of G-actin and F-actin, Eur. J. Biochem. 159, 645–651 (1991).

    Article  Google Scholar 

  14. J. M. Vanderkooi, Tryptophan phosphorescence from proteins at room temperature, in Topics in fluorescence spectroscopy, Vol. 3, edited by J. R. Lakowicz (Plenum Press, New York, 1992) pp. 113–136.

    Chapter  Google Scholar 

  15. G. B. Strambini, M. Gonnelli, Tryptophan phosphorescence in fluid solution, J. Am. Chem. Soc. 117, 7646–7651 (1995).

    Article  CAS  Google Scholar 

  16. M. Gonnelli, G. B. Strambini, Phosphorescence lifetime of tryptophan in proteins, Biochemistry 34, 13847–13857 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. V. Subramaniam, A. Gafni, D. G. Steel, Time-resolved tryptophan phosphorescence spectroscopy: A sensitive probe of protein folding and structure, IEEE J. Sel. Top. Quant. Electron. 2(4), 1107–1114 (1996).

    Article  CAS  Google Scholar 

  18. Z. Li, A. Bruce, W. C. Galley, Temperature dependence of the disulfide perturbation to the triplet state of tryptophan, Biophys. J. 61, 1364–1371 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. F. Tolgyesi, B. Ullrich, J. Fidy, Tryptophan phosphorescence signals characteristic changes in protein dynamics at physiological temperature, Biochim. Biophys. Acta 1435, 1–6 (1999).

    CAS  PubMed  Google Scholar 

  20. A. Gershenson, J. A. Shauerte, L. Giver, F. H. Arnold, Tryptophan phosphorescence study of enzyme flexibility and unfolding in laboratory-evolved thermostable esterases, Biochemistry 39, 4658–4665 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. V. M. Mazhul’, E. M. Zaitseva, D. G. Shcherbin, Intramolecular dynamics and functional activity of proteins, Biophysics 45(6), 935–959 (2000).

    Google Scholar 

  22. A. A. Sukhodola, G. B. Tolstorozhev, V. A. Shashilov, V. M. Mazhul’, D. G. Shcherbin, E. M. Zaitseva, Room-temperature phosphorescence of indole, tryptophan and their derivatives in solid films, in Abstracts of 9 th European conference on the spectroscopy of biological molecules (Prague, 2001) p. 224.

    Google Scholar 

  23. V. M. Mazhul’, E. M. Zaitseva, D. G. Shcherbin, Phosphorescence of tryptophan residues of proteins at room temperature, J. Appl. Spectrosc. 69(2), 213–219 (2002).

    Article  Google Scholar 

  24. M. Gonnelli, G. B. Strambini, Structure and dynamics of proteins encapsulated in silica hydrogels by Trp phosphorescence, Biophys. Chem. 104, 155–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. G. B. Strambini, M. Gonnelli, Effects of urea and guanidine hydrochloride on the activity and dynamical structure of equine liver alcohol dehydrogenase, Biochemistry 25, 2471–2476 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. V. M. Mazhul’, I. V. Mjakinnik, A. N. Volkova, Intramolecular dynamics of structure of alkaline phosphatase from Escherichia coli, Proc. SPIE 2370, 706–710 (1994).

    Google Scholar 

  27. V. Subramaniam, N. C. H. Bergenhem, A. Gafni, D. G. Steel, Phosphorescence reveals a continued slow annealing of the protein core following reactivation of Escherichia coli alkaline phosphatase, Biochemistry 34, 1133–1136 (1995).

    CAS  Google Scholar 

  28. V. Subramaniam, D. G. Steel, A. Gafni, In vitro renaturation of beta-lactoglobulin A leads to a biologically active but incompletely refolded state, Protein Sci. 5, 2089–2094 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. S. Zh. Kananovich, V. M. Mazhul’, Effect of urea and high temperatures on conformation, internal dynamics and enzyme activity of Escherichia coli alkaline phosphatase, in Book of abstracts the Minerva-Gentner symposium on optical spectroscopy of biomolecular dynamics (Kloster Banz, Bad Staffelstein, 2004) p. 106.

    Google Scholar 

  30. S. G. Kananovich, V. M. Mazhul’, Structure and enzyme activity of Escherichia coli alkaline phosphatase at the action of urea, in Abstracts of 9 th International Summer School on Biophysics “Supramolecular structure and function” (Rovinj, 2006) p. 136.

    Google Scholar 

  31. S. G. Kananovich, V. M. Mazhul’, Unfolding and refolding of Escherichia coli alkaline phosphatase, in The 5 th International conference on biological physics (Gothenburg, 2004), B 05-193, p. 39.

    Google Scholar 

  32. J. V. Mersol, D. G. Steel, A. Gafni, Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase, Biophys. Chem. 48, 281–291 (1993).

    CAS  Google Scholar 

  33. V. M. Mazhul’, S. Zh. Kananovich, On the ability of a protein to exist in many partially folded states, Biophysics 49(3), 392–402 (2004).

    Google Scholar 

  34. V. M. Mazhul’, S. Zh. Kananovich, Effect of temperature on the internal dynamics and the conformational state of bacterial alkaline phosphatase, Biophysics 51(3) 364–369 (2006).

    Article  Google Scholar 

  35. V. M. Mazhul’, E. M. Zaitseva, M. M. Shavlovsky, I. M. Kuznetsova, K. K. Turoverov, Tryptophan phosphorescence of native and inactivated actin, Biophysics 46(6), 988–996 (2001).

    Google Scholar 

  36. V. M. Mazhul’, E. M. Zaitseva, M. M. Shavlovsky, O. V. Stepanenko, I. M. Kuznetsova, K. K. Turoverov, Monitoring of actin unfolding by room temperature tryptophan phosphorescence, Biochemistry 42, 13551–13557 (2003).

    Article  PubMed  Google Scholar 

  37. M. Gonnelli, G. B Strambini, Glycerol effects on protein flexibility: A tryptophan phosphorescence study, Biophys. J. 65, 131–137 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. W. W. Wright, G. N. Guffanti, J. M. Vanderkooi, Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan, Biophys. J. 85, 1980–1995 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. P. Cioni, G. B. Strambini, Pressure effect on protein flexibility monomeric proteins, J. Mol. Biol. 242, 291–301 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. V. M. Mazhul’, E. M. Zaitseva, The new mechanism of enzyme activity regulation by ionic strength, J. Biosci. 24(1), 53 (1999).

    Article  Google Scholar 

  41. V. M. Mazhul’, E. M. Zaitseva, D. G. Shcherbin, Effects of ionic strength and temperature on large-scale internal dynamics of liver alcohol dehydrogenase, in Abstracts of 7 th conference on methods and applications of fluorescence (Amsterdam, 2001) p. 134.

    Google Scholar 

  42. E. M. Zaitseva, V. M. Mazhul’, pH-induced changes in aldolase internal dynamics and conformation: Fluorescence and phosphorescence study, in Abstracts of 7 th conference on methods and applications of fluorescence (Amsterdam, 2001) p. 210.

    Google Scholar 

  43. E. M. Zaitseva, V. M. Mazhul’, Internal dynamics of aldolase probed by room temperature time-resolved tryptophan phosphorescence, in Abstracts of 4 th international conference on biological physics (Kyoto, 2001) p. 104.

    Google Scholar 

  44. G. B Strambini, M. Gonnelli, Tryptophan luminescence from liver alcohol dehydrogenase in its complexes with coenzyme. A comparative study of protein conformation in solution, Biochemistry 29, 196–203 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. A. Baracca, E. Gabillieri, S. Barogi, G. Solani, Conformational changes of the mitochondrial F1-ATPase -subunit induced by nucleotide binding as observed by phosphorescence spectroscopy, J. Biol. Chem. 270(37), 21845–21851 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. V. M. Mazhul’, E. M. Zaitseva, L. G. Mitskevich, N. V. Fedurkina, B. I. Kurganov, Effects of ligands binding on muscle glycogen phosphorylase b internal dynamics, J. Biosci. 24(1), 53 (1999).

    Article  Google Scholar 

  47. V. M. Mazhul’, E. M. Zaitseva, L. G. Mitskievich, N. V. Fedurkina, B. I. Kurganov, Phosphorescence analysis of the intramolecular dynamics of muscle glycogen phosphorylase b, Biophysics 44(6), 975–981 (1999).

    Google Scholar 

  48. B. I. Kurganov, N. V. Fedurkina, L. G. Mitskievich, V. M. Mazhul’, E. M. Zaitseva, Study of muscle glycogen phosphorylase b association by means of tryptophan phosphorescence at room temperature, Dokl. Biophys. 367–369, 67–70 (1999).

    Google Scholar 

  49. S. Zh. Kananovich, V. M. Mazhul’. Fluorimetric analysis of the structural-dynamic state of alkaline phosphatase of Escherichia coli, J. Appl. Spectrosc. 70(5), 673–677 (2003).

    Article  Google Scholar 

  50. P. Cioni, L. Piras, G. B. Strambini, Tryptophan phosphorescence as a monitor of the structural role of metal ions in alkaline phosphatase, Eur. J. Biochem. 185, 573–579 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. S. Zh. Kananovich, V. M. Mazhul’, Effect of proteolysis on the internal dynamics of Escherichia coli alkaline phosphatase tested by the room-temperature phosphorescence method, in Abstracts of 9 th European conference on the spectroscopy of biological molecules (Prague, 2001) p. 61.

    Google Scholar 

  52. T. Horie, J. M. Vanderkooi, Phosphorescence of alkaline phosphatase of E. coli in vitro and in situ, Biochim. Biophys. Acta 670, 294–297 (1981).

    CAS  PubMed  Google Scholar 

  53. V. M. Mazhul’, S. Zh. Kananovich, Zh. V. Prokopova, Internal dynamics of membrane and cytoplasmic proteins of germ of Escherichia coli, Vesti Acad. Navuk BSSR, Ser. Biyal. Navuk 1, 60–64 (2001).

    Google Scholar 

  54. V. M. Mazhul’, D. G. Shcherbin, Tryptophan phosphorescence as monitor of flexibility of membrane proteins in cells, Proc. SPIE 2980, 487–494 (1987).

    Google Scholar 

  55. V. M. Mazhul’, V. N. Kalunov, V. A. Buravskii, A. N. Volkova, R. I. Gronskaya, Phosphorescent analysis of the grows factors action to the internal dynamics of membrane proteins of rat pheochromocytomas PC12 cells, Dokl. Acad. Nauk BSSR 39(6) 83–86 (1995).

    Google Scholar 

  56. V. M. Mazhul’, Zh. V. Prokopova, L. S. Ivashkevich. Mechanisms of the action of the humic preparations and peat on the functional activity of the cells, in Humic substances in biosphere (Nauka, Moskow, 1993) pp. 16–23.

    Google Scholar 

  57. V. Mazhul’, D. Shcherbin, I. Zavodnik, K. Rękawecka, M. Bryszewska, The effect of oxidative stress induced by t-butyl hydroperoxide on structural dynamics of membrane proteins of Chinese hamster fibroblasts, Cell Biol. Int. 23, 5, 345–350 (1999).

    Article  Google Scholar 

  58. V. M. Mazhul’, T. S. Chernovets, E. M. Zaitseva, D. G. Shcherbin, Action of serine proteases on intramolecular dynamics of membrane proteins of human platelets, Biophysics 47(4), 607–616 (2002).

    Google Scholar 

  59. T. S. Chernovets, V. M. Mazhul’, Role of protease-induced changes of internal dynamics of platelets membrane proteins in the intracellular signaling, in 28 th Meeting of the federation of European biochemical societies (Istanbul, 2002), FEBS J. p. 54.

    Google Scholar 

  60. V. Mazhul’, T. Chernovets, E. Zaitseva, D. Shcherbin, Slow internal dynamics of membrane proteins in mechanisms of protease-induced aggregation of platelets, Cell Biol. Int. 27, 571–578 (2003).

    Article  Google Scholar 

  61. V. M. Mazhul’, S. V. Konev, E. S. Lobanok, V. I. Levin, Phosphorescence analysis of structural-dynamics state of membrane proteins in the interaction of HLA-antibodies with determinants of lymphocytes receptors, Dokl. Acad. Nauk BSSR 41(5), 69–72 (1997).

    Google Scholar 

  62. V. M. Mazhul’, G. P. Matveikov, S. V. Konev, E. S. Kaliya, E. S. Lobanok, Reset of the structure-functional state of peripheral blood lymphocytes membranes of patients with CKB и PA, Rheumatology 6, 103–107 (1992).

    Google Scholar 

  63. V. M. Mazhul’, L. N. Kalituho, E. M. Zaitseva, J. V. Ivin, Brassinosteroides action to the structural-dynamics state of membrane proteins or plant cells, in Abstracts of 5 th international conference ``Regulators of the grows and development of the plant’ (Moscow, 1999) pp. 113–114.

    Google Scholar 

  64. V. M. Mazhul’, D. G. Shcherbin, E. M. Zaitseva, L. N. Kalituho, L. F. Kabashnicova, Tryptophan phosphorescence at room temperature of plants rootage, Dokl. Acad. Nauk BSSR 46(2), 84–87 (2002).

    Google Scholar 

  65. V. M. Mazhul’, L. S. Ivashkevich, D. G. Shcherbin, N. A. Pavlovskaya, G. V. Naumova, T. F. Ovchinnikova, Luminescence properties of humic substances, J. Appl. Spectrosc. 64(4), 503–508 (1997).

    Article  Google Scholar 

  66. V. M. Mazhul’, D. G. Shcherbin, Low-temperature phosphorescence of lipid peroxidation products, Biophysics 43(3), 431–437 (1998).

    Google Scholar 

  67. D. M Gilligan, V. Bennett, The junctional complex of the membrane skeleton, Semin. Hematol. 30, 74–83 (1993).

    CAS  PubMed  Google Scholar 

  68. V. Bennett, A. J. Baines, Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues, Physiol. Rev. 81, 1353–1392 (2001).

    CAS  PubMed  Google Scholar 

  69. L. A. Sung, C. Vera, Protofilament and hexagon: A three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton, Ann. Biomed. Eng. 31, 1314–1326 (2003).

    Article  PubMed  Google Scholar 

  70. G. T. Dodge, C. Mitchell, D. J. Hanahan, The preparation and chemical characteristics of hemoglobin-free ghosts of erythrocytes, Arch. Biochim. Biophys. 100, 119–130 (1963).

    Article  CAS  Google Scholar 

  71. V. Bennett, Proteins involved in membrane-cytoskeleton association in human erythrocytes: Spectrin, ankyrin, band 3, Meth. Enzymol. 96, 313–324 (1983).

    Article  CAS  PubMed  Google Scholar 

  72. U. K. Laemmly, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685 (1970).

    Article  Google Scholar 

  73. A. M. Kazennov, M. N. Maslova, A. D. Shagabodov, Role of membrane skeleton of erythrocytes in the functioning of membrane enzymes, Dokl. Acad. Nauk BSSR 312(1), 223–226 (1990).

    CAS  Google Scholar 

  74. M. Maire, P. Champeil, J. V. Moller, Interaction of membrane proteins and lipids with solubilizing detergents, Biochim. Biophys. Acta 1508, 86–111 (2000).

    Article  PubMed  Google Scholar 

  75. G. S. Menzies, K. Howland, M. T. Rae, T. A. Bramley, Stimulation of specific binding of [3H]-progesterone to bovine luteal cell-surface membranes: Specificity of digitonin, Mol. Cell. Endocrinol. 153, 57–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. M. Eilers, A. B. Patel, Comparison of helix interactions in membrane and soluble α-bundle proteins, Biophys. J. 82(5), 2720–2736 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. M. Olivella, X. Deupi, C. Govaerts, Influence of the environment in the conformation of α-helices studied by protein database search and molecular dynamics simulations, Biophys. J. 82(6), 3207–3213 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. A. Pusztai, S. Bardocz, S. W. Ewen, Uses of plant lectins in bioscience and biomedicine, Front. Biosci. 13, 1130–1140 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. H. Berman, K. Henrick, H. Nakamura, J. L. Markley, The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data, Nucleic Acids Res. 35, D301–D303 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. R. A. Sayle, E. J. Milner-White, RasMol: Biomolecular graphics for all, Trends Biochem. Sci. 20(9), 347–376 (1995).

    Article  Google Scholar 

  81. J. H. Naismith, C. Emmerich, J. Habash, S. J. Harrop, J. R. Helliwell, W. N. Hunter, J. Raftery, A. J. Kalb, J. Yariv, Refined structure of Concanavalin-A complexed with methyl alpha-d-mannopyranoside at 2.0 Angstrom resolution and comparison with the saccharide-free structure, Acta Crystallogr. D. Biol. Crystallogr. 50, 847 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. T. W. Hamelryck, M. H. Dao-Thi, F. Poortmans, M. J. Chrispeels, L. Wyns, R. Loris, The crystallographic structure of phytohemagglutinin, J. Biol. Chem. 271, 20479 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. C. S. Wright, Angstroms resolution structure analysis of two refined N-acetylneuraminyllactose – wheat germ agglutinin isolectin complexes, J. Mol. Biol. 215, 635 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. R. Ravishankar, K. Suguna, A. Surolia, M. Vijayan, Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex, J. Mol. Biol. 259, 281 (1996).

    Article  PubMed  Google Scholar 

  85. T. Prasthofer, S. R. Phillips, F. L. Suddath, J. A. Engler, Design, expression, and crystallization of recombinant lectin from the garden pea (Pisum sativum), J. Biol. Chem. 264, 6793 (1989).

    CAS  PubMed  Google Scholar 

  86. J. B. A. Ross, W. R. Laws, K. W. Roussland, H. R. Wyssbrod, Tyrosine fluorescence and phosphorescence from proteins and polypeptides, in Topics in fluorescence spectroscopy, Vol. 3, edited by J. R. Lakowicz (Plenum Press, New York, 1992) pp. 1–63.

    Google Scholar 

  87. V. M. Mazhul’, D. G. Shcherbin. Phosphorescence of lipid peroxidation products in solution and biological membranes, in Spectroscopy of biological molecules, edited by J. C. Merlin (Kluwer Academic Publishers, Dordrecht, 1995) pp. 401–402.

    Google Scholar 

  88. V. M. Mazhul’, D. G. Shcherbin, Room temperature phosphorescence of intrinsic lipid chromophores in erythrocyte membranes, Curr. Top. Biophys. 22(B), 138–142 (1998).

    Google Scholar 

  89. V. M. Mazhul’, D. G. Shcherbin, Phosphorescence analysis of lipid peroxidation products in liposomes, Biophysics 44(4), 656–661 (1999).

    Google Scholar 

  90. V. M. Mazhul’, D. G. Shcherbin. Phosphorescent analysis of lipid peroxidation products in vitro and in situ, in Spectroscopy of biological molecules: New directions, edited by J. Greve, G. J. Puppels, C. Otto, (Kluwer Academic Publishers, Dordrecht, 1999) pp. 349–350.

    Google Scholar 

  91. V. M. Mazhul’, D. G. Shcherbin, The heterogeneity of development of lipid peroxidation process in bulk and annular lipids of biological membranes, Curr. Top. Biophys. 24(2), 139–146 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir M. Mazhul’ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mazhul’, V.M., Timoshenko, A.V., Zaitseva, E.M., Loznikova, S.G., Halets, I.V., Chernovets, T.S. (2010). Room Temperature Tryptophan Phosphorescence of Proteins in the Composition of Biological Membranes and Solutions. In: Geddes, C.D. (eds) Reviews in Fluorescence 2008. Reviews in Fluorescence 2008, vol 2008. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1260-2_2

Download citation

Publish with us

Policies and ethics